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Thermodynamic theory of the shock wave structure in a rarefied polyatomic gas:
Beyond the Bethe-Teller theory
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The structure of a shock wave in a rarefied polyatomic gas is studied on the basis of the theory of extended
thermodynamics. Three types of the shock wave structure observed in experiments, that is, the nearly symmetric
shock wave structure (type A, small Mach number), the asymmetric structure (type B, moderate Mach number),
and the structure composed of thin and thick layers (type C, large Mach number), are explained by the theory
in a unified way. The theoretical prediction of the profile of the mass density agrees well with the experimental
data. The well-known Bethe-Teller theory of the shock wave structure in a polyatomic gas is reexamined in the
light of the present theory.
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I. INTRODUCTION

Characteristic features of the shock wave structure in
a rarefied polyatomic gas are quite different from those
in a rarefied monatomic gas due to the presence of the
microscopic internal modes in a polyatomic molecule, namely,
the rotational and vibrational modes [1,2]. We here mention
two typical features: (1) It is well known that the shock wave
thickness in a rarefied monatomic gas is of the order of the
mean free path. On the other hand, owing to the slow relaxation
process of the internal modes, the thickness of a shock wave
in a rarefied polyatomic gas is several orders larger than the
mean free path. It can be several centimeters long. (2) As the
Mach number increases from unity, the profile of the shock
wave structure in a polyatomic rarefied gas changes from the
nearly symmetric profile (type A) to the asymmetric profile
(type B), and then changes further to the profile composed
of thin and thick layers (type C) [3–8]. Schematic profiles of
the mass density are shown in Fig. 1. These peculiar changes
of the shock wave profile with the Mach number cannot be
observed in a monatomic gas.

In order to explain the shock wave structure in a rarefied
polyatomic gas, two different approaches (I) and (II) were
proposed more than a half century ago:

(I) An approach was proposed by Bethe and Teller [9].
In their celebrated theory, at the very beginning, the internal
degrees of freedom of a molecule are assumed to be classified
into two parts: the one part is composed of the “active” degrees
of freedom that relax instantaneously, and the other part is
composed of the “inert” degrees of freedom that relax slowly
with a finite relaxation time. Except for hydrogen gas, the
translational and rotational modes are regarded as the active
degrees of freedom but the vibrational modes are considered
as inert degrees of freedom. In order to analyze the thin layer
� shown in Fig. 1, the system of Euler equations is adopted.
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The Rankine-Hugoniot conditions of the system for jumps of
the physical quantities at � are derived under the following
assumption: The internal energy due to the inert degrees of
freedom is unchanged in the thin layer � because only active
degrees of freedom are able to adjust to such an instantaneous
change. Therefore, exactly speaking, the thin layer in this
theory is just the jump discontinuity with no thickness. In
order to analyze the relaxation process in the thick layer �

in Fig. 1, a variant of the Euler system with an additional
linear relaxation equation for the internal vibrational modes is
adopted.

This approach can describe the shock wave structure of
type C. The jumps of the physical quantities at the thin layer
� can be calculated without using any adjustable parameters.
The agreement between the theoretical predictions and the
existing experimental data seems to be good.

It should be emphasized, however, that the basis of the
Bethe-Teller theory is not clear enough. The assumption of
the classification of the internal degrees of freedom should
be regarded as a rough approximation even though it seems
to be plausible intuitively. As the classification is not so
clear-cut in reality, it may introduce some arbitrariness into the
theory. And furthermore two different systems of equations are
adopted in this theory for analyzing the thin and thick layers
separately. The compatibility between the two systems is,
however, unclear from both mathematical and physical points
of view. It is highly preferable, of course, to have one unified
system of equations from which all types A, B, and C can be
derived in a fully consistent way.

(II) The other approach, which originates from the work
by Gilbarg and Paolucci [10], is basing on the system of the
Navier-Stokes Fourier (NSF) equations. They studied, as a
typical example, the shock wave structure in rarefied carbon
dioxide (CO2) gas by adopting a very large value of the bulk
viscosity. Although they could predict a thick shock wave
structure, the shock profiles are always symmetric (type A).
No asymmetric shock wave structure (type B) nor thin layer
(type C) could be explained by this theory.

One crucial point to be noted is that, because the NSF theory
is constructed with the assumption of local equilibrium [11],
the theory is, in general, unsatisfactory for analyzing highly
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FIG. 1. Three types of shock wave structure in a rarefied
polyatomic gas. As the Mach number increases from unity, the profile
of the shock wave structure changes from type A to type B, and then
to type C. The profile of type C consists of the thin layer � and the
thick layer �.

nonequilibrium phenomena such as shock wave phenomena.
Fortunately we have alternative theories as discussed below.

For rarefied monatomic gases, there already exist theories
which can describe phenomena out of local equilibrium, that
is, kinetic theory with the use of the Boltzmann equation (the
Chapman-Enskog method [12] and the moment method [13]),
and the theories of extended thermodynamics (ET) [14] and
of molecular extended thermodynamics with closure by the
maximum entropy principle [15,16]. These theories can indeed
describe the structure of strong shock waves in a rarefied
monatomic gas [14,17]. Numerical techniques for solving
the Boltzmann equation, such as the direct simulation Monte
Carlo method [18], have also been developed, and their
usefulness has been confirmed through comparison between
their predictions and the experimental data.

