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Transverse current fluctuations in the Yukawa one-component plasma
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Using numerical simulations, we investigate the wave number and frequency dependent transverse current
correlation function CT (k,ω) of a single-component fluid with Yukawa interaction potential, also known as the
Yukawa one-component plasma. The transverse current correlation function is an important quantity because it
contains the microscopic details of the viscoelastic behavior of the fluid. We show that, in the region of densities
and temperatures in which shear waves do not propagate, the dynamics of the system are in striking agreement with
a simple model of generalized hydrodynamics. As either the density is increased or the temperature decreased,
the transverse current correlation function shows additional structure that the simple models fail to capture.
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I. INTRODUCTION

The Yukawa one-component plasma (YOCP) is a simple
representation of a strongly coupled plasma, often used to de-
scribe dusty plasmas [1,2] and laser-produced plasmas [3–5].
The YOCP consists of N identical point particles with charge
Ze and mass m interacting via the Yukawa potential v(r) =
(Ze)2 exp(−r/λs)/4πε0r , where λs is the screening length. In
equilibrium, the system is characterized by two dimensionless
parameters: the coupling parameter � = (Ze)2/akbT , where
a = (4πn/3)−1/3 is the average interparticle spacing, and the
screening parameter κ = a/λs [6].

Recently, there has been significant interest in the viscoelas-
tic behavior of the YOCP [1,7,8]. The term “viscoelastic”
expresses the fact that the YOCP can exhibit both dissipative
and elastic responses to external disturbances. This behavior
is characteristic of liquids, which exhibit dissipative (viscous)
relaxation at long time and length scales but can respond
elastically at short time and length scales.

Recent studies of the viscoelasticity of the YOCP have
centered around the frequency dependent viscosity η(ω). This
quantity, however, is a measure of viscoelastic behavior in the
limit of large wave numbers k → 0 only, i.e., at long length
scales. Viscoelastic behavior at shorter (finite) length scales
requires consideration of a wave number dependent quantity.

In this paper, the viscoelastic behavior of the YOCP is
studied via the wave number k and frequency ω dependent
transverse current correlation function CT (k,ω). At sufficiently
small k values, it has been shown that CT (k,ω) can be described
accurately by the conventional hydrodynamic description [9].
In this regime, the YOCP exhibits dissipative relaxation
only. Extending the hydrodynamic description to higher k

values (shorter length scales) requires consideration of both
dissipative and elastic effects, in other words, viscoelasticity.

Here, we investigate the viscoelasticity of the YOCP
using the well-known framework of generalized hydrody-
namics [10]. We compare one of the simplest models of
generalized hydrodynamics to the results of state-of-the-art
molecular dynamics (MD) simulations for CT (k,ω). We show
that, at sufficiently small coupling parameters �, the model is
remarkably accurate for all k values, i.e., the model describes
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both the conventional hydrodynamic limit at small k values and
the large k behavior (when the system behaves as a collection
of free particles), along with the entire intermediate dynamics
between these two regimes. At higher �, our MD results
for CT (k,ω) exhibit peaks characteristic of propagating shear
waves. We find that these shear waves are not well described by
the simple models, suggesting that more complex relaxation
processes are at work in these increasingly dense liquidlike
states.

This paper is structured as follows. In Sec. II, we give
details of our numerical simulations. In Sec. III, the generalized
hydrodynamics framework is summarized, along with the
Gaussian approximation for the memory function, which leads
to a simple model for CT (k,ω). This model is compared
to the results of the MD simulations in Sec. IV. We first
discuss the regime in which the Gaussian model is an excellent
representation of CT (k,ω) (Sec. IV A), followed by the regime
in which the model fails (Sec. IV B): This is the region in
which the YOCP exhibits shear waves. Concluding comments
are given in Sec. V.

II. SIMULATION DETAILS

In our MD simulations, we compute the transverse current
correlation function CT (k,ω) [10,11] of the YOCP for the
(�,κ) pairs given in Table I. In total, these pairs span a wide
range of thermodynamic conditions in the fluid phase.

In our simulations, the dynamics of N = 5000 particles
mutually interacting through the Yukawa potential are com-
puted using the Verlet algorithm with periodic boundary
conditions in a cubic box [13]. In all cases, we include
the Ewald summation in our force calculation using the
particle-particle–particle-mesh method [14]. The rms error of
our force calculation is 10−5.

