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It is a challenging task to model nonequilibrium gas flows within a continuum-fluid framework. Recently
some extended hydrodynamic models in the Navier-Stokes formulation have been developed for such flows. A
key problem in the application of such models is that suitable boundary conditions must be specified. In the
present work, a generalized second-order slip boundary condition is developed in which an effective mean-free
path considering the wall effect is used. By combining this slip scheme with certain extended Navier-Stokes
constitutive relation models, we obtained a method for nonequilibrium gas flows with solid boundaries. The
method is applied to several rarefied gas flows involving planar or curved walls, including the Kramers’ problem,
the planar Poiseuille flow, the cylindrical Couette flow, and the low speed flow over a sphere. The results show
that the proposed method is able to give satisfied predictions, indicating the good potential of the method for
nonequilibrium flows.

DOI: 10.1103/PhysRevE.89.013021 PACS number(s): 47.61.−k, 47.45.Gx, 47.11.−j

I. INTRODUCTION

As a gas flows over a solid surface, a kinetic boundary
layer, also known as Knudsen layer (KL), will be formed near
the surface with a thickness of the order of the mean-free
path (λ) of the gas. Outside the KL, the gas flow can be
well described by the Navier-Stokes equations; within the KL,
however, the gas is very rarefied, and consequently the con-
tinuum assumption and the quasithermodynamic-equilibrium
assumption, upon which the Navier-Stokes constitution is
based, will break down inevitably in this region. Furthermore,
within the KL the collisions among gas molecules are relatively
rare in comparison with that in the bulk region, and collisions
between gas molecules and solid wall are significant. Generally
the average gas velocity at the wall is different from that of
the surface due to the interactions between the gas and wall
molecules, which means a velocity slip occurs. Actually there
is ample theoretical, experimental, and numerical evidence that
discontinuity or slippage does appear at the surface in rarefied
gas systems.

In many real world fluid systems, the domain size L is
usually much larger than the mean-free path λ, i.e., Kn =
λ/L � 1 (say, Kn � 10−3), where Kn is the Knudsen number.
Under such circumstances, the fluid can be treated as a
continuum over the whole domain, and the KL takes only
a negligible portion of the flow domain, and its effect on
the bulk flow outside the KL can be neglected. Therefore,
the flow can be well modeled by the Navier-Stokes equations
with the no-slip boundary condition. However, if the Knudsen
number is relatively large (Kn > 10−3), such as low-pressure
gas flows at high altitude or flows over microdevices, the effect
of the KL on the bulk flow cannot be neglected anymore.
Usually, if the gas is not so rarefied (10−3 � Kn < 0.1), the KL
effect can be modeled with certain slip boundary conditions,
and the classical Navier-Stokes equations can still be used
to describe the bulk flow. Regarding the surface slippage, it
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should be noted first that two slip velocities can be identified,
as shown in Fig. 1. The first one is the microscopic slip
velocity, us , which is defined as the average velocity of the
gas molecules at the surface that can be obtained from kinetic
theory [1]. Another slip velocity, uns

s , is the “apparent” or
macroscopic slip velocity, which is defined as the extrapolated
value from the velocity of the Navier-Stokes equations in the
bulk region. A famous slip boundary condition for flows in slip
regime (10−3 < Kn < 0.1) is attributed to Maxwell [2], who
derived the expression of the slip velocity based on gas kinetic
theory:

uns

s = uns

g − uw = 2 − σ

σ
λ

∂uns

∂n
, (1)

where n is the unit vector normal to the surface, σ is the
tangential momentum accommodation coefficient of the wall,
uns

g is the tangential gas velocity at the surface predicted by
the Navier-Stokes equations, and uw is the tangential wall
velocity. A more general formulation of the Maxwell slip
boundary condition is to rewrite the normal velocity gradient
in terms of the tangential shear stress [3]. The Maxwell’s
first-order slip boundary condition has been shown to be
able to capture accurately bulk flow behaviors if the gas
is only slightly rarefied [4–6], but the applications to flows
with relatively larger Knudsen numbers are unsatisfied (see
Ref. [6] and references therein). Therefore, some second-order
slip boundary conditions have been developed to extend the
application range of the Navier-Stokes equations [7–11].