For rarefied polyatomic gases, kinetic theory (the
Chapman-Enskog method [12] and the moment method
[19–22]) has been developed. Numerical methods for solving
the Boltzmann equation have also been developed [18].
However, as the appropriate modeling of the collision term in
the Boltzmann equation between two polyatomic molecules is
very complicated, some simplifications are usually introduced
into the modeling. It is therefore not self-evident that the
numerical results thus obtained are compatible with the second
law of thermodynamics. There is, however, still another theory,
that is, the ET theory of polyatomic gases, which was proposed
recently by the present authors [23,24]. It is notable that, as
summarized briefly in the next section, the ET theory is totally
free from the difficult problems mentioned just above. The
corresponding molecular ET theory was also presented [25].

The purpose of the present paper is to use the ET theory
to study shock wave structures of types A–C in a rarefied
polyatomic gas. We will show how to overcome the difficulties
encountered in the previous approaches (I) and (II).

The organization of the paper is as follows: In Sec. II, the
essential idea of the ET theory of rarefied polyatomic gases
and dense gases is summarized. In Sec. III, the basic equations
for our analysis derived from the ET theory are summarized. In
Sec. IV, the conditions for the present analysis are summarized.
The parameters in the system and the numerical method are
also explained. In Sec. V, the main results of the shock wave
structure in the present analysis are shown and discussed. The
predictions derived from the ET theory are also compared with
those from NSF theory. The Bethe-Teller theory is reexamined
in the light of the present theory. In Sec. VI, a comparison
between the theoretical predictions derived from the ET theory

and the experimental data is made. Section VII is devoted to
the summary and outlook. In the Appendix, the NSF theory
for studying the shock wave structure is briefly summarized.

II. EXTENDED THERMODYNAMICS OF REAL GASES

The ET theory of rarefied polyatomic gases and of dense
gases [23,24] is briefly summarized.

A. Binary hierarchy of the differential equations

In the ET theory, the dissipative fluxes are also adopted
as independent variables in addition to the usual independent
variables used in the NSF theory. We adopt, as the simplest and
natural extension of the NSF theory, the ET theory with the
following 14 independent variables (ET14) [23,24]; the mass
density ρ, the velocity vi , the temperature T , the dynamic
pressure (nonequilibrium pressure) �, the shear stress σ〈ij〉,
and the heat flux qi , where i,j = 1,2,3, and the angular
brackets in σ〈ij〉 indicate that the shear stress is a deviatoric
(that is, symmetric traceless) tensor.

We assume the following binary hierarchy (F series and G
series) of the balance equations:

∂F

∂t
+ ∂Fk

∂xk

= 0,

∂Fi

∂t
+ ∂Fik

∂xk

= 0,
∂Gii

∂t
+ ∂Giik

∂xk

= 0, (1)

∂Fij

∂t
+ ∂Fijk

∂xk

= Pij ,
∂Gppi

∂t
+ ∂Gppik

∂xk

= Qppi,

where F is the mass density, Fi is the momentum density,
and Fij is the momentum flux. Gii and Gppi are proportional
to the energy density and the energy flux, respectively. Here
Fijk and Gppik are the fluxes of Fij and Gppi , and Pij and
Qppi are the productions. Summation on repeated indices is
assumed throughout the present paper. The equations with
no production term represent the mass, momentum, and
energy conservation laws and therefore we have the following
relations:

F = ρ, Fi = ρvi, Gii = 2ρε + ρvivi,

Fij = ρvivj + (p + �)δij − σ〈ij〉,

Gppi = ρvpvpvi + 2ρεvi + 2vp{(p + �)δpi − σ〈pi〉} + 2qi,

where ε and p are the specific internal energy and the pressure.
As the balance equations (1) should be invariant under a

Galilean transformation, the dependence of the quantities on
the velocity can be determined [26]:

Fijk = ρvivjvk + (p + �)(viδjk + vj δki + vkδij )

− viσ〈jk〉 − vjσ〈ki〉 − vkσ〈ij〉 + Mijk,

Gppik = ρvpvpvivk + 2ρεvivk + (p + �)(vpvpδik + 4vivk)

− σ〈ik〉vpvp − 2σ〈pi〉vpvk − 2σ〈pk〉vpvi

+ 2qivk + 2qkvi + 2vpMpik + mppik,

Qppi = Qi + 2vpPpi,

where Mijk , mppik , Qi , and Ppi are velocity-independent
quantities.
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B. Constitutive theory

We need the constitutive equations for Mijk , mppik , Qi , and
Ppi in order to obtain a closed system of field equations. We
assume that the constitutive equations at one point and time
depend on the independent fields at that point and time. We
apply the constitutive theory of ET [14] where the following
universal physical principles (A)–(C) are imposed on the
constitutive equations:

(A) Material frame indifference principle. This requires
that the constitutive equations are independent of an observer.
This principle and the Galilean invariance for the balance laws
constitute the objectivity principle.

(B) Entropy principle. All solutions of the system of field
equations must satisfy the entropy balance law:

∂h

∂t
+ ∂hk

∂xk

= 
 � 0,

where h is the entropy density, hk is the entropy flux, and

 is the entropy production. Here h and hk are constitutive
quantities.

(C) Causality. This requires concavity of the entropy
density and guarantees the hyperbolicity of the system of field
equations. This also ensures the well-posedness (local in time)
of a Cauchy problem and the finiteness of the propagation
speeds of disturbances.

C. Field equations

We can derive the closed system of field equations by
using the constitutive equations and the caloric and thermal
equations of state p = p(ρ,T ) and ε = ε(ρ,T ). Because the
system of field equations is quite lengthy, we here omit
its explicit expression. For all the details, please consult
Refs. [23,24].