We find that obtaining accurate MD data for CT (k,ω)
requires averaging the results of a large number of simulations
to improve statistics. This computational demand has made
a thorough study such as this impractical before now. For
example, compared with the study of Hansen for the related
OCP system [15], which, even after more than 30 years
remains the primary source of MD data for quantitative studies
of that system [16], we use 20 times as many particles, a
smaller time step by a factor of 2–10, and simulation times
200–40 000 times as large. Our time step δt = 0.01ω−1

p , where
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TABLE I. Screening parameters κ and coupling parameters � for
which MD simulations of the transverse current correlation function
CT (k,ω) were carried out. At κ = 0.1,1 and 2, the melting point of
the system is �m ≈ 172.2, 217.4, and 440.1, respectively [12].

κ �

0.1 1,5,10,50,120,175
1 1,5,10,50,90,120,175,200
2 1,5,10,50,120,175,200,300,350,400

ωp =
√

Z2e2n/ε0m is the plasma frequency, ensures excellent
energy conservation (
E/E ≈ 10−5). Moreover, we find that
the long length of our simulations, 25 × 819.2ω−1

p for every �

and κ value, is of paramount importance: While it is possible
to capture the essential features of CT (k,ω) with simulations
significantly shorter than this, producing a spectrum that is
of sufficient accuracy to draw conclusions about the validity
of various models requires simulations of approximately this
length [we note that our data for CT (k,ω) changes negligibly
by increasing the simulation time beyond 25 × 819.2ω−1

p ].

III. MODELS FOR CT (k,ω)

A. Generalized hydrodynamics description

In the hydrodynamic regime, governed by the linearized
Navier-Stokes equations, the time evolution of the transverse
current correlation function is given by [17]

∂

∂t
CT (k,t) = −ηk2CT (k,t), (1)

where η is the shear viscosity. The resulting exponential decay
of CT (k,t) leads to a Lorentzian in frequency space,

CT (k,ω) = kBT

mπ

ηk2

ω2 + (ηk2)2
, (2)

where the exact result CT (k,t = 0) = kBT /m has been used.
The simple description given by Eqs. (1) and (2) can only
be expected to be accurate in the hydrodynamic regime. It
was recently shown that this regime can be characterized for
the YOCP by the maximum wave number kmax at which
the Navier-Stokes description applies, given by kmaxλs �
0.43 [4,9]. Beyond k = kmax, Eq. (1) is no longer satisfied and
approaches beyond conventional hydrodynamics are needed.

A natural way to proceed is via the framework of gener-
alized hydrodynamics [10,11,17]. In this approach, the time
evolution of CT (k,t) is written as

∂

∂t
CT (k,t) = −k2

∫ t

0
dt ′φ(k,t − t ′)CT (k,t ′), (3)

where φT (k,t) is known as the memory function [10,17,18].
Equation (3) leads to the generalized hydrodynamics
description

CT (k,ω) = kBT

mπ

k2φ′(k,ω)

[ω − k2φ′′(k,ω)]2 + [k2φ′(k,ω)]2
, (4)

where φ′(k,ω) and φ′′(k,ω) are, respectively, the real and
imaginary parts of the Laplace transform of the memory
function φ(k,t).

Equation (4) is a well-known and exact representation
of CT (k,ω); it can be formally derived from microscopic
theory [10]. The advantage of this particular representation
is its similarity to the conventional hydrodynamic description:
As can be seen by comparing Eqs. (2) and (4), the memory
function plays the role of a generalized viscosity. This makes
the memory function a natural formalism with which to
investigate the viscoelastic behavior of the YOCP.

B. Model for CT (k,ω)

In order to specify a model for CT (k,ω), an approximation
to the memory function is needed. The model we present here
amounts to using the Gaussian ansatz for the memory function,

k2φ(k,t) = k2φ(k,0) exp
(−πt2/4τ 2

k

)
= ω2

T (k) exp
(−πt2/4τ 2

k

)
, (5)

where ω2
T (k) is given by the second frequency moment of

CT (k,ω) [10]. An exact expression for ω2
T (k) in terms of the

radial distribution function g(r) is given in the Appendix. The
parameter τk in Eq. (5) is a wave number dependent relaxation
time. According to Eq. (5), the real and imaginary parts of
the Laplace transform of the memory function are given by,
respectively [15,18],

k2φ′(k,ω) = ω2
T (k)τke

−τ 2
k ω2/π (6)

and

k2φ′′(k,ω) = 2τk√
π

ω2
T (k)D(τkω/

√
π ), (7)

where the Dawson function D(x) = exp(−x2)
∫ x

0
exp(y2)dy [19].