For rarefied gas flows far from equilibrium, the KL takes
a large portion of the whole domain and dominates the
overall flow. The Navier-Stokes equations with slip boundary
conditions would not work anymore. Instead, one should resort
to either the kinetic model (Boltzmann equation) together
with certain kinetic boundary conditions [12–19] or alternative
hydrodynamic models beyond the Navier-Stokes equations,
such as the Burnett or super-Burnett equations, the Grad
13 moments equations, and the regularized Grad moment
equations [20–26]. However, the solving of the Boltzmann
equation, either by the deterministic discrete-velocity model
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FIG. 1. (Color online) Sketch of the velocity profile in the Knud-
sen layer.

or by the stochastic direct simulation Monte Carlo (DSMC)
method, is rather nontrivial, while the hydrodynamic models
beyond Navier-Stokes also have their own difficulties such as
the lack of well-posed boundary conditions and the inherent
instability. These difficulties have motivated some recent
interest in developing extended hydrodynamic models in the
Navier-Stokes framework [extended Navier-Stokes (ENS)] for
rarefied gas flows [27–34].

ENS models attempt to include the nonequilibrium effects
from different viewpoints. An interesting approach is to revise
the Navier-Stokes constitutive relationship with an effective
viscosity to account for the information of the KL. For
instance, based on elementary kinetic theory Li et al. [29]
proposed an effective viscosity to account for the wall effect
in a wall-adjacent layer (y < λ with y being the distance to
the wall). Alternatively, Lockerby et al. [31] introduced the
concept of wall function into a scaled stress or strain rate
constitution relation by fitting the velocity profile obtained
from the linearized Boltzmann equation for the Kramers’
problem. This idea was further extended and several new wall
functions were developed (e.g., Refs. [30,33]). Usually these
wall functions are continuous in terms of the distance to the
wall. On the other hand, Lilley and Sader [35] proposed a
discontinuous correction function by considering the separate
velocity profiles of the Karmer’s problem in the near-wall
(y < λ) and far-wall (y > λ) regions. It is noted that this
model is applicable only to fully diffuse walls, and the model
parameters were determined by fitting the velocity profile
of the Kramer’s problem to the numerical solutions of the
Boltzmann equation. A discontinuous correction function that
can be applied to partially diffuse walls was developed [36] in
which the molecular collisions in the near wall at y > λ/2
and y � λ/2 are considered separately. The ENS models
usually contain some empirical parameters, and Guo et al.
[28] developed an ENS model without free parameters based
on the concept of effective mean-free path in which the wall
confinement effect is considered. The model was shown to be
able to give reasonable results in comparison with the DSMC
data [37] and was further simplified with some numerics
recently [38]. Unlike the model [28] where the molecular
free path is assumed to follow an exponential distribution,
Dongari et al. [39] assume that the molecular free path follows
a power distribution and proposed an alternative wall function

for flat walls [40], which was further generalized to circular
cylinders [41].

Although these ENS models have been demonstrated to be
able to capture the critical behaviors within the KL and can
improve predictions over a wider range of Kn, most previous
studies were based on slip boundary conditions for the classical
Navier-Stokes equations except for very few works. As far as
the authors know, the first boundary condition for ENS models
is due to Lockerby et al. [31], who suggested a first-order slip
boundary condition by replacing the mean-free path with the
effective one in the Maxwell slip boundary condition (1). Two
second-order microslip boundary conditions for ENS models
were also developed [28,30] but are limited to fully diffuse
flat walls. Therefore, it is still an open problem to specify a
suitable boundary condition for the extended Navier-Stokes
equations in general cases. The present work aims to fill this
gap, and the rest of this paper is organized as follows. A
heuristic second-order slip boundary condition for the ENS
is proposed in Sec. II, then some numerical results with the
ENS coupled with the slip boundary condition are provided in
Sec. III, and a brief summary is presented in Sec. IV.

II. A GENERALIZED SLIP BOUNDARY CONDITION

In ENS models, the generalized Navier-Stokes constitution
can be expressed as

τ e = μeγ̇ , (2)

where τ e is the effective shear stress, γ̇ = ∇u + (∇u)T −
2
3 (∇ · u)I is the shear-strain rate (here u is the fluid velocity
and I is the idendity tensor), and μe is an effective viscosity
relating to the normal constant viscosity μ in the bulk region:

μe(r) = μψ(r), (3)

where the function ψ , which is termed “correction function”
in this work, depends on the local position r . A number
of correction functions have been proposed from different
viewpoints, as mentioned in the introduction. But it should
be emphasized that most of the available correction functions,
except that in Ref. [41], are all designed for planar walls.
Generally it is rather difficult to define such a function for
a surface with irregular geometries. But in cases of the local
curvature of the surface is small, the correction function can be
employed as an approximation to the real one. In Table I some
expressions of the correction function for flat walls are listed.
With the extended Navier-Stokes constitution, the governing
equations for an incompressible flow can be expressed as

∇ · u = 0, (4a)

ρ (∂t u + u · ∇u) = −∇p + ∇ · τ e, (4b)

where ρ, u, and p are the fluid density, velocity, and pressure,
respectively.

