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Interaction of high-intensity laser pulses with solid targets results in generation of large quantities of energetic
electrons that are the origin of various effects such as intense x-ray emission, ion acceleration, and so on. Some of
these electrons are escaping the target, leaving behind a significant positive electric charge and creating a strong
electromagnetic pulse long after the end of the laser pulse. We propose here a detailed model of the target electric
polarization induced by a short and intense laser pulse and an escaping electron bunch. A specially designed
experiment provides direct measurements of the target polarization and the discharge current in the function of
the laser energy, pulse duration, and target size. Large-scale numerical simulations describe the energetic electron
generation and their emission from the target. The model, experiment, and numerical simulations demonstrate
that the hot-electron ejection may continue long after the laser pulse ends, enhancing significantly the polarization
charge.
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I. INTRODUCTION

Interaction of high-energy and high-power laser pulses with
solid targets is accompanied with the generation of a significant
number of energetic electrons, producing many secondary
effects. The intense x-ray emission [1], ion acceleration [2,3],
and many other effects [4] have been intensively studied
and have been used in many applications. However, there
is a domain related to the laser electron acceleration, which
has not been fully described yet. This is the generation of
intense electromagnetic pulses during and after the laser pulse
spanning a very broad frequency range from a fraction of
a terahertz to a megahertz. No single physical mechanism
can explain this phenomenon, which has long attracted the
attention of many researchers. In particular, the low-frequency
part of the emission spectra in the GHz range has been
measured in many experimental facilities, especially in the
case of multiterawatt laser pulses of a picosecond duration [5].
Such fields may exist in the experimental chamber for a time
of the order of microseconds after the laser pulse and may be
dangerous for the operation equipment and diagnostics. The
mechanisms of generation of electric and magnetic fields in
this frequency domain are not well known. It is accepted that
the fields are generated during the interaction of the laser pulse
with the target and increase with the ejected charge [6–8], but
the exact mechanism is not yet defined. It could be related
either to the electric current carried out by escaping electrons
or with the charge accumulated on the target. The experimental
data indicate that the signal strength and the temporal profile
depend on the target material and geometry [9], on the
shape and the place of the metallic elements of the chamber,
as well as on the laser pulse intensity and duration. In
particular, the electromagnetic pulses generated with intense
picosecond pulses have a much higher amplitude than the
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ones generated from nanosecond pulses of a much higher
energy [10].

In this paper, we present the theoretical model describing
the source of electromagnetic emission, which is the target
polarization induced by the escaping energetic electrons cre-
ated in the interaction of intense picosecond or subpicosecond
laser pulses with solid targets. This model is verified in a
specially designed experiment where the target return current
is directly measured. The experimental data are compared with
a series of numerical simulations describing the generation
and emission of energetic electrons from the target. It is
shown that the target charging proceeds long after the end
of the laser pulse. The charged zone at the target surface
expands with the hot-electron velocity, thus increasing the
target capacity and facilitating the escaping of electrons. Thus,
the target lateral size could have a significant impact on the
overall polarization effect. The model of charge accumulation
is presented in Sec. II for the case of intense picosecond laser
pulses and massive targets. It predicts the target charge value in
function of the effective energy of hot electrons generated by
the laser pulse and the target characteristics. The theoretical
predictions are verified in a specially designed experiment,
where the accumulated charge has been measured in function
of the target size and the laser pulse duration and energy. The
experimental results are presented in Sec. III. The experimental
data are modeled in a series of numerical simulations, which
are discussed in Sec. IV. The three-dimensional particle-in-cell
code describes the hot-electron production in the laser focal
spot. The subsequent propagation of the energetic electrons
and their ejection from the target is modeled with a Monte
Carlo code. Finally, the propagation of the ejected electrons in
the interaction chamber is described with an electromagnetic
particle code. These multiscale extensive numerical simula-
tions demonstrate a good agreement with the experimental data
and confirm the basic model assumptions. The conclusions
and the model predictions for several high-intensity laser
installations are presented in Sec. V. A combination of the
theoretical model, numerical simulations, and the experiment
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FIG. 1. (Color online) Scheme of the target charge and the electric field in the case of short-pulse interaction with a thick solid target. Hot
electrons are created in the laser focal spot (red zone). They are spreading in the target over the distance comparable to the mean free path (gray
zone). Some of the electrons are escaping in vacuum, creating a spatial charge and preventing the electrons with the energies smaller than the
target potential from escaping. The electrons with the energies higher than the surface potential can escape from the target, thus creating a net
positive charge at the surface.

provides a consistent explanation of target polarization and
formation of the electromagnetic signal after the end of the
laser pulse.

II. A SIMPLIFIED MODEL OF CHARGE ACCUMULATION
ON THE TARGET IN LASER-PLASMA INTERACTION

The energetic electrons ejected from the target are identified
as the dominant source creating an electromagnetic radiation
during and after the end of the laser pulse [6,7]. However,
the exact mechanism of the electromagnetic pulse (EMP)
generation is not yet identified. It could be related with
the current associated with fast electrons escaping from the
target [5] or with a discharge current to a positively charged
target. It is thus important to understand the processes leading
to the target polarization and to develop a model providing an
estimate of the accumulated target charge. The scheme of the
target charging is presented in Fig. 1 for the case where the
target size is larger than the hot-electron mean free path.

For the laser pulses of a picosecond duration, one can
neglect the charge neutralization by the electrons coming from
the target support elements. Then the target charging process
can be described by the following steps:

(i) The laser pulse deposits its energy at the target surface.
It is partially converted into the hot electrons with the
conversion efficiency ηabs.

(ii) The electrons accelerated in the backward direction
are ejected from the target in vacuum, thus creating a potential
drop � in the Debye layer at the target surface. This potential
confines the major part of escaping electrons and returns them
back to the target.

(iii) The hot electrons accelerated in the forward direction
expand outside the laser focal spot. The diffusion is dominated
by the elastic collisions with ions. The collisions with the target

thermal (or bind) electrons define the hot-electron cooling
time.

(iv) The deficit of the electrons in the laser spot is
compensated with the return current of cold electrons, so the
target remains electrically neutral.

(v) Some of scattered hot electrons are ejected from the
target as long as their temperature remains sufficiently high.
The most energetic electrons escape from the Debye layer,
thus producing a net positive charge on the target. The cooling
process defines the maximal time of the target charging.

The goal of this section is to develop a sufficiently simple
quantitative model of the target charging that is capable of
predicting the net residual charge and the charging time of
a thick target irradiated by a short intense laser pulse. It
will be shown that the target-charging process takes a few
picoseconds. It is much shorter than the discharge current
time, which is defined by the impedance of the whole target
support ensemble. It is typically in the nanosecond time scale,
as shown in Sec. III A.

A. Distribution function of hot electrons

We assume in the model that the distribution function of hot
electrons created in the laser focal spot at the target surface is
described by an isotropic relativistic Maxwell-Jüttner function,

fh(ε) = (
nh/4πAhm

3
ec

3
)

exp(−ε/Th),

depending on the electron energy ε = √
m2

ec
4 + p2c2 − mec

2.
Here p is the electron momentum, nh is the hot-electron
density, me is the electron mass, c is speed of light,

Ah(Th) = (mec)−3
∫

dp p2 exp(−ε/Th)

= (Th/mec
2) emec

2/ThK2(mec
2/Th)
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is the normalization constant, and K2 is the modified
Bessel function of the second kind. The function Ah varies
as

√
π/2 (Th/mec

2)3/2 in the nonrelativistic limit, Th �
mec

2, and as 2 (Th/mec
2)3 in the the ultrarelativistic limit,

Th � mec
2.