D. Some remarks

The theory with kinetic equations for polyatomic
gases [19,20] has 17 independent fields, while the present
phenomenological continuum theory uses only 14 independent
fields, which also appear in the NSF theory. Because of this
the NSF theory can be derived naturally, as a limiting case,
from the present theory. These 14 fields have well-established
physical meanings.

The ET14 theory was proved to be fully consistent with
the kinetic approach for polyatomic rarefied gases [27,28]. In
fact, as pointed out above, Pavić, Ruggeri, and Simić have
proven [25], using the closure of the maximum entropy princi-
ple [16], the perfect coincidence with the system obtained by
the macroscopic ET approach [23].

The usefulness of the ET theory was confirmed by the fact
that the dispersion relation for ultrasonic sound in rarefied
diatomic gases agrees well with the experimental data even in

the high-frequency range where the NSF theory is no longer
valid [29]. It has also been proved [30] that the theory can
be regarded as a generalization of the Meixner theory of
relaxation processes [31,32]. An ET theory for moderately
dense gases has also been proposed in the papers cited
above [23,24].

III. BASIC EQUATIONS

In this section, we summarize the basic equations for the
present analysis.

A. Equations of state

We adopt the following caloric and thermal equations of
state for a rarefied polyatomic gas:

ε = ε(T ), p = ρ
kB

m
T, (2)

where kB and m are, respectively, the Boltzmann constant and
the mass of a molecule. The functional form of the specific
internal energy ε is determined through the specific heat cv:

ε(T ) = kB

m

∫ T

TR

ĉv(ξ ) dξ, (3)

where ĉv ≡ (m/kB)cv is the dimensionless specific heat and
TR is an inessential reference temperature. We may determine
the temperature dependence of ĉv from the experimental
data and/or statistical-mechanical considerations. By using the
relations (2) and (3), we have the sound velocity expressed
as [29]

c =
√

kB

m
T γ (T ), (4)

where γ (T ) = [1 + ĉv(T )]/ĉv(T ) is the ratio of the specific
heats.

B. Balance equations derived from the theory of extended
thermodynamics

As we analyze one-dimensional (plane) shock waves
propagating along the x axis, the vectorial and tensorial
quantities are expressed by

vi ≡
⎛
⎝v

0
0

⎞
⎠ , σ〈ij〉 ≡

⎛
⎝σ 0 0

0 − 1
2σ 0

0 0 − 1
2σ

⎞
⎠ ,

qi ≡
⎛
⎝q

0
0

⎞
⎠ . (5)

The system of equations for the 14 fields in the present problem
is given by [23]

∂ρ

∂t
+ ∂

∂x
(ρv) = 0,

∂ρv

∂t
+ ∂

∂x
(p + � − σ + ρv2) = 0,

∂

∂t
(2ρε + ρv2) + ∂

∂x
{2ρεv + 2(p + � − σ )v + ρv3 + 2q} = 0,

∂

∂t
{3(p + �) + ρv2} + ∂

∂x

{
(5p + 5� − 2σ )v + ρv3 + 5

1 + ĉv

q

}
= −3�

τ�

,

013025-3



TANIGUCHI, ARIMA, RUGGERI, AND SUGIYAMA PHYSICAL REVIEW E 89, 013025 (2014)

∂

∂t
(p + � − σ + ρv2) + ∂

∂x

{
3(p + � − σ )v + ρv3 + 3

1 + ĉv

q

}
= σ

τS

− �

τ�

,

∂

∂t
{2ρεv + 2(p + � − σ )v + ρv3 + 2q} + ∂

∂x

{
2ρεv2 + 5(p + � − σ )v2 + ρv4 + 2

(
ε + kB

m
T

)
p

+ 2

(
ε + 2

kB

m
T

)
(� − σ ) + 10 + 4ĉv

1 + ĉv

qv

}
= −2

{
q

τq

+
(

�

τ�

− σ

τS

)
v

}
, (6)

where τ�, τS , and τq are the relaxation times for the dynamic pressure, the shear stress, and the heat flux, respectively. The
relaxation times are related to the phenomenological coefficients as follows [23]:

μ = pτS, ν =
(

2

3
− 1

ĉv

)
pτ�, κ = (1 + ĉv)

kB

m
pτq, (7)

where μ, ν, and κ are, respectively, the shear viscosity, the bulk viscosity, and the heat conductivity. In general the relaxation
times are functions of the mass density ρ and the temperature T .

The characteristic velocities λ of the hyperbolic system (6) evaluated in equilibrium are

λ

c
= 0,0, ±

√√√√ ĉv

(
7 + 4ĉv − √

37 + 32ĉv + 4ĉ2
v)

2(1 + ĉv

)2 , ±
√

ĉv

(
7 + 4ĉv + √

37 + 32ĉv + 4ĉ2
v

)
2(1 + ĉv)2

. (8)

The characteristic velocities play an essential role in studies of nonlinear wave propagation, in particular, shock wave propagation.
The ET theory gives a differential system of hyperbolic type and, as a consequence, it predicts a shock wave structure with a
discontinuous part when the Mach number becomes large. According to the theorem of Boillat and Ruggeri [33], a subshock,
which is obtained as a weak solution of the system of equations, emerges when the shock velocity s exceeds the maximum
characteristic velocity λmax of the hyperbolic system. The value of λmax in the case of rarefied CO2 gas will be given below.

IV. SETTING OF THE PROBLEM

In this section the conditions that we adopt for the present analysis are summarized. The parameters are fixed and the numerical
method for the computation is explained.