Now we discuss boundary conditions for the ENS (4). First
we consider the case of flat walls, which is easy to illustrate the
basic idea. As sketched in Fig. 1, outside the KL the velocity
profile predicted by the classical Navier-Stokes equations can
match the actual one provided a proper slip boundary condition
is employed. But within the KL, they may differ from each
other greatly. Consequently the microscopic velocity at the
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TABLE I. Correction functions for planar walls; y is the distance to the wall, and ŷ = y/λ.

Reference Acronym Correction function ψ(y)

Lockerby et al. [31] LRG [1 + C(1 + ŷ3)−1]−1, C ≈ 0.7

Lilley and Sader [35] LS

{
αCŷ1−α, ŷ � 1
1, ŷ > 1.

[(α,C) ≈ (0.8,1.24)]

Lockerby and Reese [30] LR [1 + φ1(ŷ) + kφ2(ŷ)]−1, k = 1

τ

dτ

dŷ

φi(y) = ai ŷ
bi exp(ci ŷ) (i = 1,2),

(a1,b1,c1) ≈ (0.1859, −0.4640, −0.7902),

(a2,b2,c2) ≈ (0.4205, − 0.3518, − 0.4521)

Li et al. [29] LWP 1 − 0.5e−Cŷ , C ≈ 1.35

Fichman and Hetsroni [36] FH

{
σ

2 + (1 − σ )ŷ, ŷ � 1
1, ŷ > 1.

Reese et al. [33] RZL
[
1 − A(Dσ + E)(1 + ŷ)A−1

]−1

(A,D,E) ≈ (−2.719, −0.293,0.531) for BGK

(A,D,E) ≈ (−2.025, −0.328,0.612) for hard sphere

Guo et al. [28] GSZ 1 + 0.5[(ŷ − 1)e−ŷ − ŷ2Ei(ŷ)],

Ei(x) = ∫ ∞
1 t−1e−xt dt

Dongari et al. [40] DZR
1 − 1

96

[(
1 + ŷ

a

)1−n + 4
∑8

i=1

(
1 + ŷ

a cos[(2i−1)π/32]

)1−n

+2
∑7

i=1

(
1 + ŷ

a cos[iπ/16]

)1−n]
, a = n − 2

wall, us , is usually different from the apparent macroscopic
slip velocity, uns

s , that is extrapolated from the Navier-Stokes
solution in the bulk region.

A number of slip boundary conditions for the macroscopic
slip velocity uns

s have been proposed in the literature. Besides
Maxwell’s first-order slip boundary condition given by Eq. (1),
some second-order boundary conditions were also suggested
from different viewpoints. In general a second-order slip
boundary condition for a flat wall can be written as

uns

s = Ans

1 λ∂nu − Ans

2 λ2∂2
nu, (5)

where Ans

1 and Ans

2 are the first- and second-order slip
coefficients, respectively, and both depend on the gas-wall
interactions. These coefficients can be obtained either by
experiments or by kinetic theory, and a thorough discussion
about slip boundary conditions has been conducted recently
by Hadjiconstantinou [42].

On the other hand, the knowledge about the microscopic
velocity us is rather limited. Based on a variational method,
Cercignani [1] solved the linearized Boltzmann BGK equation
for the Kramers’ problem with a fully diffuse flat wall and
found that

us =
√

π

2
λ

τ

μ
=

√
π

2
λ∂nu, (6)

where τ is the applied tangential shear stress parallel to the
wall in the Kramers’ problem. Furthermore, Loyalka et al. [11]
shown that for a flat wall with accommodation coefficient σ ,
the microslip velocity in the Kramers’ problem is

us ≈ 2 − σ

σ
(1 − 0.1817σ )λ

τ

μ
= 2 − σ

σ
(1 − 0.1817σ )λ∂nu.

(7)

As σ = 1, i.e., the wall is fully diffusive, us given by this
equation is in good agreement with the exact solutions of the
linearized BGK equation [1].