Where appropriate, we also compare the MD results with a
second model, which amounts to using the exponential ansatz
for the memory function,

k2φ(k,t) = k2φ(k,0) exp(−t/τk)

= ω2
T (k) exp(−t/τk), (8)

In this case, the real and imaginary parts of the Laplace
transform that appear in Eq. (4) are given by

k2φ′(k,ω) = ω2
T (k)τk

1 + ω2τ 2
k

(9)

and

k2φ′′(k,ω) = ω2
T (k)ωτk

1 + ω2τ 2
k

. (10)

Confusingly, this second model is sometimes called the
viscoelastic model in the literature; however, in reality the
exponential memory function model in Eqs. (8)–(10) is one
of many possible ways to describe viscoelastic behavior
phenomenologically (and the Gaussian model is another).

C. Physical motivation for the memory function models

From its definition in Eq. (3), it is clear why φ(k,t) is called
the memory function: The decay rate of CT (k,t) depends on
its past history and φ(k,t) controls to what extent CT (k,t)
“remembers its past history” [17]. Comparing Eqs. (1) and (3),
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FIG. 1. Memory function in the time domain for Gaussian (solid
line) and exponential (dashed line) models, for τkωp = 1.

we can see that the memory function corresponding to ordinary
hydrodynamics is

φ(k,t) = 2ηδ(t). (11)

In other words, ordinary Navier-Stokes hydrodynamics makes
the assumption that the system is memoryless.

By taking the memory function to be time dependent, we
introduce a time scale τk . Physically, τk can be thought of as the
time the system takes to adjust itself to an external probe [10].
We expect that if we probe the system at time scales that are
long compared to τk , that is, at low frequencies ω satisfying
ωτk � 1, the system has sufficient time to adjust to the probe.
In the opposite regime ωτk � 1, the system is frozen; it cannot
follow the rapid variation of the external probe. Thus, in the
former limit the system responds as a viscous fluid, whereas
in the latter limit it behaves like an elastic solid.

Both of the memory function models presented in the
previous section are essentially phenomenological ways of
interpolating between these two limiting cases. We can discuss
the physical intuition in the difference between the two
models with reference to Fig. 1, which shows the memory
function in the time domain, normalized by its initial value,
for both models. In Fig. 1, we have taken τkωp = 1, but
this qualitative discussion is valid for any value of τk [20].
Coming from the right-hand side of Fig. 1, that is, at long
times, the exponential memory function is non-negligible,
whereas the Gaussian memory function is essentially zero.
Physically then, appreciable elastic behavior sets in at shorter
time scales (higher frequency) for the exponential model than
for the Gaussian model. At time tM = 4τk/π , the two memory
functions are equal. At times shorter than tM , the Gaussian
memory function is larger than the exponential memory
function. Overall then, the Gaussian model exhibits stronger
elastic behavior than the exponential model at short times
t < tM , but as time increases this elasticity dies away more
rapidly than for the exponential model. For further discussion
of these two models, the reader is referred to Ref. [10] and
references therein.

D. Connection to prior work

The Gaussian model has previously been applied exten-
sively to modeling the longitudinal current correlation function

(i.e., the dynamical structure factor [11]) of the Lennard-Jones
fluid [18,21] and the OCP [15]; in this context it has also
been applied to experimental data for weakly coupled plasma
produced by arc jets [22]. Furthermore, for the YOCP, it
was recently shown that the Gaussian model is an extremely
accurate representation of the dynamical structure factor for a
wide range of thermodynamic conditions [23].

In this paper, we are interested in the transverse current cor-
relation function. The Gaussian model has also been applied
in this context for other systems [18,21]. However, because
of the difficulty of conducting highly accurate numerical
simulations at the time of these previous investigations, a
detailed, conclusive comparison of the model with the results
of MD simulations was not possible for those systems.

Here, with the aid of modern computers, we have conducted
accurate large-scale MD simulations for CT (k,ω) across a
wide range of thermodynamic conditions. We find that, at
sufficiently small coupling parameters �, the Gaussian model
provides an extremely accurate description of CT (k,ω) for
all k values, i.e., the model describes both the conventional
hydrodynamic limit at small k values and the large k behavior
(when the system behaves as a collection of free particles),
along with the entire intermediate dynamics between these
two regimes.