As the differential system is Galilean invariant, we can consider, without loss of generality, that the shock wave is stationary,
using a coordinate system moving with the shock wave, that is, a comoving coordinate system. Both the unperturbed state (the
state at x = −∞ before and far from a shock wave) and the perturbed state (the state at x = ∞ after and far from a shock wave)
are assumed to be in thermal equilibrium.

A. Dimensionless form of the field equations

For convenience we introduce the following dimensionless quantities:

ρ̂ ≡ ρ

ρ0
, v̂ ≡ v

c0
, T̂ ≡ T

T0
, σ̂ ≡ σ

ρ0
kB

m
T0

, �̂ ≡ �

ρ0
kB

m
T0

, q̂ ≡ q

ρ0
kB

m
T0c0

,

(9)

x̂ ≡ x

τ�(ρ0,T0)c0
, t̂ ≡ t

τ�(ρ0,T0)
, τ̂� ≡ τ�(ρ,T )

τ�(ρ0,T0)
, τ̂S ≡ τS(ρ,T )

τ�(ρ0,T0)
, τ̂q ≡ τq(ρ,T )

τ�(ρ0,T0)
,

where the quantities with subscript 0 represent the quantities in the unperturbed state. The balance equations (6) are now rewritten
in terms of the dimensionless quantities as follows:

d

dx̂
(ρ̂v̂) = 0,

d

dx̂

{
1

γ0
(ρ̂T̂ + �̂ − σ̂ ) + ρ̂v̂2

}
= 0,

d

dx̂

{
2

γ0

(
ρ̂v̂

1

T0

∫ T

TR

ĉv(ξ ) dξ + (ρ̂T̂ + �̂ − σ̂ )v̂ + q̂

)
+ ρ̂v̂3

}
= 0,

d

dx̂

{
1

γ0

(
(5ρ̂T̂ + 5�̂ − 2σ̂ )v̂ + 5

ĉv(T ) + 1
q̂

)
+ ρ̂v̂3

}
= − 3

γ0

�̂

τ̂�

,

d

dx̂

{
3

γ0

(
(ρ̂T̂ + �̂ − σ̂ )v̂ + 1

ĉv(T ) + 1
q̂

)
+ ρ̂v̂3

}
= 1

γ0

(
σ̂

τ̂S

− �̂

τ̂�

)
,
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d

dx̂

[
1

γ0

{ (
1

γ0
(ρ̂T̂ + �̂ − σ ) + ρ̂v̂2

)
2

T0

∫ T

TR

ĉv(ξ ) dξ + 2

γ0
T̂ (ρ̂T̂ + 2�̂ − 2σ̂ ) + 5(ρ̂T̂ + �̂ − σ̂ )v̂2

+ 4ĉv(T ) + 10

ĉv(T ) + 1
q̂v̂

}
+ ρ̂v̂4

]
= − 2

γ0

{
q̂

τ̂q

+
(

�̂

τ̂�

− σ̂

τ̂S

)
v̂

}
, (10)

where γ0 ≡ γ (T0). As the conservation laws (10)1–3 can be easily integrated, we can simplify the balance equations as follows:

ρ̂ = M0

v̂
,

1

γ0

(
M0T̂

v̂
+ �̂ − σ̂

)
+ M0v̂ = 1

γ0
+ M2

0 ,

2

γ0

(
M0

T0

∫ T

T0

ĉv(ξ ) dξ + M0T̂ + �̂v̂ − σ̂ v̂ + q̂

)
+ M0v̂

2 = 2

γ0
M0 + M3

0 ,

d

dx̂

{
1

γ0

(
5M0T̂ + 5�̂v̂ − 2σ̂ v̂ + 5

ĉv(T ) + 1
q̂

)
+ M0v̂

2

}
= − 3

γ0

�̂

τ̂�

,

d

dx̂

{
3

γ0

(
(M0T̂ + �̂v̂ − σ̂ v̂) + 1

ĉv(T ) + 1
q̂

)
+ M0v̂

2

}
= 1

γ0

(
σ̂

τ̂S

− �̂

τ̂�

)
,

d

dx̂

[
1

γ0

{ (
1

γ0
+ M2

0

)
2

T0

∫ T

TR

ĉv(ξ ) dξ + 2

γ0
T̂

(
M0T̂

v̂
+ 2�̂ − 2σ̂

)
+ 5(M0T̂ + �̂v̂ − σ̂ v̂)v̂ + 4ĉv(T ) + 10

ĉv(T ) + 1
q̂v̂

}
+ M0v̂

3

]

= − 2

γ0

{
q̂

τ̂q

+
(

�̂

τ̂�

− σ̂

τ̂S

)
v̂

}
, (11)

where M0 represents the Mach number in the unperturbed state, expressed by

M0 ≡ v0

c0
. (12)

B. Boundary conditions: Rankine-Hugoniot conditions for the
system of Euler equations

The boundary conditions for the basic system of equations
expressed above are determined as follows: By inserting �̂ =
0, σ̂ = 0, and q̂ = 0 into (11)1–3, we obtain the expressions
for the quantities in the perturbed state:

ρ̂1 = M0

v̂1
,

1

γ0

(
M0T̂1

v̂1
− 1

)
+ M0 (v̂1 − M0) = 0,

2

γ0
M0

(
T̂1 + 1

T0

∫ T1

T0

ĉv(ξ ) dξ − 1

)
+ M0

(
v̂2

1 − M2
0

) = 0,

(13)

where the quantities with subscript 1 are those in the
perturbed state. These relations express the Rankine-Hugoniot
conditions for the system of Euler equations.