Motivated by Eqs. (5) and (7), we propose a heuristic
second-order slip boundary condition for the microscopic slip
velocity us :

us = A1λe∂nu − A2λe∂n (λe∂nu) , (8)

where the two slip coefficients are assumed to be

A1 = 2 − σ

σ
(1 − 0.1817σ ), A2 = σ 2

[
1

π
+ 1

2
A2

1

]
. (9)

Here the relation between the first and second-order slip coef-
ficients is motivated by that for the macroscopic slip velocity:
According to Cercignani’s result of the Boltzmann equation
for the Poiseuille flow with two fully diffuse walls [1], the two
slip coefficients are Ans

1 = 2ζ/
√

π and Ans

2 = π−1 + (Ans

1 )2/2,
with ζ = 1.016. Equation (9) is just a generalization of this
relationship. λe in the proposed boundary condition (8) is an
effective mean-free path depending on the correction function,
λe/λ = μe/μ = ψ , which can be viewed as a generalization
of the relation between the mean-free path and the viscosity
[1]:

λ = μ

p

√
πRT

2
. (10)

Now we generalize the second-order slip boundary condi-
tion (8) to the case of curved surfaces. For a curved wall, the
slip velocity is given by

us = A1λeγ̇rθ − A2λer
n∂n

(
1

rn
λeγ̇rθ

)
, (11)
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where us is now the slip velocity tangential to the surface, r

is the local radius of the curvature of the surface (positive for
concave and negative for concave), θ is the polar angle, and
γ̇rθ is the radial-tangential component of the strain rate on the
surface. The parameter n depends on the local coordinates:
n = 0, 1, and 2 for the Cartesian, cylindrical, and spherical
coordinate systems respectively. The two slip coefficients A1

and A2 are still specified according to Eq. (9). It can be easily
shown that in the limit of flat wall (r → ∞), the curved
boundary condition (11) reduces to Eq. (8), indicating the
consistency of the generalization.

It should be noted that λe in the proposed boundary
condition (8) and (11) is a local variable. Particularly, as λe

takes a constant value, Eq. (8) takes the same formulation
as the standard second-order slip boundary condition (5) for
the classical Navier-Stokes equations. Generally the use of this
local effective-mean-free path makes the slip velocity given by
Eq. (8) smaller than that of the classical one given by Eq. (5),
which is reasonable since the microslip velocity us is usually
smaller than the extrapolated Navier-Stokes slip velocity uns

s .
Another point about the proposed boundary condition that
should be emphasized is that the effective mean-free path
is included within the second derivative rather than outside
it, unlike the conventional second-order boundary conditions.
Such a choice is consistent with the philosophy of Maxwell’s
argument on slip boundary conditions; i.e., the slip should be
expressed in terms of stress rather than strain rate, as revisited
in Ref. [3].

It is interesting to note that a slip boundary condition similar
to the present one was suggested in Ref. [30] for fully diffuse
walls, which can be expressed in the present nomenclature as

us = A1λ
τ

μ
− A2

λ2

μ

∂τ

∂n
= A1λe∂nu − A2λ∂n (λe∂nu) ,

(12)

where the relation τ/μ = ψ∂nu has been used, and the two
slip coefficients A1 = 0.798 and A2 = 0.278 were determined
by fitting to the low-Kn BGK solutions of the Couette and
Poiseuille flows. It is obvious that this formulation is very
similar to the present one as σ = 1; the difference lies in
the mean-free path appearing in the second-order slip terms:
one of the two λe is replaced by λ in Eq. (12). Despite this
difference, both slip boundary conditions share one feature:
they are expressed in terms of stress rather than strain rate,
which is consistent with the analysis of Ref. [3].

III. RESULTS AND DISCUSSION

To test the performance of the proposed second-order slip
boundary condition, in this section we will apply Eqs. (8) or
(11) to several nonequilibrium flows involving flat or curved
walls, and compare the solutions to some existing data by other
methods.