The exponential hot-electron distribution in energy has
been observed in many experiments and numerical simulations
for laser intensities above 1016–1017 W/cm2. The angular
distribution of laser-created hot electrons could be anisotropic,
but this is not the crucial element of the model. As we will
demonstrate below, the electron ejection takes place in a time
scale that is longer than the electron collision time in the target
when the electrons are already isotropic.

The temperature of hot electrons Th created by intense
laser pulses on a surface of a solid target depends on many
parameters, such as the laser polarization, the incident angle,
and so on. However, the major parameter is the square of the
dimensionless laser amplitude a0, which is proportional to
the product of the laser pulse intensity Ilas and the square of
the laser wavelength λlas. This dependence has been evaluated
in many experiments. As a rough estimate, it can be described
either by the empirical Beg’s law [11,12] if the laser intensity
is below 1018–1019 W/cm2 or by the ponderomotive scaling
for higher intensities. In the model we use the following
interpolation:

Th0 � mec
2 max

{
0.47 a

2/3
0 ,

√
1 + a2

0 − 1
}
, (1)

where a0 = 0.85 × 10−9λlasI
1/2
las , Ilas is in W/cm2, and λlas is

in microns. In the domain of interest, for the laser intensities
of the order of 1017–1019 W/cm2 the parameter a0 varies in
the range from 0.3 to 3, and the electron temperature Th from
0.1 to 1.1 MeV.

The total number of hot electrons Nh0 can be related to the
laser pulse energy by the energy conservation,

Nh0 = ηabsElas/〈εe〉, (2)

where the parameter ηabs characterizes the laser energy
absorption and

〈εe〉 = 4π

nh

∫
dp p2ε fh

= mec
2

[
3

Th

mec2
+ K1(mec

2/Th)

K2(mec2/Th)
− 1

]

is the average hot-electron energy. The ratio of 〈εe〉 to Th is
3/2 in the nonrelativistic limit and it increases to 3 in the limit
of ultrarelativistic temperatures.

The efficiency of laser energy conversion into hot electrons
depends on the details of the acceleration process. A simple
empirical scaling ηabs ∝ I 0.266

las was proposed in Ref. [13] based
on the interpolation of the results of experiments and numerical
simulations. However, the proportionality coefficient strongly
depends on particular experimental conditions, on the target
material, and on the laser prepulse. For this reason, we
consider below ηabs as an empirical parameter. According to
the numerical simulations discussed in Sec. IV, the absorption
efficiency is ∼40% in the Eclipse experiment discussed in the
next section.

B. Collisions of hot electrons

The hot electrons accelerated in the laser focal spot expand
in the target. The collisions between hot electrons can be
neglected, but they are scattered elastically in the collisions
with target ions and lose their energy in the collisions with
cold electrons. The electron stopping length depends on the
electron energy and the target density [14]. The electron range
Rs is defined as a distance where the electrons are losing a
significant part of their energy. A convenient interpolation
for the electron range Rs was proposed in Ref. [15] as
follows:

ρtRs � 0.276 AtZ
−8/9
t ε5/3

e (1 + 0.978εe)5/3

× (1 + 1.957εe)−4/3 g/cm2, (3)

where the electron energy εe is in MeV, ρt is the target density,
At the target atomic mass, and Zt is the atomic number. This
expression agrees very well with the experimental data for a
broad range of target materials and for the electron energies up
to a few MeV. The electron diffusion length due to the elastic
scattering on ions can be expressed as Rdif = Rs/(1 + g),
where the factor g = 0.187 Z

2/3
t [15] is the effective ratio of

the electron-ion to electron-electron collision rates.
A significant part of the laser-accelerated electrons prop-

agate inside the target. However, there is a finite probability
that the electrons are scattered in a collision with ions at a
large angle and are ejected from the target. The probability
of electron backscattering rB and the characteristic angle of
ejection θB are defined by the factor g as follows:

tan θB = 2.2 g (1 + g)/(1 + 2g − 0.21g2),

rB = sin2(θB/2). (4)

In particular, for a copper target used in our experiment,
g = 1.76, θB = 70◦, and rB = 0.33.

It is important to make a difference between the collision
length (3) corresponding to a monoenergetic electron beam
and the mean stopping length 〈Rs〉 averaged over the electron
distribution function,

〈Rs〉 = 4π

nh

∫
dp p2Rs(ε) fh.

For the case of a Maxwellian electron distribution, the mean
electron stopping length is approximately 4 times larger than
the stopping length of an electron having the energy equal to
the temperature.

C. Temporal evolution of hot electrons

A generic laser pulse with a Gaussian temporal and spatial
shape is approximated in the model with steplike distributions.
The laser pulse is assumed to have the same energy at a
constant intensity Ilas over the time tlas and over the circular
spot of a radius Rlas. Moreover, we consider the following
simplified model for the temporal evolution of the hot-electron
density and temperature. The total number of electrons in
the cloud Nh increases linearly during the laser pulse and
remains constant after that, while the hot-electron temperature

013102-3



J.-L. DUBOIS et al. PHYSICAL REVIEW E 89, 013102 (2014)

(a)

(b) (c)
( )

)( )(
)(

)(

FIG. 2. (Color online) Temporal dependence of the radius of the hot-electron cloud Rp (a), the hot-electron temperature Th (b), and the
density, nh/nc, (c) for the cases corresponding to the Eclipse laser experiment: the laser spot diameter Dlas = 7.5 μm, λlas = 0.8 μm, a copper
target; red lines (1): Elas = 0.1 J, tlas = 50 fs; green lines (2): Elas = 0.1 J, tlas = 400 fs; violet lines (3): Elas = 0.03 J, tlas = 50 fs. The laser
energy absorption is 40% in all cases.

Th remains approximately constant during the laser pulse,
while it decreases after that. These assumptions are not too
restrictive as we are interested in the total number of ejected
electrons but not their temporal evolution.

The temperature and density evolution are defined by the
time dependence of the radius of electron cloud Rp. The
electron diffusion length 〈Rdif〉 = 〈Rs〉/(1 + g) was intro-
duced in the previous subsection. The temporal evolution of
the electron cloud radius can be described by the diffusion
equation,

dR2
p

/
dt = 〈Rdif〉vh, (5)

with the average electron velocity, vh, defined as follows:

vh = 4π

nh

∫
dp p2v fh = 2 T 2

h

m2
ec

3Ah

(
1 + Th

mec2

)
.

The diffusion model for the electron cloud applies after at
least one electron-ion collision time. So we assume that for the
times shorter than tei = 〈Rdif〉/vh the electrons are expanding
freely with the velocity vh, and Eq. (5) applies for t > tei with
the initial condition Rp(t = tei) = Rlas + 〈Rdif〉. Therefore the
time dependence of the characteristic radius of electron cloud
reads

Rp(t) =
{

Rlas + vht if 0 < t < tei,√
(Rlas + vhtei)2 + 〈Rdif〉vh(t − tei) if tei < t < tcool + tee.