C. Parameters

In order to compare the theoretical predictions with exper-
imental data, we will focus our study on the experimental
data for the shock wave structure in rarefied CO2 gas at
T = 295 K and p = 69 mm Hg in the unperturbed state [7].
We have determined the dependence of the specific heat on the
temperature, which is shown in Fig. 2, by inserting the data on
the temperature dependence of the sound velocity [34] into (4).
The values of the dimensionless specific heat ĉv , sound velocity
c0, heat conductivity κ [35], and shear viscosity μ [35] in the
unperturbed state are summarized in Table I. We note that the

rotational modes are completely excited and the vibrational
modes are partially excited at this temperature. From (8), the
maximum characteristic velocity at T = 295 K is estimated
as λmax/c ≈ 1.74. Therefore we recognize that the shock
wave structure predicted by the theory is continuous up to
M0 ≈ 1.74.

For a rarefied CO2 gas, the temperature dependence of
the phenomenological coefficients was already estimated by
both kinetic theoretical considerations and the experimental

300 350 400
3.4

3.6

3.8

4

T [K]

cv^

FIG. 2. Dependence of the dimensionless specific heat of a
rarefied CO2 gas on the temperature [34].
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TABLE I. Experimental values of the dimensionless specific
heat ĉv [34], sound velocity c0 [34], heat conductivity κ [35], and
shear viscosity μ [35] of a rarefied CO2 gas at T = 295 K and
p = 69 mm Hg.

ĉv c0 (m/s) κ (W/m K) μ (Pa s)

CO2 3.45 269 1.68 × 10−2 1.5 × 10−5

data [10] as follows:

μ ∝ T n, ν ∝ T n, κ ∝ T nĉv(T ), (14)

where the exponent n was estimated as n = 0.935. We adopt
the same temperature dependence in the present analysis. We
have confirmed that the shock wave structure studied below
depends weakly on the value of the exponent n.

By substituting (14) into the relation (7), we have the
following dependence of the relaxation times on the mass
density and the temperature:

τ̂� = 1

ρ̂T̂ 1−n

5 − 3γ0

5 − 3γ (T )
,

τ̂S = τS(ρ0,T0)

τ�(ρ0,T0)

1

ρ̂T̂ 1−n
,

τ̂q = τq(ρ0,T0)

τ�(ρ0,T0)

1

ρ̂T̂ 1−n

γ0

γ (T )
.

(15)

Inserting the values of the phenomenological coefficients in
Table I into the relations (7), we obtain the values of the
relaxation times τS and τq for the shear stress and the heat
flux in the unperturbed state as shown in Table II. The only
remaining undetermined parameter is the relaxation time τ�

for the dynamic pressure, which is proportional to the bulk
viscosity ν. Because of the lack of knowledge of reliable data
on ν due to the difficulty in its experimental measurements, we
will use τ� in the unperturbed state as a fitting parameter. As
will be explained below, the value of τ� in the unperturbed state
is determined by the comparison of the theoretical prediction
with the experimental data for M0 = 1.47. See also Figs. 6
and 7 below. It is noticeable that the value of τ� is larger, with
a different order of magnitude, than the other two relaxation
times.

D. Numerical methods

We solve numerically the system of balance equations (11)
under the boundary conditions (13) by adopting the methods
proposed by Weiss [14,36]. We introduce N + 1 grid points
such that the range [−L̂/2,L̂/2] on the x̂ axis is discretized

TABLE II. Relaxation times for CO2 gas at T = 295 K and p =
69 mm Hg. The relaxation times τS and τq are obtained from the
experimental data shown in Table I. Only the relaxation time for the
dynamic pressure τ� remains as a fitting parameter.

τS(ρ0,T0) (s) τq (ρ0,T0) (s) τ�(ρ0,T0) (s)

CO2 1.6 × 10−9 2.2 × 10−9 2.2 × 10−5

with constant intervals �x̂ = L̂/N as follows:

x̂i = − L̂

2
+ L̂

N
i for i = 0,1, . . . ,N, (16)

where the superscript i represents the number of the grid point.
Because the mass density ρ̂ is already expressed by other

variables in (11)1, we need to solve the system (11)2–6 for
u = (v̂,T̂ ,�̂,σ̂ ,q̂). The boundary conditions (13) give

u0 = u0, uN = u1, (17)

where ui represents u|x̂=x̂i , u0 = (M0,1,0,0,0), and u1 =
(v̂1,T̂1,0,0,0). For the conservation laws (11)2,3 expressed as
F(u) = F(u0) with F being the general flux, we have

F(ui) = F(u0) for i = 1,2, . . . ,N − 1. (18)

Replacing the differentiation in the balance equations (11)4−6,
which we express as dF(u)/dx̂ = P(u) compactly with P being
the general production, by the central difference, we get

F(ui+1) − F(ui−1)

2�x̂
= P(ui) for i = 1,2, . . . ,N − 1. (19)

The nonlinear algebraic equations (18) and (19) with the
condition (17) may be solved with the help of numerical
solvers equipped with software for numerical computations. In
the present analysis, we have constructed numerical codes by
adopting the numerical solver implemented in MATHEMATICA

based on Newton’s method. The computation starts from an
appropriate initial guess, e.g.,

ui =
{

u0 for i = 0,1, . . . ,N
2 ,

u1 for i = N
2 + 1,N

2 + 2, . . . ,N,
(20)

and iterative calculations are repeated until the numerical
solution converges to the one that satisfies the system (11) and
the boundary conditions (13) within the appropriate accuracy
we have set; eight digits of precision in the present analysis.
We have chosen �x̂ small enough and have confirmed that the
dependence of the profiles in Figs. 3–7 on �x̂ is negligibly
small.