A. Knudsen layer structure

The structure of the Knudsen layer can be studied using
the Kramers’ problem. This problem can serve as a good
benchmark for testing new hydrodynamic models and bound-
ary conditions due to its simplicity and available data from

kinetic theory or DSMC. For this problem the ENS model
with the effective viscosity reduces to

∂y(μe∂yu) = 0, (13)

together with the second-order slip boundary

u = A1λe∂yu − A2λe∂y(λe∂yu) (14)

at y = 0, and

∂yu = a = const (15)

at y = ∞.
From Eq. (13) we can conclude that μe∂yu is a constant in

the whole domain, and so is λe∂yu. Therefore, the second-order
slip boundary condition actually acts as a first-order one for
this problem. After some simple algebra we can obtain the
velocity of the Kramers’ problem,

u(y) = u0 + a

∫ y

0
ψ−1(y) dy, (16)

where u0 = A1λ is the velocity at the wall. A numerical
solution can then be obtained by discretizing Eq. (16):

uj+1 = uj + a

∫ yj+1

yj

ψ−1(y) dy, j = 0,1, . . . ,N. (17)

where yj = j�y, and the trapezoidal rule is used to evaluate
the integral with a mesh spacing �y = H/N in the interval
[0,H ] with H = 25λ, and here N = 2000 is used which can
give grid-independent solutions.

In Fig. 2 the velocity profiles near the wall predicted by
the ENS model with different correction functions are shown,
together with the solution of the linearized Boltzmann equation
[14]. It is noted that for this problem the applied shear stress τ is
constant, and so k = 0 in the model in Ref. [30]. As can be seen,
the results of the ENS model with the correction function given
by Ref. [35] deviate from the Boltzmann solutions significantly
in both cases, while those with other correction functions are
all rather satisfactory. These results suggest that the correction
function [35], which is linear in the KL, is inadequate for
capturing the structure of the KL, while the other nonlinear
ones can help to predict the nonequilibrium flows within the
KL in the Navier-Stokes framework. In what follows, we will
consider only the correction function proposed in Ref. [28]
for flows over flat walls unless stated otherwise, since it has a
solid foundation and contains no empirical coefficients.

B. Planar Poiseuille flow

The proposed second-order slip boundary condition reduces
to a first-order one in the Kramers’ problem. To further
demonstrate the applicability of this boundary condition, we
now apply it to the plane Poiseuille flow driven by a constant
force a = (a,0), which exhibits a nonlinear velocity profile
over the whole domain. The two parallel walls of the channel
are assumed to be located at y = 0 and y = h, respectively.
Note that for this problem the motion of gas molecules will
be influenced by both walls, and the correction function
should be modified to ψ̃(y) = [ψ(y) + ψ(H − y)]/2 since
each molecule can move towards the two walls with the same
probability [28]. Specifically, with the correction function
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FIG. 2. (Color online) Velocity profiles of the Kramers’ problem
with different correction functions as well as the linearized Boltzmann
equation (LBE) solution [14] under different accommodation coeffi-
cients. Here λ′ = (2/

√
π)λ and ur = aλ′. (a) σ = 1.0; (b) σ = 0.8.

given in Ref. [28], the expression is

ψ̃(y) = 1 + [
(ŷ − 1)e−ŷ + (ŷ1 − 1)e−ŷ1 − ŷ2Ei(ŷ)

− ŷ2
1Ei(ŷ1)

]
, (18)

where ŷ1 = (H − y)/λ, and Ei(x) is the exponential integral
function as given in Table I.

For the planar Poiseuille flow the ENS model (4) reduces
to the following equation for the streamwise velocity u:

∂y(μe∂yu) + ρa = 0, (19)

where ρ is the gas density and is assumed to be a constant.
The boundary conditions at the bottom and top walls are

u0 = Ab
1λe∂yu − Ab

2λe∂y(λe∂yu) (y = 0), (20a)

uh = −At
1λe∂yu − At

2λe∂y(λe∂yu) (y = h), (20b)

where At
i and Ab

i (i = 1,2) are the slip coefficients for the
top and bottom walls, respectively, which depend on the
accommodation coefficients of the two walls (σt and σb). With

these boundary conditions, we can find the solution of Eq. (19),

u(y) = u0 − ρa

∫ y

0
yμ−1

e (y) dy + c0

∫ y

0
μ−1

e (y) dy, (21)

where

u0 = Ab
1c0 + Ab

2λe(0)ρa

α
,

(22)

c0 = αK1 + At
1h + At

2λe(h) − Ab
2λe(0)

αK0 + At
1 + Ab

1

ρa

with α = μe/λe = ρ(2RT/π )1/2, and

K0 =
∫ h

0
μ−1

e (y) dy, K1 =
∫ h

0
yμ−1

e (y) dy. (23)

The velocity is then obtained numerically from Eq. (21),

uj+1 = uj − ρa

∫ yj+1

yj

yμ−1
e (y) dy + c0

∫ yj+1

yj

μ−1
e (y) dy,

(24)

where the trapezoidal rule is used to evaluate the two integrals
again. Here 2000 grid points are employed, which is good
enough to obtain the grid-independent results.