At higher �, our MD results for CT (k,ω) exhibit peaks
characteristic of propagating shear waves. We find that these
shear waves cannot be well described by the Gaussian model
or indeed other approximations to the memory function that
involve a single relaxation time (such as the exponential
model). This suggests that the more complex relaxation
processes in these increasingly dense liquidlike states are
more readily accessed by studying the transverse current
correlations rather than the longitudinal current correlations,
for which the Gaussian model was recently shown to be
accurate [4]. Experiments designed to probe the transverse
current fluctuations [1] could therefore be a rich source of
information on the collective dynamics of dense plasmas.

IV. RESULTS AND ANALYSIS

In order to compare the Gaussian memory function model
given in Eqs. (4), (6), and (7) with the MD results, values for the
two parameters ω2

T (k) and τk are needed for each k. Since these
two parameters are in general unknown, we have fitted them to
the MD spectrum of CT (k,ω) using the least-squares method.
That is to say, for each k value for which we have computed
CT (k,ω) with MD (these are the k values compatible with the
periodic boundary conditions in our simulations), we fit the
model to the MD spectrum of CT (k,ω).

This two-parameter fit is the best way to compare the
Gaussian memory function model to the MD spectrum of
CT (k,ω). This is true despite the fact that the parameter
ω2

T (k) can in principle be obtained by computing the radial
distribution function g(r) (or equivalently the static structure
factor S(k) [11]) with MD and using the formula for ω2

T (k)
given in the Appendix. When obtained from MD in this
way, ω2

T (k) is subject to numerical uncertainty. Therefore, one
would expect that constraining this parameter, and therefore
fitting the model to the MD spectrum using only a single
parameter τk [15,18,22], would result in poorer fits and larger
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FIG. 2. (Color online) Comparison between the Gaussian model
when only the parameter τk is fitted to the MD spectrum (dashed line)
and when both τk and ω2

T (k) are fitted (solid line) for four separate
cases. The MD results are given by the dots.

errors. In Fig. 2, we show that in general this is indeed the
case.

The validity of the two parameter fit can be confirmed by
comparing the fitted value of ω2

T (k) to its value when instead
computed with MD as described above. As shown in Fig. 3,
the value of ω2

T (k) obtained from the fit to the MD spectrum
of CT (k,ω) agrees very well (within 10%) with that computed
from the MD g(r). This is only the case because the model
gives an accurate representation of CT (k,ω). For example, as
shown in Fig. 3, if an exponential rather than Gaussian memory
function is used, the numerical value obtained for ω2

T (k) by
fitting the model with two parameters does not agree well with
the value computed from the MD g(r).

In the remainder of this section, we present only the
results for the Gaussian memory function model with two
fitting parameters; the one parameter fits are irrelevant as their
comparison with the MD data for CT (k,ω) is not indicative of
the quality of the model.

A. Comparison between the model and MD simulations

The main result of this paper is that, in the region of (�,κ,k)
space in which shear waves do not propagate, the Gaussian
memory function model reproduces the MD spectrum of
CT (k,ω) very accurately. We first present our results in this
region, before discussing the more problematic (but physically
more interesting) shear wave region in Sec. IV B. Because
of the large volume of data generated by our simulations,
extended figures of our complete MD results are available in
Supplemental Material [24]; here, we show only a selection
of these complete results. Our simulations cover the range
ka = 0.23–6.19.

In Fig. 4, we compare the model to the MD spectrum of
CT (k,ω) for the smallest k value accessible to our simulation,
ka = 0.23. Clearly, the model provides an accurate description
of the MD results. This is to be expected since for this small
value of k we are within the hydrodynamic regime [4,9]. In

FIG. 3. (Color online) Comparison between ω2
T (k) as computed

from MD using the formula in the Appendix (dashed line, with 10%
error band) and the values obtained from the two-parameter fit of
the Gaussian memory function model (triangles) and the exponential
model (squares) for three different (�,κ) pairs: (a) � = 5, κ = 0.1;
(b) � = 10, κ = 1; and (c) � = 1, κ = 2.

this regime, φ′
T (k,ω) reduces to the shear viscosity η and

φ′′
T (k,ω) vanishes. This means that the generalized hydro-

dynamics description of Eq. (4) reduces to the conventional
hydrodynamic description of Eq. (2) [10]. At larger k values,

FIG. 4. (Color online) Comparison between the MD data for
CT (k,ω) (dots) and the Gaussian memory function model with two
fitting parameters (solid line) for the smallest ka value accessible to
our simulations.
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FIG. 5. (Color online) Comparison between the MD data for
CT (k,ω) (dots) and the Gaussian memory function model with two
fitting parameters (solid line) for intermediate ka values.

as shown in Figs. 5 and 6, the model extends the conventional
hydrodynamic description; here, the real part of φ(k,ω)
corrects for the peak width.