V. SHOCK WAVE STRUCTURE

In this section, we show and emphasize that all of the three
types of shock wave structure, types A to C, can be described
naturally within the present theory. The details of types A to
C are explained and discussed in this order.

A. Type A: Nearly symmetric shock wave structure

The nearly symmetric shock wave structure appears in a
small Mach number region just above unity. A typical example
of the shock wave structure of type A is obtained at M0 =
1.04 as shown in Fig. 3. We have depicted the profiles of
all independent variables; the mass density, the velocity, the
temperature, the dynamic pressure, the shear stress, and the
heat flux. We can confirm that the shock wave structure is
indeed nearly the same as the one predicted by the NSF theory,
which is summarized briefly in the Appendix.
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FIG. 3. Type A: Profiles of the dimensionless mass density,
velocity, temperature, dynamic pressure, shear stress, and heat
flux predicted by the ET theory (solid curves). Profiles of the
dimensionless mass density, the dimensionless velocity, and the
temperature predicted by the NSF theory (dashed curves) are also
shown. M0 = 1.04. The conditions for the numerical calculations are
L̂ = 100 and N = 100.

We notice that the thickness of a shock wave is very large,
even at the order of several centimeters, because of the large
characteristic length estimated as τ�(ρ0,T0)c0 = 0.60 cm.
The dimensionless dynamic pressure is also several orders
of magnitude larger than the dimensionless shear stress and
heat flux. These features are, of course, due to the fact that
the relaxation time for the dynamic pressure τ�, which is
proportional to the bulk viscosity ν, is much larger than the
other two relaxation times τS and τq which are, respectively,

proportional to the shear viscosity μ and the heat conductivity
κ . Because of the large thickness and the small Mach number,
i.e., small gradients of physical quantities, the shock wave is
not very far from local equilibrium. Therefore the predictions
from the present ET theory and the predictions from the NSF
theory are similar to each other. It is this type A that Gilbarg
and Paolucci [10] studied.

B. Type B: Asymmetric shock wave structure

When the Mach number increases further, the gradient of
the physical quantities in the shock wave structure near the
unperturbed state becomes much steeper than the gradient near
the perturbed state. The shock wave structure now becomes
obviously asymmetric. The NSF theory cannot describe such
asymmetric profiles. A typical shock wave structure of type B
is shown in Fig. 4 where M0 = 1.12.

From Fig. 4, we can see that the dimensionless shear stress
and the heat flux are still several orders of magnitude smaller
than the dimensionless dynamic pressure in the whole range
of the shock wave structure. Therefore we may conclude that
the dynamic pressure plays a much more important role in the
global structure of shock waves of types A and B than do the
shear stress and the heat flux.

C. Type C: Shock wave structure composed of thin
and thick layers

When the Mach number increases even further, the shock
wave structure changes from a single-layer asymmetric struc-
ture (type B) to a structure composed of thick and thin layers
(type C). Typical examples of type C are shown in Fig. 5 with
M0 = 1.15 and Fig. 6 with M0 = 1.47. It is this type C that
Bethe and Teller mainly studied. The NSF theory again cannot
describe such shock wave structures with two layers.

We notice from Figs. 5 and 6 clearly that the thickness of
the thin layer is finite although it is still much smaller than
that of the thick layer, the thickness of which is of the order
of several centimeters. Therefore we can analyze the detailed
structure in the thin layer, which it is impossible to address
using the Bethe-Teller theory. For example, as shown in the
figures, we understand the detailed profiles of the dissipative
quantities in the thin layer.

We see that the shear stress and the heat flux are negligibly
small everywhere except in the thin-layer region. On the other
hand, the dynamic pressure is large in both the thick and thin
layers. Therefore we may say that, in the thin layer with finite
thickness, all dissipative quantities together play a crucial role,
while, in the thick layer, only the dynamic pressure seems to
be essential.

Within the present theory, as is pointed out above, a
continuous shock wave structure is obtained until M0 ≈ 1.74.
If we want to study the shock wave structure at larger Mach
numbers than 1.74 we need ET theory with more independent
variables, details of which are left for future study.

D. Critical Mach numbers for the transitions
of the type of shock wave structure

We have estimated numerically the critical Mach numbers
for the transitions of the type of shock wave structure: The
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FIG. 4. Type B: Shock wave structure predicted by the ET theory
(solid curves) and by the NSF theory (dashed curves). M0 = 1.12.
The numerical conditions are L̂ = 50, N = 5000 for the ET theory
and N = 100 for the NSF theory.

asymmetric character of type B becomes evident when the
Mach number is around 1.08. For the transition between type
B and type C, we have the critical Mach number M0 ≈ 1.14.
Note that these values of the Mach number are merely rough
indications because the boundary between two different types
cannot be clearly defined.

In the Bethe-Teller theory, from a stability analysis of the
discontinuous part of the shock wave structure (nowadays
known as the Lax condition [37]), the critical Mach number
between type B and type C was estimated as M0 ≈ 1.04. This
value does not agree with the value mentioned above, but is
not very far from it.
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FIG. 5. Type C: Shock wave structure predicted by the ET theory
(solid curves) and by the NSF theory (dashed curves). M0 = 1.15.
The numerical conditions are L̂ = 40, N = 10000 for the ET theory
and N = 100 for the NSF theory.

E. Reexamination of the Bethe-Teller theory

Let us summarize the features of the Bethe-Teller theory in
the light of the present ET theory.