(6)

These expressions are valid as long as the electron temperature
remains constant. The electron cooling is due to the electron-
electron collisions. The corresponding time can be estimated as
tee = 〈Rs〉/vh = tei(1 + g). Then the equation for the electron
temperature evolution for t > tee reads

dTh/dt = −Th/tee. (7)

In the collisional model proposed in Ref. [15], see Sec. II B, the
electron stopping power depends on the electron temperature
in the power 5/3 in the nonrelativistic limit. Correspondingly,
tee ∝ T

7/6
h and the electron temperature decreases with time

as (1 − t/tcool)6/7, where tcool = (6/7)tee with tee evaluated at
the initial hot-electron temperature. In the strongly relativistic
case the electron stopping power is proportional to the square
of temperature and, correspondingly, the electron temperature
decreases with time as (1 − t/tcool)1/2 where tcool = (3/5)tee.
In the model, we integrated Eqs. (5) and (7) for t > tei(1 + g)
numerically and defined tcool as the time where the elec-
tron temperature drops by a factor of 100 from its initial
value.

The volume of the electron cloud can be represented as
a cylinder of radius Rp and the height xp = Rp − Rlas. The
total hot-electron number increases linearly during the laser
pulse, and then it stays constant. Correspondingly, the time

dependence of the hot-electron density can be described as
follows:

nh = Nh0

πR2
p(Rp − Rlas)

{
t/tlas if 0 < t < tlas,

1 if tlas < t.
(8)

Examples of temporal evolution of the hot-electron tem-
perature, density, and the radius of the hot-electron cloud are
shown in Fig. 2 for the parameters of the experiment discussed
in the next section. The electron cooling time in this case
varies from 0.5 to 1 ps, so the hot electrons stay in the target
a long time after the end of the laser pulse. The radius of
electron cloud increases almost linearly with time attaining
the values from 80 to 300 μm. These distances are compatible
with the experimental observations [16] and the numerical
simulations [17], showing a fast spreading of hot electrons
and the corresponding Kα emission from the target. The
hot-electron density is of the order of the critical density
nc = 1.1 × 1021/λ2

las cm−3 during the laser pulse. However,
it decreases dramatically by 3–5 orders of magnitude during
the time of hot-electron expansion and cooling.

The assumption of a homogeneous electron density and
temperature within the cloud is certainly rather crude, but it
is justified by the simplicity of the model and the comparison
presented in Sec. IV B, with the results detailed in numerical
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simulations, which are in good agreement with the model
predictions.

D. Electric potential of the charged zone

The electric potential � at the target surface is created by
the electrons that are escaping from the target but repelled
back by the space charge. In the simplest case of a mono-
energetic electron distribution, fh ∝ δ(ε − ε0), the potential
jump is equal to ε0/e and the electrons are stopped at the
distance ∼(ε0ε0/e

2nh)1/2, where ε0 is the vacuum dielectric
permittivity and e is the elementary charge. Thus escaping
electrons create a virtual cathode. No electrons escape from
this layer.

In the case of a Maxwellian electron energy distribution
the characteristic thickness of the sheath layer is defined
by the Debye length of hot electrons λDh � (ε0Th/e

2nh)1/2.
According to the one-dimensional model [18–20] recalled
in the appendix, the electron density decreases inversely
proportional to the square of the distance from the target,
Eq. (A4), and the electrostatic potential decreases logarithmi-
cally e�(x) � −2 Th ln(

√
e + x/λDh

√
2). This expression is

valid for a steep target density profile with the characteristic
scale smaller than λDh. It may not be appropriate for pulses
with a low contrast or of a duration longer than a few ps.

The potential jump is limited in a more realistic case
where the hot electrons are distributed within a disk of
a radius Rp. Then the potential is limited at a distance
xmax ∼ Rp, and the minimum potential can be estimated
as e�min � −2 Th ln(xmax/λDh

√
2). In order to account for

a possible difference between xmax and Rp in our simpli-
fied model, we defined the minimum potential as e�min =
−2 Th ln(c0Rp/λDh

√
2) with the fitting coefficient c0 = 1.0,

which we chose from the comparison of the model with the
numerical simulations and the experiment.

The knowledge of the electrostatic potential and the hot-
electron parameters allows us to calculate the current of
escaping electrons.

E. Ejection of hot electrons

The electrons with the energies ε > −e�min escape from
the target, leaving behind a net positive charge, Q. The current
density of escaping electrons, jh, can be written as

jh = −e

∫
d�dε p2 cos θ fh

= − enh sin2 θB

4 Ah(mec)3

∫ ∞

−e�min

p2dε e−ε/Th , (9)

where θ is the polar angle with respect to the normal to
target surface. The integral over the solid angle is taken
over the angles of the electron ejection, θ < θB . The integral
over the energies is taken over ε > −e�min, corresponding to
the escaping electrons. We assume that the potential �min is
homogeneous within the radius Rp, and it increases linearly to
zero in the ring of the thickness of 2 λDh.

Performing the integration over the electron energies
and over the radius of the electron cloud in Eq. (9), we
find the total polarization current J . It can be written as

follows:

Jh = eπR2
pnhc sin2 θB

2 Ah(Th)

(
Th

mec2

)2

×
{[(

1 + e|�min|
Th

)(
1 + Th

mec2

)
+ e2�2

min

2Thmec2

]

× e−e|�min|/Th + 4λDhTh

e|�min|Rp

(
1 + Th

mec2

)}
. (10)

This is the basic expression in our model. It provides the value
of instantaneous current of escaping electrons. By integrating
it over the time we calculate the charge accumulated on the
target Q = ∫

Jhdt .
The expression (10) can be further simplified while ne-

glecting the contribution from the Debye edge. In that case,
the potential jump logarithmically depends on the size of the
electron cloud and the approximate expression for the current
reads

J � ec sin2 θB

4 c2
0reAh(Th)

(
Th

mec2

)3[(
1 + 2 ln

c0Rp

λDh

√
2

)(
1 + Th

mec2

)

+ 2 Th

mec2
ln2 c0Rp

λDh

√
2

]
, (11)

where re = e2/4πε0mec
2 is the electron classical radius. It is

important to note that the escaping charge depends essentially
on the hot-electron temperature and on the electron cooling
time. In contrast, the dependence on the density of hot
electrons is much weaker. The charge depends logarithmically
on the hot-electron density and the radius of the electron
cloud. In particular, in the case of nonrelativistic electron
temperatures Th � mec

2, the logarithmic term in the square
brackets is of the order of 3–4. Therefore, the charging
current depends essentially on the hot-electron temperature.
According to Beg’s law (1), it depends on the laser intensity
in the power 1/3. Consequently, the charging current in the
weakly relativistic case is approximately proportional to the
square root of the laser intensity. It is linearly proportional to
Th0, and thus proportional to the square root of laser intensity in
the strongly relativistic limit, where the ponderomotive scaling
applies.

The charging current is approximately constant during the
laser pulse and then it gradually decreases as the hot electrons
cool down. The charging time is effectively the sum of the
laser pulse duration and the electron cooling time, the latter
being of the order of a few picoseconds. The charging time is
effectively defined by the pulse duration for the case of ps laser
pulses, and it is defined by the cooling time for the fs pulses.
These dependencies are illustrated in Fig. 3 for the parameters
of the experiment on the Eclipse laser presented in Sec. III.