Clearly, in the region of (�,κ,k) space that accommodates
the conditions in Figs. 4–6, the MD spectrum of CT (k,ω)
consists of a single peak at ω = 0. In this region, there are
no propagating shear waves observed in the MD data, which
would be seen as a peak at nonzero frequency. The single
ω = 0 peak in CT (k,ω) corresponds to a monotonic decay
of transverse current fluctuations in the time domain. In this
region, the Gaussian model provides an excellent description
of CT (k,ω).

B. Onset of shear waves

As � increases for a given screening parameter κ , the
YOCP becomes increasingly liquidlike. In common with

FIG. 6. (Color online) Comparison between the MD data for
CT (k,ω) (dots) and the Gaussian memory function model with two
fitting parameters (solid line) for large ka values.

ordinary liquids, the system can then support waves that
propagate perpendicular to the particle velocities, that is, shear
waves [11].

In the time domain, the onset of shear waves occurs at
the smallest wave number for which the transverse current
correlation function becomes negative [25,26]. This wave
number is sometimes referred to as the cutoff wave number [7].
In this sense transverse (shear) waves are different from
longitudinal (sound) waves since the latter are supported by
the system all the way to k = 0.

The onset of shear waves is evidenced by a peak in CT (k,ω)
at nonzero frequency ω(k). We find such a peak in our MD
results for κ = 0.1 when � � 50, for κ = 1 when � � 50, and
for κ = 2 when � � 120. As a fraction of the melting point
of the system, this corresponds to �/�m � 0.29, 0.23, and
0.27 respectively [12]. However, given the limited number of
� values for which we have performed MD simulations (see
Table I), it is likely that shear waves can propagate at a slightly
lower fraction of the melting point.

In Fig. 7, we show how ω(k), the frequency of the shear
wave, changes as � and κ are varied. As shown in Fig. 7, for
small k, ω(k) increases as k increases, which is consistent with
previous calculations [26]. Beyond ka = 3, ω(k) decreases to
a minimum before increasing again. We note that this second
part of the dispersion curve is only present in the very strongly
coupled regime, when � is greater than ≈0.5�m. In this region,
CT (k,ω) exhibits considerable structure (see Fig. 9 and further
images in Ref. [24]). Indeed, at these relatively short length
scales, both single-particle and collective effects are important.

Figure 7(a) shows that the dispersion curves are similar
for κ = 0.1 and 1 at fixed �; this is presumably because the
melting point �m is similar for these two values of κ [7].

FIG. 7. (Color online) Position of shear wave peak ω(k) for
(a) κ = 0.1 and 1 at a fixed coupling parameter � = 175, (b) κ = 1
and 2 at a fixed coupling parameter � = 200, and (c) � = 200,

300,350,400 at fixed screening parameter κ = 2.
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FIG. 8. (Color online) Comparison between the MD data for
CT (k,ω) (dots) and the Gaussian memory function model with two
fitting parameters (solid line) in the region of shear wave propagation.
Also shown is the exponential memory function model (dashed line).

Consistent with this reasoning, Fig. 7(b) shows a greater
difference between the dispersion curves for κ = 1 and 2 than
for κ = 0.1 and 1. We also note that the cutoff wave number
below which shear waves do not propagate is found to be larger
as κ increases, in agreement with previous calculations [7]. No
propagating shear wave is detected in the MD data for κ = 2
beyond ka ≈ 3. At fixed κ , ω(k) increases with �, as shown
in Fig. 7(c). This is particularly obvious when going from
� = 200 to 300, which correspond to �/�m ≈ 0.45 and 0.68,
respectively. Intuitively, as �/�m increases, the restoring force
for collective fluctuations increases and hence ω(k) increases.
For � � 300, ω(k), and indeed the entire function CT (k,ω),
remains remarkably similar.

In Figs. 8 and 9, we compare the memory function
models to the MD data in the region of (�,κ,k) space in
which shear waves propagate. In Fig. 8, we show results for
k � 3, when CT (k,ω) consists of a single peak at nonzero
frequency. Here, the Gaussian model can indeed capture the
overall shape of CT (k,ω). However, in general the model
tends to slightly overestimate the peak frequency, which can
be thought of as the strength of elasticity effects, and also
overestimate the contribution to CT (k,ω) at zero frequency,
i.e., the dissipative effects. In Fig. 8, we also plot the results
of the exponential memory function model, which is also
frequently used in the literature [10,11,17,18,21,27]. It can
be seen that the exponential memory function model is more
sharply peaked than the MD data, but it exhibits a smaller value
of CT (k,ω = 0), which is closer to the MD data. We note that
the relative peak frequencies and peak widths resulting from
the two models can be rationalized in terms of the qualitative
discussion given in Sec. III C.