(A) The Bethe-Teller theory describes the shock wave
structure of type C by adopting two systems of equations
under the assumption that the internal degrees of freedom
of a molecule can be divided into two parts, that is, an inert
part and an active part. One system is applied to analyze the
thin layer and the other system is applied to the thick layer.
The compatibility of the two systems of equations is, however,
not self-evident. In the ET theory, on the other hand, a single
system of equations can describe all types A to C without any
ambiguity. There is no compatibility problem.
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FIG. 6. Type C: Shock wave structure predicted by the ET theory
(solid curves) and by the NSF theory (dashed curves). Experimental
data [7] in the thick layer are also shown by circles. M0 = 1.47. The
numerical conditions are L̂ = 20, N = 60000 for the ET theory and
N = 100 for the NSF theory.

(B) In the Bethe-Teller theory the thin layer is a jump
discontinuity with zero thickness, while, in the ET theory,
the thin layer has a structure with finite thickness.

(C) In the Bethe-Teller theory the thick layer is described
essentially by a relaxation equation with a finite relaxation
time. If necessary, the theory may be generalized so as to have
several relaxation equations with different relaxation times.
Usually the relaxation equation is assumed to be linear. The
ET theory includes, in a natural way, the relaxation mechanism
of the internal degrees of freedom [30].

(D) The critical Mach number between type B and type C
can be estimated by a stability analysis. Its values as predicted

by the Bethe-Teller theory and by the ET theory are not far
from each other.

(E) There is a qualitative difference between the Bethe-
Teller theory and the ET theory in the temperature profile. The
temperature just after the discontinuous jump derived from
the Bethe-Teller theory might be larger than the temperature
in the perturbed state, while the temperature profile derived
from the ET theory is always smaller than the perturbed
temperature.

Experiments to observe the temperature profile, however,
seem to be extremely difficult because a shock wave has a
very steep and rapid change in space and time. There is another
difficulty from a theoretical point of view. We should be careful
about the definition of the temperature in nonequilibrium. See
Ref. [23] for a discussion of the definition of the temperature
in nonequilibrium in the ET theory.

VI. COMPARISON OF THE PRESENT RESULTS WITH
EXPERIMENTAL DATA

Experiments on the shock wave structure in CO2 gas
at room temperature and atmospheric pressure indicate that
shock profiles with no thin layer are obtained at least in the
range 1 < M0 < 1.04 [8]. The present result is consistent with
this.

Experimental results at M0 = 1.134 and M0 = 1.16 are
available [5,6]. We have confirmed that our theoretical predic-
tions shown in Fig. 5 are qualitatively the same as the shock
profiles obtained in the experiments. Quantitative comparison
is, however, impossible because only the interferograms are
shown in the experimental papers.

Experimental data for the mass density profile [7] and the
theoretical mass density profile derived from the ET theory at
M0 = 1.47 are shown in Fig. 6. Note that only the experimental
data in the thick layer are reported in the paper, in which
the authors said that accurate measurement in the region near
the thin layer was impossible because the change of physical
quantities is so steep. In order to study the data in more detail,
Fig. 6 is presented in a different way: a single logarithmic
plot of the profile of the mass density difference ρ̂1 − ρ̂ as
shown in Fig. 7. We can see that the agreement between the
theoretical prediction and the experimental data is excellent.
It is also remarkable that the ET theory seems to explain the
deviation of the experimental data ρ̂1 − ρ̂ from the dotted line
in Fig. 7, i.e., from a purely exponential decay.

Unfortunately, experimental data for the mass density
profile at M0 = 1.47 only are available at present. More
detailed experimental studies of the shock wave structure are
expected.

VII. SUMMARY AND OUTLOOK

In this paper, we have developed a thermodynamic theory
of the shock wave structure in a rarefied polyatomic gas
by using ET14 theory with a hyperbolic system of 14 field
equations. The ET14 theory can describe the three types of
shock wave structure, types A to C, consistently. It has been
shown that, in the case of CO2 gases, the theoretical predictions
are consistent with experimental data. The Bethe-Teller theory
and the Gilbarg-Paolucci theory of the shock wave structure
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FIG. 7. Profile of the mass density difference ρ̂1 − ρ̂ predicted
by the ET theory (solid curve) and the experimental data (circles) [7].
The dotted line shows an exponential decay.

in a polyatomic gas have also been critically discussed in the
light of the present theory.

We have found that the dynamic pressure � is essentially
important in the shock wave structure but the shear stress
and the heat flux are not so important everywhere except
inside a thin layer. Therefore it is natural to expect that, by
neglecting all dissipative fluxes but the dynamic pressure, we
can study the shock wave structure properly. In fact, we have
shown recently that the ET theory with six independent fields
(ET6) can describe the shock wave structure of types A to C
reasonably well [38].

Lastly we summarize the outlook for future research as
follows:

(i) The ET theory is different from the usual theories
adopted in the literature of gas dynamics [1,2]. We expect
that gas dynamics theory can be reformulated and developed
by using the ET theory.

(ii) The shock wave structure in various kinds of gases
is now being studied using ET theory. For example, shock
waves in hydrogen gas appear interesting because the specific
heat of the gas has a peculiar temperature dependence due
to the quantum effect. The isotope effect on the shock wave
structure is also interesting. We are also interested in the
shock wave structure in nitrogen gas. Because the rotational
modes are fully excited but the vibrational modes are little
excited at room temperature, a thin shock wave structure is
observed [39]. The ET theory is expected to be useful for
analyzing such thin shock wave structures. The details of the
studies will soon be reported.

(iii) The shock wave structure in a dense gas is the next
subject to be studied by ET theory, using the virial expansion
form of the equations of state.