Figure 3(a) shows the evolution of the potential jump in
the Debye sheath. It decreases with time because of electron
cooling and expansion. However, it remains all times higher
than the hot-electron temperature shown in Fig. 2(b). The
current of the escaping electrons is in the range of a few
kiloamperes in the conditions of this experiment. It decreases
with time as the electron density decreases.

According to Fig. 3, the target charge accumulation time is
defined by the laser pulse duration in the case of a long pulse,
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FIG. 3. (Color online) Temporal dependence of the potential drop in the Debye sheath �min (a), the current of escaping electrons Jh (b),
and the target net charge Q (c) for the cases corresponding to the Eclipse laser experiment: Dlas = 7.5 μm, λlas = 0.8 μm, a copper target;
red lines (1): Elas = 0.1 J, tlas = 50 fs; green lines (2): Elas = 0.1 J, tlas = 400 fs; violet lines (3): Elas = 0.03 J, tlas = 50 fs. The laser energy
absorption is 40% in all cases.

and it is defined by the electron cooling time in the case of short
pulses. The target charge increases approximately linearly with
the laser pulse energy for a constant pulse duration, while it
gradually decreases if the laser pulse duration increases for a
constant pulse energy. A weaker dependence on the laser pulse
duration is explained by a more intense charging current in the
case of a longer laser pulse as the electron cooling is postponed
[see Fig. 3(b)]. The charge of escaped electrons is of the order
of a few nC, which corresponds to ∼10% of the total number
of hot electrons generated in a laser target interaction.

One should make a difference among the total charge of hot
electrons, Qtot = eNh0, the net charge of escaping electrons,
Q, and the electric charge of electrons trapped in the sheath
layer, Qtr. The latter creates the potential barrier, which is
higher than the average electron energy, since Rp � λDh.
Therefore, the major part of the electrons is stopped there
and only a small number of suprathermal electrons may
escape. Thus, we suppose in our model that Q � Qtot. The
escaping electrons do not affect the value of �min too much,
and the detailed structure of the potential barrier is not
important for the calculation of the polarization current. The
trapped charge can be estimated as Qtr � πR2

pσs , where the
surface charge σs = ε0Es is related to the surface electric field
Es = −d�/dx = √

2/e Th/eλDh.
It is instructive to compare the net accumulated charge

with the space charge in the sheath layer. For example, in
the case of a short laser pulse presented with red lines in
Fig. 3, the Debye length increases from a few microns during
the laser pulse to about 90 μm at the time when electron
temperature decreases. The electric field at the target surface
decreases rapidly from ∼500 kV/μm to about 2 kV/μm at the
cooling time. The corresponding surface charge density σs =
ε0Es decreases also by two orders of magnitude. However, the
total charge in the Debye sheath increases up to ∼10 nC at
the time of 1.5 ps and then it decreases again as the electrons
are cooling down. It is comparable with the net target charge
of 15 nC, but it is much smaller than the total charge of hot
electrons, which is of the order of 70 nC.

The charging process is slowed down in the materials with
a higher electron stopping power. For example, for the same
conditions, the charge on a copper target is approximately 2
times smaller than that on an aluminum one. The present model
describes massive targets, but it can be readily extended to thin
foils by taking into account the recirculation effect similarly
to Ref. [21].

III. TARGET POLARIZATION EXPERIMENT

A. Experimental setup

The present model is compared with a dedicated experiment
on the Eclipse laser system available at CELIA. It delivers a
maximum of 100 mJ on target for a pulse duration as short
as 50 fs at the wavelength of 800 nm. The temporal contrast
measured by a third-order autocorellator is 10−7 during the 2 ns
preceding the main pulse. A f# = 5 off-axis parabola is used
to focus a linearly polarized laser beam at normal incidence
on a target. The resulting focal spot presents a Gaussian shape
profile of 7.5 μm full width at half maximum (FWHM), as can
be seen in Fig. 4(a). The high stability of a 10-Hz repetition
rate laser system [shot to shot fluctuations are 2% root mean
square (rms) in energy and 2% rms in duration] allows us to
measure the target charge with good accuracy. In the results
presented below each data point is averaged over five laser
shots.

The model presented in Sec. II is valid for thick targets
where the target thickness d is much larger than the range Rs ,
Eq. (3), of electrons in the material: d � Rs . For this reason
we used d = 3 mm thick copper targets, which is much larger
than the 1-mm range corresponding to 1-MeV electrons in a
solid copper. We have reproduced the experiment for three
disk targets with diameters of 5, 10, and 15 mm. Each target
was connected to the inner conductor of a coaxial cable by a
straight brass wire of 0.5 mm radius. The distance between
the copper disk center and the target holder plate, where the
coaxial cable was fixed, was 5 cm whatever the target diameter.
The target holder plate itself was connected to the ground but
insulated from the coaxial cable.

This experimental setup is presented in Fig. 4(b). After
each shot, electrons escaping from the target are propagating
freely in vacuum up to the metallic experimental chamber walls
50 cm away. After the electron cooling the target exhibits
a positive charge equal to the charge of escaped electrons.
The specific design of the target holder allows us to measure
the neutralization current of the target by connecting the
coaxial cable to a Lecroy Wavemaster 8620A oscilloscope
of 6-GHz bandwidth. To protect the oscilloscope from a high
voltage, an attenuation of 60 dB was used. A typical form of
the discharge current is presented in Fig. 5(a). The transfer
function of the cable and the flange set was characterized
after the experiment. The modulus of the attenuation function
is displayed in Fig. 5(b). This attenuation was used to
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(b)(a)

FIG. 4. (Color online) (a) Averaged laser focal spot lineout from the focal spot image (inset). (b) Scheme of the experimental setup.

correct the raw data. As the characteristic does not show any
dispersion, no phase correction was applied. To account for
the oscilloscope response, the following transfer function was
used:

ascope(ν) = asignal(ν) (1 + i ν/νcut)
−1, (12)

where νcut = 6 GHz is the cutoff frequency.

B. Experimental results

A typical form of discharge current is displayed in Fig. 5(a).
It corresponds to a shot onto a 10-mm-diameter target with
an incoming energy of 80 mJ and a 50-fs pulse duration.
The red solid line shows the data after processing. There is
a minor difference from the raw data shown in black dots. The
current waveform consists of one strong bipolar pulse with
an amplitude of 40–50 A and a period of 1 ns followed by a
second pulse of a smaller amplitude. These two pulsations were
rather reproducible with small fluctuations. In some shots, at
the time of 2.7 ns after the laser pulse, an overshoot of an
amplitude of a few amperes was observed, as can be seen in
the inset of Fig. 5(a). Its origin could be related to a reflected
electromagnetic signal. After the laser shot, the target acts as
an antenna. It may receive the electromagnetic signal induced

by the current discharge and reflected from the chamber walls.
The total charge was calculated by integration of the current
over time. To avoid biasing the charge estimate, the current
was integrated up to 2.7 ns, as represented by the red area in
Fig. 5(a).