At higher k values, as shown in Fig. 9, CT (k,ω) is found
to exhibit a two-peak structure. Given the relatively high
frequency of the second peak, it is likely this is due to
caging effects (e.g., [4,10,11]). In other words, at these length
scales the relatively-high-frequency oscillations of individual

FIG. 9. (Color online) Comparison between the MD data for
CT (k,ω) (dots) and the Gaussian memory function model with two
fitting parameters (solid line). Also shown is the exponential memory
function model (dashed line).

particles in the cages produced by their neighbors are imprinted
on CT (k,ω). We note that this second peak occurs at approx-
imately the frequency at which the longitudinal dispersion
relation plateaus [6,23]. This observation lends support to the
idea that the peak is due to caging: One would expect these
single particle (noncollective) dynamics to occur at the same
frequency in both transverse and longitudinal current fluctua-
tions. In any case, both the Gaussian and exponential models
fail to describe the two peak structure, which is to be expected,
as approximations to the memory function that involve a single
relaxation time can only ever describe a single resonance.

V. CONCLUDING COMMENTS

The Gaussian memory function model is an extremely
accurate representation of the transverse current correlation
function CT (k,ω) of the YOCP in the region of (�,κ,k)
space in which shear waves do not propagate. This region
is � � 0.25�m, where �m is the melting point, which depends
on κ . At a given value of κ , providing � is in this region, the
model works well for all k values (i.e., at all length scales). This
conclusion was possible only because of the highly accurate
MD data presented in this paper. Figures of the complete MD
data for CT (k,ω) are available in Ref. [24].

Why exactly the Gaussian model is superior to the expo-
nential model in this region is an interesting question. Here, the
accuracy of the Gaussian model is presented as an empirical
observation, but attempting to motivate this from first princi-
ples would certainly be worthwhile, albeit challenging [10].

The model can be used by fitting either a single parameter
or two parameters to the spectrum of CT (k,ω) at a particular k

value. The advantage of using two parameters is that the small
numerical inaccuracies that arise in the MD simulations can
be accounted for.

In the shear wave region, CT (k,ω) shows a distinct peak
at a nonzero frequency, which is poorly characterized by the
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Gaussian model. When even more structure in CT (k,ω) is
present, the model breaks down completely.

Recently, the same memory function model used here
was shown to accurately describe the longitudinal current
correlations of the YOCP, even in the region in which it
has been found to break down for the transverse current
correlations [4]. This suggests the complex relaxation behavior
of dense liquidlike plasmas can in some cases be more readily
accessed by studying the transverse rather than longitudinal
current correlations. Experiments designed to probe the trans-
verse current fluctuations [1] could therefore be a rich source
of information on the collective dynamics of dense plasmas.
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APPENDIX: EXACT EXPRESSION FOR ω2
T (k)

The wave number dependent quantity ω2
T (k) can be written

in terms of the frequency moments of CT (k,ω),

〈ωn〉 =
∫ ∞

−∞
ωnCT (k,ω)dω. (A1)

In terms of these frequency moments, we have [10]

ω2
T (k) = 〈ω2〉

〈ω0〉 . (A2)

The zeroth frequency moment can easily be calculated as

〈ω0〉 = kBT

m
. (A3)

Using this result, ω2
T can be written as [see [10], Eq. (1.151)]

ω2
T (k) = kBT

m
k2 + �2

E − �2
k. (A4)

Here, �E is the Einstein frequency, which for the YOCP is

�2
E = κ2

3

∫ ∞

0
r̄ exp(−κr̄)g(r̄)dr̄, (A5)

where r̄ = r/a and g(r) is the radial distribution function [11].
For the YOCP, the remaining term is

�2
k = 1

3

∫ ∞

0
r̄2g(r̄a) exp(−κr̄)

[
sin kr

kr

κ2

r̄

+ 3

(kr)2

(
sin kr

kr
− cos kr

)

− sin kr

kr

(
3

r̄3
+ 3κ

r̄2
+ κ2

r̄

)]
. (A6)

Using Eqs. (A4)–(A6), the value of ω2
T (k) can be computed

for a particular values of �, κ , and k provided g(r) is known.
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