First, we consider the case of fully diffuse walls (σt =
σb = 1.0). The normalized velocity profiles at several reduced
Knudsen numbers k = (

√
π/2)Kn, with Kn defined by Kn =

λ/h, are shown in Fig. 3, together with the solution of
the Boltzmann equation [15]. For comparison, the solutions
of the standard Navier-Stokes equations with two classical
second-order slip boundary conditions are also presented. The
first boundary condition uses the slip coefficients suggested
previously [1], A1 = 1.1466 and A2 = 0.9795, while the
second one uses the improved version proposed in Ref. [42]
which considers the Knudsen layer effects, A1 = 1.11 and
A2 = 0.31. For brevity we will denote the former and latter as
“NS-C” and “NS-H,” respectively. The results of the ENS with
the second-order microslip boundary condition previously
proposed in Ref. [30] [see Eq. (12)], denoted by “ENS-LR,”
are also included in the figure.

It is observed that as k = 0.1, the velocity profiles pre-
dicted by the four methods, which are normalized by ur =
ah

√
2/RT , are all in good agreement with the solution of the

linearized Boltzmann equation [15], except that the NS-C over
predicts slightly; it is also clearly seen that both the present
method and the ENS-LR give better predictions in the KLs
near the two walls. As k increases to 0.4, the NS-C gives an
obvious overestimation; The profiles of the present method
and the NSE-H are nearly identical in the central region,
but the former is much better in the KLs; The profile of the
ENS-LR is also satisfactory in the KLs, almost overlaps that
of the present method, but the deviation from the linearized
Boltzmann solution is slightly larger than that of the present
method.

As k increases to 1.0, the NS-C fails to capture the basic
feature of the flow; the NS-H gives a better prediction but still
shows some obvious derivations. On the other hand, both the
ENS together with the proposed boundary condition and the
ENS-LR yield much better solutions. As k goes up to 8.0,
both NS-C and NS-H fail to give satisfactory results, which is
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FIG. 3. (Color online) Velocity profiles of the Poiseuille flow (k = (
√

π/2)Kn, Kn = λ/h, and ur = ah/
√

2/RT ) predicted by the Navier-
Stokes and extended Navier-Stokes models coupled with different boundary conditions. The solution of the linearized Boltzmann equation are
from Ref. [15].

not surprising since the classical Navier-Stokes model breaks
down completely under such high Knudsen numbers; the ENS-
LR gives a slightly better prediction than the NS-H, but the
departure of the result from the reference solution is significant.
On the other hand, the result of the present method is still in
good agreement with the solution of linearized Boltzmann
equation.

The dimensionless mass fluxes, Q = (ρurh)−1
∫ h

0
ρu(y)dy, computed from the four models and the classical
Navier-Stokes equation with no-slip boundary conditions, are
shown in Fig. 4. It is seen that all of the three slip models are
able to give accurate mass fluxes as k � 0.1 in comparison
with the solutions of the Boltzmann equation [15]. As k

becomes larger, the NS-C fails to work anymore, but the
NS-H can works well up to k ≈ 0.3, which is consistent
with the analysis in Ref. [42]. The ENS-LR can give good
predictions up to k = 1.0, which is not surprising since the
LR boundary condition is obtained by fitting the model to the
low-Kn Couette and Poiseuille flows [30]. On the other hand,
the present model yields satisfied results in a rather larger
region (up to about k = 10), and the Knudsen minimum is
captured successfully.

Now we consider flows with two identical partial diffuse
walls (σb = σt = σ < 1.0). Note that the LR boundary con-

dition cannot be used in this case since it is designed for fully
diffuse walls. Because of the lack of data for the velocity profile

10
−2

10
−1

10
0

10
1

0

0.5

1

1.5

2

2.5

3

k

Q

Linearized B.E.
NS−C
NS−H
NS no−slip
ENS with present B.C.
ENS−LR

FIG. 4. (Color online) Normalized mass flux of the planar
Poiseuille flow with fully diffusive walls predicted by the Navier-
Stokes and extended Navier-Stokes models coupled with different
boundary conditions. The solution of the linearized Boltzmann
equation (open circles) is taken from Ref. [15].
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FIG. 5. (Color online) Normalized mass flux of the planar
Poiseuille flow with partially diffusive walls. Symbols: solutions
of the linearized Boltzmann equation taken from Ref. [43]; lines:
solutions of the present ENS with the proposed slip boundary
condition

in the literature, here we show only the normalized mass fluxes
(Fig. 5). For comparison we use the notations of Ref. [43],
e.g., the inverse Knudsen number δ = (

√
π/2)Kn−1 and the

mass flux Q normalized by ρah2/
√

2RT . As shown, the mass
fluxes with different accommodation coefficients predicted by
the present method are in good agreement with the solutions
of the linearized Boltzmann equation [43] as δ−1 is below 10,
and the Knudsen minimums are all captured successfully.