The dependence of the target charge was studied in function
of three parameters: the target diameter, the laser pulse
duration, and the laser pulse energy. The measured total charge
and the maximum current amplitude are shown in Figs. 6 and 7.
In the first scan, the laser pulse duration was set to 50 fs and
the laser pulse energy was varied from 10 to 100 mJ. In the
second scan, the laser energy was kept constant at 80 mJ on
the target, whereas the duration was tuned in the range from
50 to 550 fs.

The experimental points can be interpolated with simple
linear functions. The total charge increases with the laser
energy, independently of the target size. In contrast, the
maximum current increases linearly with the laser energy but
decreases with the target diameter. It can be readily understood
as the larger target has a larger electric capacity and thus a
larger discharge time. It is important to notice that, according
to our measurements, the charge and the maximum current
depend essentially on the laser energy and much less on the
laser intensity. According to Fig. 7, the total target charge

(b)(a)

FIG. 5. (Color online) (a) Typical form of the discharge current (in A) as a function of time for 80 mJ on target laser pulse of a 50-fs
duration. The points (·) are the raw data and the solid (red) line is the corrected signal. The shaded (orange) area represents the target charge
obtained by integration of the current over time limited to 2.7 ns. (b) Attenuation function of the coaxial cable (in dB) in the frequency range
from 0.1 to 10 GHz.
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(b)(a)

FIG. 6. (Color online) Dependence of the target charge [(a), in nC] and of the maximum current amplitude [(b), in A] as a function of the
laser energy on target in the range from 10 to 100 mJ. The laser pulse duration is 50 fs and the target size is 5 mm (circles, red), 10 mm (open
squares, blue), and 15 mm (triangles, black).

and the maximum current depend weakly on the laser pulse
duration in the considered range from 50 to 550 fs.

According to the theoretical model presented in Sec. II,
such behavior can be explained as follows. The scaling laws
of Eq. (1) predict the hot temperature increase from 120
to 280 keV, while the laser energy increases from 10 to
100 mJ for the laser pulse duration of 50 fs. According to
numerical solution of Eqs. (5), (7), and (10), the target charge
increases from 2 nC at the minimum energy to approximately
15 nC at the maximum energy, which is in good agreement
with the observations. The radius of the laser-heated zone
Rp increases with time up to 300 μm at the time ∼2 ps,
which is much smaller than the minimum target size, see
Fig. 2(a). Therefore, the independence on the polarization
charge of the target size is in agreement with the theoretical
model.

The model predicts the charging current amplitude up to
10–15 kA, which is much higher than the measured recharge
current of 50 A maximum. This is also in agreement with the
major hypothesis of the model, which neglects the recharging
process. The characteristic recharging time of a few ns is

defined by the target size and the support assembly, which
is a product of the capacity and the impedance of the electric
circuit. The electric capacity of the copper disk is proportional
to the disk size, while the wire impedance is a constant. This
explains the decrease of the maximum current with the increase
of the target size.

The second series of measurements of the charge depen-
dence on pulse duration has been conducted at a constant laser
pulse energy, ∼0.1 J. According to the analysis of Sec. II E,
the number of ejected electrons depends on the ratio between
the laser pulse duration and the hot-electron cooling time.
These two quantities become equal for the pulse duration of
about 0.4 ps. Correspondingly, for shorter pulse durations, the
electron cooling time is longer and the ejected charge is larger.
Oppositely, for a longer pulse duration the cooling time is
short and the electrons are ejected essentially during the laser
pulse. The ejected charge increases then with the laser pulse
duration. Consequently, the ejected charge attains its minimum
of ∼7 nC when tlas = 0.4 ps. This non-monotonous behavior
could be a reason for the observed very weak dependence of
the ejected charge on the laser pulse duration.

(b)(a)

FIG. 7. (Color online) Dependence of the target charge [(a), in nC] and the maximum current amplitude [(b), in A] as a function of the
laser pulse duration in the range from 50 to 500 fs. The laser pulse energy is 80 mJ and the target size is 5 mm (circles, red), 10 mm (open
squares, blue), and 15 mm (triangles, black).
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IV. NUMERICAL SIMULATIONS
OF THE TARGET CHARGING

The Eclipse experiment was simulated with a suite of nu-
merical codes that describe the dominant physical effects. As
the real target size and the characteristic time are much larger
than any code would accept, the simulation was conducted in
four subsequent steps. First, the effect of laser prepulse on the
solid target was simulated with the radiation hydrodynamic
code CHIVAS [22,23]. It describes the plasma formation and
its expansion from the solid target surface. Then the main
laser pulse interaction with plasma and hot-electron generation
were simulated in detail with the three-dimensional relativistic
particle-in-cell (PIC) code CALDER [24,25]. These data were
transferred in the Monte Carlo N -particle transport code
(MCNP) [26] in order to model the propagation of hot electrons
in the solid target and their collisions. Finally, the escape of
electrons from the target and their propagation to the chamber
elements was simulated with another PIC code, SOPHIE [27],
that accounts for the target chamber geometry. Because of a
large amount of required computing time, the simulations were
conducted for a single set of parameters corresponding to the
highest laser pulse energy and the shortest pulse duration.

A. Simulation of the electron source term

The prepulse of the laser Eclipse forms a preplasma that
defines the interaction condition for the main laser pulse. The
laser pulse arrives on the target at normal incidence. The pre-
plasma conditions were computed with the one-dimensional
radiative hydrodynamic code CHIVAS [22,23] assuming the
laser prepulse intensity 2 × 1011 W/cm2 (corresponding to
the intensity contrast of 107) and a duration of 2 ns. The
longitudinal plasma density profile along the axis x normal to
the target at the moment of the main pulse arrival was approx-
imated by an exponential function, ne(x) = nc exp(−x/Lp),
with Lp = 3.4 μm and the position x = 0 at the front target
surface.

The main laser pulse interaction with the preplasma is
modeled with the PIC code CALDER 3D [24,25] in a three-
dimensional geometry. Hot electrons with energies up to a few
MeV were produced by various physical processes that are
described in the literature [28,29]. The most important among
them is the ponderomotive or j × B acceleration [30–33].
As the CALDER simulation box is much smaller than the hot-
electron mean free path, the collisions of the laser accelerated
electrons were accounted for separately at the subsequent
simulation step.

The main laser pulse at the wavelength λlas = 0.8 μm was
linearly polarized along the y axis, with the energy at the target
80 mJ, the intensity at 2 × 1018 W/cm2, the peak normalized
laser vector potential a0 = 0.98, the spot size diameter at the
half maximum of 8 μm, and the pulse duration at the half
maximum tlas = 50 fs. In CALDER simulations, the temporal
and radial laser profiles are assumed to be Gaussian functions.
The simulations were run with a mesh size �x = �y = �z =
λlas/30, 5 macroparticles per cell were used for electrons
and 1 macroparticle per cell was used for ions. The CALDER

simulation box dimensions were 30 μm in the longitudinal (x)
direction and 25 × 25 μm2 in the transverse (y,z) plane. The

laser pulse was injected from the left side of the simulation box.
It propagates 4 μm in the vacuum and then 21 μm through the
exponential density profile, increasing from 0.006 to 2.86 nc.
The plasma density profile was terminated with a plateau of
5 μm thickness at the density 2.86 nc.