(iv) Analyses of contact waves and rarefaction waves, in
addition to shock waves, are also among future studies. We
are planning to solve the Riemann problem in order to confirm
whether the conjecture proposed by Brini and Ruggeri [40,41]
is valid or not in ET systems.
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APPENDIX: NAVIER-STOKES FOURIER THEORY

The NSF system of equations in the present analysis is
obtained as the first approximation of the ET14 system (6) by
using the Maxwellian iteration [23,42]:

∂ρ

∂t
+ ∂

∂x
(ρv) = 0,

∂ρv

∂t
+ ∂

∂x
(p + � − σ + ρv2) = 0,

∂

∂t
(2ρε + ρv2) + ∂

∂x
{2ρεv + 2(p + � − σ )v

+ ρv3 + 2q} = 0,

� = −
(

2

3
− 1

ĉv

)
pτ�

∂v

∂x
,

σ = 4

3
pτS

∂v

∂x
, q = −(1 + ĉv)

kB

m
pτq

∂T

∂x
. (A1)

From eqs. (A1)4–6, we obtain the relationship between relax-
ation times and the phenomenological coefficients (7). Note
that the system (A1) is of parabolic type although the original
ET system (6) is hyperbolic.

The dimensionless forms of the conservation laws are the
same as (11)1–3, while the dimensionless constitutive relations
are expressed by

�̂ = −
(

2

3
− 1

ĉv(T )

)
M0T̂

v̂
τ̂�

dv̂

dx̂
,

σ̂ = 4

3

M0T̂

v̂
τ̂S

dv̂

dx̂
,

q̂ = − [1 + ĉv(T )]
1

γ0

M0T̂

v̂
τ̂q

dT̂

dx̂
.

(A2)

The theoretical predictions of the NSF theory are depicted in
Figs. 3 to 6.

[1] W. G. Vincenti and C. H. Kruger, Jr., Introduction to Physical
Gas Dynamics (John Wiley and Sons, New York, 1965).

[2] Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and
High-Temperature Hydrodynamic Phenomena (Dover Publica-
tions, Mineola, NY, 2002).

[3] E. F. Smiley, E. H. Winkler, and Z. I. Slawsky, J. Chem. Phys.
20, 923 (1952).

[4] E. F. Smiley and E. H. Winkler, J. Chem. Phys. 22, 2018
(1954).

[5] W. C. Griffith and W. Bleakney, Am. J. Phys. 22, 597 (1954).

013025-10

http://dx.doi.org/10.1063/1.1700608
http://dx.doi.org/10.1063/1.1700608
http://dx.doi.org/10.1063/1.1700608
http://dx.doi.org/10.1063/1.1700608
http://dx.doi.org/10.1063/1.1739984
http://dx.doi.org/10.1063/1.1739984
http://dx.doi.org/10.1063/1.1739984
http://dx.doi.org/10.1063/1.1739984
http://dx.doi.org/10.1119/1.1933855
http://dx.doi.org/10.1119/1.1933855
http://dx.doi.org/10.1119/1.1933855
http://dx.doi.org/10.1119/1.1933855


THERMODYNAMIC THEORY OF THE SHOCK WAVE . . . PHYSICAL REVIEW E 89, 013025 (2014)

[6] W. Griffith, D. Brickl, and V. Blackman, Phys. Rev. 102, 1209
(1956).

[7] N. H. Johannesen, H. K. Zienkiewicz, P. A. Blythe, and J. H.
Gerrard, J. Fluid Mech. 13, 213 (1962).

[8] W. C. Griffith and A. Kenny, J. Fluid Mech. 3, 286 (1957).
[9] H. A. Bethe and E. Teller, Deviations from Thermal Equilibrium

in Shock Waves (1941; reprinted Engineering Research Institute,
University of Michigan), https://www.fas.org/sgp/othergov/doe/
lanl/lib-www/la-pubs/00367149.pdf.

[10] D. Gilbarg and D. Paolucci, J. Rational Mech. Anal. 2, 617
(1953).

[11] S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics
(North-Holland, Amsterdam, 1963).

[12] S. Chapman and T. G. Cowling, The Mathematical Theory of
Non-Uniform Gases (Cambridge University Press, Cambridge,
1991).

[13] H. Grad, Pure Appl. Math. 2, 331 (1949).
[14] I. Müller and T. Ruggeri, Rational Extended Thermodynamics,

2nd ed. (Springer, New York, 1998).
[15] I. Müller and T. Ruggeri, Extended Thermodynamics, 1st ed.

(Springer, New York, 1993).
[16] W. Dreyer, J. Phys. A 20, 6505 (1987).
[17] H. Struchtrup, Macroscopic Transport Equations for Rarefied

Gas Flow, Approximation Methods in Kinetic Theory (Springer,
Berlin, 2005).

[18] G. A. Bird, Molecular Gas Dynamics and the Direct Sim-
ulation of Gas Flows (Oxford University Press, Oxford,
1994).

[19] V. M. Zhdanov, Sov. Phys. JETP 26, 1187 (1968).
[20] F. J. MacCormack, Phys. Fluids 11, 2533 (1968).
[21] F. J. MacCormack, Phys. Fluids 13, 1446 (1970).
[22] F. Mallinger, INRIA Research Report No. RR-3581, 1998

(unpublished).

[23] T. Arima, S. Taniguchi, T. Ruggeri, and M. Sugiyama,
Continuum Mech. Thermodyn. 24, 271 (2012).

[24] T. Arima, M. Sugiyama, Atti Accad. Peloritana Pericolanti 91,
Suppl. No. 1, A1 (2013).
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