Flows with nonidentical walls are also considered.
Figure 6 shows the normalized mass fluxes with different
values of σt and σb = 1.0. Good agreement between the
predictions of the present method and the results of the LBE
[43] is again observed.

C. Microcylindrical Couette flow

In the above test problems only planar walls are involved. In
order to further validate the capability of the proposed method,
now we consider the cylindrical Couette flow between two
concentric cylinders (with radius R1 and R2 respectively),

0.01 0.1 1 10
0

2

4

6

8

10

1/δ

Q

σb = 1

σt = 0.3

σt = 0.5

σt = 0.8

FIG. 6. (Color online) Same as in Fig. 5 except with σb = 1 and
variable σt .

which is a well-known classical fluid-dynamics problem.
Although the geometry is simple, some recent studies show
that this flow exhibits some nonintuitive behaviors as slip
occurs at the cylinder surfaces. An example is the occurrence
of “velocity inversion” phenomenon, which has been studied
based on different approaches (see Ref. [44] and references
therein). For this problem the extended Navier-Stokes equation
in the polar coordinates (r,θ ) can be expressed as

1

r2

d

dr
(μer

2γ̇rθ ) = 0 (25)

where u is the tangential velocity, and γ̇rθ is the tangential
shear rate:

γ̇rθ = du

dr
− u

r
= r

d

dr

(
u

r

)
. (26)

The solution of Eq. (25) is

u

r
= c0

∫ r

R1

1

μer3
dr + u1

R1
, (27)

where c0 is a constant and u1 is the tangential slip velocity at
the surface of the inner cylinder. Both c0 and u1 depend on
the boundary conditions at the cylinder surfaces. In this case
the slip boundary conditions on the inner and outer cylinders
based on Eq. (11) can be expressed as

us(R1) ≡ u(R1) − ω1R1

= Ai
1 [λeγ̇rθ ]|r=R1

− Ai
2

[
λer

d

dr

(
1

r
λeγ̇rθ

)]∣∣∣∣
r=R1

,

(28a)

us(R2) ≡ u(R2) − ω2R2

= −Ao
1 [λeγ̇rθ ]|r=R2

− Ao
2

[
λer

d

dr

(
1

r
λeγ̇rθ

)]∣∣∣∣
r=R2

,

(28b)

where Ai
k and Ao

k (k = 1,2) are the slip coefficients of the
inner and outer cylinder surfaces which are associated with
the accommodation coefficients σi and σo through Eq. (9),
respectively, and ω1 and ω2 are the rotating angular velocities
of the inner and outer cylinders, respectively.

With the above boundary conditions, it can be shown that

c0 = −ω1 − ω2

K
, u1 = ω1R1 + B1

c0

αR2
1

, (29)

where

K =
∫ R2

R2

1

μer3
dr + 1

α

(
B1

R3
1

+ B2

R3
2

)
(30)

with α = μe/λe, and

B1 = Ai
1 + 3Ai

2
λe(R1)

R1
, B2 = Ao

1 − 3Ao
2
λe(R2)

R2
. (31)

Once c0 and u1 are determined, the velocity u can be obtained
numerically from Eq. (27). Here we used a grid with a
resolution of �r = |R1 − R2|/2000, which is enough to obtain
grid-independent solutions.
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It is noted that if the following classical first-order slip
boundary condition is used:

ui
s = 2 − σi

σi

λγ̇rθ

∣∣∣∣
r=R1

, uo
s = −2 − σo

σo

λγ̇rθ

∣∣∣∣
r=R2

, (32)

the solution of the original Navier-Stokes equations with a
constant viscosity is [44]

u

ω1R1
= 1

(A − B)R1

(
Ar − 1

r

)
, (33)

where

A = 1

R2
2

(
1−2

2 − σo

σo

λ

R2

)
, B = 1

R2
1

(
1 − 2

2 − σi

σi

λ

R1

)
.