During the simulation, the energy conservation was con-
trolled by comparing the total kinetic energy gained by
the plasma particles with the total Poynting flux integral.
The difference was less than 3%. The boundary conditions
for the fields are periodic at the transverse boundaries and
absorbing at the longitudinal boundaries. For the particles,
the boundaries are absorbing, provided that the total electric
charge in the domain remains zero; otherwise particles are
reinjected at the thermal velocity in order to keep the total
charge equal to zero. CALDER simulations were performed with
600 processors during 50 h on the Tera100 Bull supercomputer
at the CEA/DIF.

The characteristics of each macroparticle (position, velocity
components, and weight) related to the accelerated electrons
computed with CALDER were transferred in the Monte Carlo
code MCNP 3D [26], which accounts for the collision pro-
cesses of energetic electrons in the solid target in the three-
dimensional geometry. They include the elastic collisions with
the target electrons and ions and also the photon production in
the Bremsstrahlung process. The latter process is not important
here because of a very small photon conversion efficiency.
About 2 × 109 macroparticles were used. The simulation took
about 17 h of the computing time on a standard monoprocessor
workstation. The minimal energy considered in the CALDER

and MCNP simulations was 50 keV in order to limit the
computing time. The interaction was simulated during 500 fs,
which is comparable but shorter than the electron cooling time
shown in Fig. 2(b).

The scheme of the CALDER-MCNP 3D simulation is repre-
sented in Fig. 8(a). The electrons emitted from the CALDER

simulation box forward and backward with respect to the laser
direction were considered separately. Those emitted backward
from the surface S1 (red arrays) do not interact with the target,
while those emitted in the forward direction (blue arrays)
interact with the solid target. The collision processes that take
place in the target were computed with the MCNP code. The
characteristics of electrons emitted from the backside of the
target (surface S3) and the front side of the target (surface S2)
calculated with the MCNP are discussed below. They present
the output of this CALDER-MCNP simulation. The electron
source term thus consists of the combined contributions of
the electrons emitted and computed with CALDER (surface S1)
and with MCNP (surfaces S2 and S3).

During the interaction of the main laser pulse with the
short preplasma, 58% of the laser energy was reflected from
the target. The preplasma thickness increases with time as
the laser pulse propagates through. Thus, the reflected pulse
interacts with a longer plasma and produces more energetic
electrons (with the energies up to ∼9 MeV) in the backward
direction compared to the forward accelerated electrons (the
energy cutoff of ∼3.5 MeV) [24]. This can be seen in Fig. 8(b),
where the distribution function of the electrons emitted
from the CALDER box is presented in the polar coordinates
(px , p⊥). As the laser pulse is weakly relativistic, the number
of these relativistic electrons with the energies above 3.5 MeV
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(a)

(b)

FIG. 8. (Color online) (a) Scheme of the coupling between the CALDER and MCNP codes in the (x,y) plane. The simulations were carried
out in three dimensions. The laser enters from the left side of the CALDER simulation box (small box, blue). One part of the electrons exiting
this box was emitted backward (small arrays, red) and the other part was emitted forward (blue arrays) and entered the copper target (large box,
green). The collision processes taking place in copper were computed with MCNP. The electron emission was evaluated at the surfaces S1, S2,
and S3. The emitted backward electrons at S1 were computed by CALDER, and the electrons emitted from the surfaces S2 and S3 backward and
forward, respectively, were simulated by MCNP. (b) Energy distribution function in the polar coordinates of the electrons exiting the CALDER

simulation box.

is relatively small, ∼109, and they contribute less than 1%
to the total target charge. The electron energy distribution
is approximately exponential with the effective temperature
Th0 � 250 keV. This value is in agreement with Eq. (1), that
is, taking the maximum of the ponderomotive potential and the
Beg’s scaling. In total, 5 × 1011 electrons with energy greater
than 50 keV were emitted from the CALDER simulation box.
They carry out about 25% of the incident laser pulse energy.
About 75% of these electrons were emitted in the forward
direction with an angular aperture of the emission lobe of
about 83◦, while 1.3 × 1011 electrons are emitted backward
(surface S1). These numbers are comparable with the total
number of hot electrons, Nh = 4.2 × 1011, calculated from
Eq. (2). The CALDER simulation box is smaller than the cutoff
distance of the electrostatic potential. Thus, a significant part
of electrons ejected from the CALDER box is not really free.
Their evolution was studied in larger-scale simulations with
the MCNP and SOPHIE codes.

The MCNP calculations indicate that only a small fraction
2 × 10−6 of the incident electrons are transmitted through the

target. This fraction corresponds to the mean ionization range
of 0.2 mm for the electrons of the energy of 400 keV in a 3-mm
layer of copper. There are about 1.5 × 1011 backscattered
electrons ejected from the surface S2, which represents about
40% of the incident electrons. This number is in good
agreement with the value of 33% given by the model estimate,
Eq. (4). The energy distribution function of the electrons
ejected backward from the surfaces S1 and S2 is represented in
Fig. 9(a) for several angles with respect to the laser axis. The
angular anisotropy is observed for electron energies exceeding
2–3 times the temperature. The characteristic opening angle
of ejected electrons is in agreement with the theoretical
description in Sec. II B.

The temporal dependence of the emitted backward electron
current density is presented in Fig. 10. The backscattering
process that takes place in the target tends to increase slightly
the electron emission time to about 2 ps. In later time the
electron emission continues from a larger target surface, but
the total current is negligibly small. In total, about 2.8 × 1011

electrons left the simulation domain from the surfaces S1,

(a) (b)

FIG. 9. (Color online) (a) Energy distribution function of electrons produced backwards (surfaces S1 and S2) at different angles, with
respect to the laser axis. (b) Comparison of the energy distribution functions of the electrons emitted forward (surface S3) and backward
(surfaces S1 and S2) from the MCNP and CALDER simulation boxes.
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FIG. 10. (Color online) Time dependence of the current density
of electrons emitted backwards (surface S2) at different distances
from the laser axis obtained in the MCNP simulation.

S2, and S3. That represents a charge of 44 nC. The energy
distribution of electrons transmitted in the forward direction
(surface S3) and ejected backward from the surfaces S1 and
S2 is presented in Fig. 9(b). The Bremsstrahlung emission is
relatively small in this case. It produces an on-axis dose of
about 1.8 μrad (or 18 nGy) at the distance of 1 m in air.

This numerical simulation in the MCNP code gives a 4 times
bigger ejected charge than predicted by the model presented
in Sec. II. According to Fig. 3(b), for the laser pulse energy
of 0.1 J, at a time of 0.5 ps, the current is about 7.5 kA, the
electron cloud radius is 120 μm, and the current density is
about 2 × 107 A/cm2. This is of the same order as shown in
Fig. 10, although the current is more peaked in the simulation
as the hot-electron density is inhomogeneous in the expanding
cloud. However, the net target charge calculated in the model
and with the code are of the same order.

B. Simulation of the escaping charge

The electric fields created by escaping electrons are not
accounted for in the MCNP code. The simulations of CALDER

and MCNP alone are not sufficient for a correct estimate of the
electron charge escaped from the target. The large electrostatic

fields, produced on the target surface by the escaping electrons,
were taken into account with the three-dimensional code
SOPHIE [27]. It is specially designed for calculation of the
system generated electromagnetic pulse (SGEMP) in laser-
target interactions. This is a PIC finite difference in time
domain (FDTD) code that solves the Maxwell’s equations
for the fields and the Vlasov’s equations for the particles in
vacuum in a volume limited by conducting or dielectric walls.
The code works with billions of macroparticles tracked on
billions of grid points with a prescribed boundary conditions.

The spectral, angular, temporal, and radial distribution of
electrons leaving the solid target in the CALDER-MCNP boxes
was taken as the input into the SOPHIE code. Only the electrons
emitted in the backward direction are considered due to the
very small fraction of transmitted electrons (2 × 10−6).
The target is assumed to be a perfect electrical conductor. The
simulation domain was limited to a few millimeters around the
target in order to perform a discretization with a micron-size
grid. The absorbing conditions CPML [34] were imposed on
the fields and the electrons at the external boundaries of the
simulation volume. It has a cylindrical shape with a height of
2 mm and a radius of 2.5, 5, and 7.5 mm. The grid size was
varied from 1 to 5 μm.

The profile of the electric potential distribution along the
axis x perpendicular to the target surface is represented in
Fig. 11(a). During the first picosecond, the potential increases,
while the potential drop is localized at the target surface.
The potential barrier forms after 1 ps, and it achieves the
maximum of about 180 kV at the distance of 150 μm from
the surface. The potential rising time of 2.5 ps is comparable
with the characteristic duration of hot-electron emission (2 ps)
and the time of crossing the simulation volume. The electron
dynamics in the sheath layer explains the delay of the potential
evolution compared to the model prediction shown in Fig. 3(a).
Moreover, the comparison of the absolute value of the potential
is not appropriate, because the model does not account for
the sheath dynamics and the simulation does not account
for the hot-electron distribution inside the target. Nevertheless,
there is an agreement in the emission spot radius of 300 μm
and the cooling time of 2.5 ps.
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FIG. 11. (Color online) (a) Potential distribution at the front side of the target during the hot-electron emission at the time moments of 1,
1.1, 1.5, 2.5, 3.5, and 4.5 ps. The calculations with the code SOPHIE for the laser energy of 80 mJ and the pulse duration of 50 fs. (b) Time
dependence of the electric current of escaping electrons collected at a distance of 1 mm from the target. Three simulations with the targets radii
2.5, 5, and 7.5 mm are shown. The dashed line shows the electric current extracted from the CALDER-MCNP boxes considered as a source term.
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FIG. 12. (Color online) Surface charge density distribution over the front side of the target simulated with the SOPHIE code. The target
radius is 5 mm, the pulse energy is 80 mJ, and the pulse duration is 50 fs. (b) Time dependence of the net surface charge obtained by integration
of the surface charge density.

The electrons, which have escaped from the target, were
collected at the boundary at the distance of 1 mm parallel
to the target surface. This distance is sufficiently large for
counting the electrons that have indeed escaped and will not
be repelled back to the target. The electron current in function
of time is presented in Fig. 11(b). Three simulations with the
targets radii 2.5, 5, and 7.5 mm were performed with almost
identical results. Thus, the escaped current does not depend
on the size of the target for the considered conditions. This
confirms the experimental observation that the accumulated
charge does not depend on the target radius.

The potential at the target surface decreases with time after
4.5 ps because of the cooling of hot electrons. The delay
of 3.5 ps is the time of propagation of the 1-mm distance
from the target to the recording surface. The electron current
achieves the maximum of about 1 kA at the time of 7 ps. The
time delay of the maximum of electron emission of 3.5 ps
is comparable with the electron cooling time of 1.5 ps in
the model presented in Sec. II. As shown with the dashed
curve in Fig. 11(b), almost all electrons are emitted in 2–3 ps.

The integration over the time gives an escaping charge of
10 nC. That represents one fourth of the emitted electrons, and
it agrees rather well with the target charge measured in the
experiment.

The current emission time of 7 ps is rather short to be
affected by the boundary effect of the expansion of the positive
charge over the target surface. As it is shown in Fig. 12(a),
the radius of the positively charged zone increases with time
almost linearly. The characteristic velocity is comparable
with the hot-electron mean velocity. The essential charge is
localized inside a radius of about 0.3 mm, corresponding to
the emission surface defined by the electron range in the target,
which is comparable with the electron cloud radius shown in
Fig. 2(a) and with the mean hot-electron path 〈Rs〉 � 300 μm
for the hot-electron temperature of 270 keV in a copper target.
Thus, the accumulated charge should not depend on the target
size for targets larger than 1 mm. That implies that the charge
accumulated on targets with radius smaller than 0.5 mm could
be less than the one calculated here. This charge builds up
during the emission time of 3–5 ps [see Fig. 12(b)]. It rises to
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FIG. 13. (Color online) (a) Simulation of the current at the bottom of the target assembly in the Eclipse chamber. Calculation with the
SOPHIE code: the target radius is 5 mm, the laser pulse energy 80 mJ, and the pulse duration 50 fs. The current is collected at an effective 50-�
resistance. (b) Comparison of the current wave form between the simulations and the experimental data.
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14 nC and then decreases to an asymptotic value ∼10.5 nC as
the charged zone continues to expand. The maximum charge
density of 8 μC/cm2 shown in Fig. 12(a) corresponds to the
electric field at the target surface ∼100 MV/cm. This charge
density multiplied by the emission surface ∼πR2

p ∼ 0.1 mm2

gives the total charge of 10 nC. These values are also in good
agreement with the model.

We computed also with the SOPHIE code the recharge
electric current measured at the bottom of our target assembly.
The simulation handles the target in a simplified geometry
of the Eclipse chamber of the total volume 1 m3. The grid
size in that case is 1 mm. A connection of the target to the
cable is simulated by a 50-� resistance between the stick and
the pedestal, as shown in Fig. 13(a). As we cannot mesh the
whole domain inside the chamber (more than 1 m) with a
sufficient discretization of the space charge on the target, the
recharge current was calculated with the SOPHIE code using
the target charge evaluated during the electron emission phase
shown in Fig. 12(b). The initial emission spectrum (the source
term in Fig. 9) is filtered by the potential barrier (180-keV
cutoff). The comparison of the calculated current wave form
with the experimental results in Fig. 13(b) shows a very good
agreement.

V. CONCLUSIONS

A model of target polarization due to the hot-electron
ejection from the laser irradiated spot is presented. The
charge is accumulated as the electrons heated in laser plasma
interaction are leaving the target. The ejection time varies
from a few ps for the case of subpicosecond laser pulses to a
few tens of ps for longer picosecond laser pulses. This time
is defined by the cooling time of hot electrons in Coulomb
collisions with the target electrons and ions. Therefore, the
accumulated charge depends on the target material, and it
decreases as the target density increases. The effective size
of the charged zone is much larger than the laser focal spot.
It is a few times larger than the hot-electron mean free path
in the target. Therefore, the targets with a size smaller than
〈Rs〉 accumulate smaller charge, while it is independent of
the size for larger targets. The accumulated charge depends
strongly on the hot-electron energy and thus on the laser
intensity.

The target charge is measured experimentally by measuring
the discharge current through the coaxial cable connecting the
target to the ground. The duration of the discharge current
is of the order of a few ns. It is defined by the impedance
of the target assembly and the target support. It is much
longer than the charging time, which does not exceed a few
ps for our experimental conditions. That fact confirms the
major hypothesis of the model, which neglects the discharge
current from the target support. The observed dependence
of the accumulated charge on the laser pulse energy and
duration can be explained qualitatively with the model and
with the numerical simulations. However, some quantitative
differences need further analysis.

The experiment has been modeled in a series of numerical
simulations that describe the laser-target interaction and hot-
electron production, the electron spreading in the target,
and the electron propagation through the vacuum chamber

to the conducting boundaries. Although the overall size of
the simulation box (about a few millimeters) is smaller
than the real experimental chamber, the major quantitative
characteristics of the charging process are successfully de-
scribed. The hot electrons contain a significant part of the
laser pulse energy (25–50% depending on the interaction
conditions) and the dominant part has an almost isotropic
energy distribution with the exponential energy distribution.
The characteristic electron temperature for the chosen laser
intensity agrees well with the ponderomotive and Beg’s scaling
laws. The electron ejection from the target continues for
about 1–2 ps, which is much longer than the laser pulse
duration. The duration of the electron emission is defined by
the process of hot-electron cooling in the electron-electron
collisions. The electron emission process is inhibited by the
formation of a potential barrier (of a virtual cathode) that repels
electrons and suppresses the emission process. The potential
barrier amplitude is comparable to the hot-electron initial
temperature.

The model of the target polarization successfully explains
also the data from the experiments with the picosecond
laser pulses with the energies of hundreds of joules. The
model predictions for several other experiments with higher
laser-pulse energies are presented in Table I. In the experiments
with the Titan and Omega EP lasers at the energy level
of a few hundred joules and a picosecond pulse duration,
the estimated charge is of a few μC. These numbers are
in a reasonable agreement with the measured data and the
simulation results [5–7], however, as the Omega EP pulse
duration is rather long, our hypothesis of a steep target
density profile might not be appropriate. Nevertheless, a
comparison with the available measurements shows that the
model accounts for the major effects that define the target
polarization in high-intensity laser-plasma experiments. It
provides us with an estimate for the polarization effect in the
future experiments with the Petal laser system [35], which will
deliver a power of 2 PW at the intensity of ∼1020 W/cm2. It is
expected that in the interaction with a copper target the charge
could be about 20 μC, and the hot electrons may spread over
a few cm from the laser spot. The charging time of 200 ps
is already comparable with the discharge time. This time can
be exagerated in our simple model, which does not account
for collective energy losses of hot electrons. That effect can
be significant at high laser pulse intensities if the hot-electron
current density exceeds 1012 A/cm2 [36].

The model of charge polarization suggests methods of
control of the charging process by choosing the target material,
the size, and the support. The charging process also sheds
the light on the emission of electromagnetic signal from
the target. Two distinct sources of electromagnetic emission
can be readily identified. The first one is related to the
charging process. The electromagnetic pulse is emitted by
the bunch of electrons ejected from the target. The electron
bunch duration of a few ps corresponds to the frequency
range of the order of a THz or a few tenths of a THz.
The second pulse of a ns duration and in the frequency
range below a few GHz is due to the discharge current
through the target support. The detailed characteristics of
this second electromagnetic pulse depend on the target and
chamber geometry.
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TABLE I. Thick target polarization characteristics for several sets of experimental parameters. The laser-to-electron conversion efficiency
is 40%, c0 = 1.0.

Facility

Parameter Eclipse 1 Eclipse 2 Eclipse 3 Titan Omega EP Petal

Wavelength, λlas, μm 0.8 0.8 0.8 1.05 1.05 1.05
Pulse duration FWHM, tlas, ps 0.05 0.40 0.05 2.0 9.0 0.5
Pulse energy, Elas, J 0.1 0.1 0.03 200 950 1000
Focal spot FWHM, μm 7.5 7.5 7.5 20 25 50
Laser int., Ilas, 1018 W/cm2 2.95 0.37 0.88 20.7 14 66
Laser amplitude, a0 1.17 0.41 0.64 4.1 3.3 7.3

Target material Copper Copper Copper Aluminum Tantalum Copper
Electron temperature Th0, keV 276 133 179 1630 1280 3250
Maximum potential |�min|, kV 1650 820 1000 9800 8800 20000
Total charge of electrons, Qtot 68 nC 159 nC 34 nC 18 μC 110 μC 43 μC
Cooling time, tcool, ps 1.07 0.38 0.57 62 9.6 84
e-i collision time, tei , ps 0.58 0.19 0.29 57 4.2 59
Radius of electron dist. Rp , mm 0.30 0.08 0.13 30 3.1 37
Target charge–model, Q 15.7 nC 3.9 nC 5.2 nC 6.0 μC 3.7 μC 21 μC
Target charge–simulation, Q 10.0 nC 1.2 μC
Max. current, Jh, kA 16 6.1 8.5 120 170 300
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APPENDIX: ONE-DIMENSIONAL MODEL
OF THE ELECTRON DEBYE SHEATH

Following Ref. [18], we consider a semi-infinite stationary
plasma with cold ions having a steplike density profile,

ni(x) =
{
n0 if x < 0,

0 if x > 0.
(A1)

The electrons having the temperature T are distributed near
the plasma boundary according to the Boltzmann law, ne =
n0exp(e�/T ), in the self-consistent electrostatic potential �.
The latter is defined by the Poisson equation

ε0
d2�

dx2
= en0

{
exp(e�/T ) − 1 if x < 0,

exp(e�/T ) if x > 0.
(A2)

It has to be solved with the asymptotic condition � → 0 at
x → −∞, corresponding to the plasma neutrality far from
the boundary, and d�/dx → 0 at x → ∞, corresponding
to the zero electric field far from the plasma and requiring
the continuity of the potential and its first derivative at the
boundary x = 0.

It is convenient to introduce the dimensionless potential
φ = e�/T and to normalize the coordinate x = ξλD by the
Debye length λD = (ε0T/e2n0)1/2. Then the first integral of the
Poisson equation (A2) outside the plasma reads (φ′)2 = 2 eφ .

The choice of the integration constant corresponds to the fact
that φ and φ′ are negative, and φ diverges at infinity, φ → ∞
at x → ∞. Integrating once more this equation, we find the
potential outside the plasma,

φ(x > 0) = −2 ln(b0 + ξ/
√

2). (A3)

The integration constant b0 will be defined from the potential
continuity at the boundary.

The first integral of the Poisson equation (A2) inside
the plasma reads (φ′)2 = 2(eφ − φ − 1). The choice of the
constant corresponds to the boundary condition at x → −∞.
Equating the potential derivatives at the boundary for the inner
and outer solutions, we find readily the value of the potential,
φ(0) = −1, and then the value of the integration constant
b0 = √

e follows from Eq. (A3).
In the dimensional units the expressions for the electric

potential and plasma density outside the plasma, x > 0, read
as follows:

e�(x > 0) = −2 T ln(
√

e + x/λD

√
2),

ne = n0(
√

e + x/λD

√
2)−2. (A4)

One can obtain also the expression for the electric field at
the boundary Es = (2/e)1/2T/eλD , which corresponds to the
charge surface density σs = ε0Es = (2ε0n0T/e)1/2.

The electron density distribution at the plasma surface has
been calculated in the paper by Crow et al. [18] and Carron
and Longmire [19]. However, Carron and Longmire did not
account for the field penetration inside the plasma. Therefore,
their solution with b0 = 1 does not account for the plasma
charge neutrality.
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