(34)

We consider the case when both cylinders have an iden-
tical accommodation coefficient (σi = σo = σ ), which was
also investigated by DSMC and lattice Boltzmann equation
methods [44,45]. The radius of the cylinders are chosen to be
R1 = 3λ and R2 = 5λ, and the outer cylinder is fixed while
the inner one rotates with ωi = ω. The velocity profiles of this
flow with different values of σ are shown in Fig. 7, together
with the DSMC data [45] and the solutions of the standard
Navier-Stokes model given by Eq. (33). It is clearly seen
that the fundamental behaviors of the flow are successfully

3 3.5 4 4.5 5
0  

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r/λ

u
/ω

1
R

1

σi = σo = 1.0

(a)

3 3.5 4 4.5 5
0.15

0.2 

0.25

0.3 

r/λ

u
/
ω

1
R

1

σi = σo = 0.1
(b)

FIG. 7. (Color online) Velocity profiles of the cylindrical Couette
flow. Open circle: DSMC data from Ref. [45]; Solid line: ENS with
present slip boundary condition; dashed line: Navier-Stokes with
classical first-order slip boundary condition.

captured in comparison with the DSMC results. In particular,
the velocity inversion is observed as σ = 0.1. It is also noted
that the present method yields more accurate predictions
than the standard Navier-Stokes equation with the usual slip
boundary conditions in comparison with the DSMC results.
We would like to note here that recently a similar study on this
problem was also conducted by Dongari et al. [41], where a
power-law correction function together with a first-order slip
boundary condition was employed.

D. Low speed flow over a microsphere

To further validate the proposed method, we also considered
the low-speed gas flow over a sphere with radius R. The gas is
assumed to be incompressible and obeys the Stokes equations
with the extended viscosity:

∇ · u = 0, ∇ · τ e − ∇p = 0. (35)

As shown previously [46], in spherical coordinate (r,θ,φ) with
the origin at the sphere center, the flow velocity u = (ur,uθ ,uφ)
can be related to a scalar variable f :

ur = 2βf

r
cos θ, uθ = −β

(
df

dr
+ f

r

)
sin θ, (36)

where β = (3/8π )1/2. The variable f only depends on r and
satisfies the following ordinary differential equation (ODE):

μe

(
r3 d3f

dr3
+ r2 d2f

dr2
−6r

df

dr
+ 6f

)

+dμe

dr

(
r3 d2f

dr2

)
= K, (37)

where K is a constant from which the drag force on the sphere
can be determined:

F = − K

2β
. (38)

Some constraints on Eq. (37) for f can be obtained from
the velocity boundary conditions. As r → ∞, the velocity
approaches to the free stream velocity u∞, i.e., ur → u∞ cos θ

and uθ → −u∞ sin θ , from which we can deduce that

lim
r→∞

f

r
= u∞

2β
, lim

r→∞
df

dr
= u∞

2β
. (39)

On the other hand, at the surface of the sphere (r = R) we
must have ur = 0, and uθ is assumed to satisfy the proposed
second-order slip boundary condition,

uθ = A1λeγ̇rθF − A2λer
2 ∂

∂r

(
1

r2
λeγ̇rθ

)
, (40)

where

γ̇rθ = ∂uθ

∂r
+ 1

r

∂ur

∂θ
− uθ

r
= −β

d2f

dr2
sin θ. (41)

Therefore, at r = R the function f must satisfy

f = 0,
df

dr
= A1λe

d2f

dr2
− A2r

2λe

d

dr

(
λe

r2

d2f

dr2

)
. (42)

With the constraints given by Eqs. (39) and (42), the ODE
(37) together with the parameter K can be solved numerically.
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FIG. 8. (Color online) Drag force over a sphere predicted by
the Navier-Stokes and extended Navier-Stokes models coupled with
different boundary conditions. The experimental data [51], the fitting
curve (47), and the kinetic theory result are presented as well for
comparison.

In our simulations the computational domain is set to be
[R,1000R], and the ODE is solved via the standard MATLAB
function bvp4c, which is an efficient self-adaptive solver for
general boundary value problems of ODE [47]. In Fig. 8 the
nondimensional drag force, F ∗ = F/(6πμRu∞), is shown as
a function of the Knudsen number Kn = λ/R. Here the sphere
is assumed to be fully diffusive (σ = 1.0). For comparison,
we also show in the figure some other results reported in
the literature, including the Navier-Stokes solution with the
classical first-order slip boundary condition,

F ∗ = 1 + 2CKn

1 + 3CKn
, (43)

where C = (2 − σ )/σ , and that with a second-order slip
boundary condition [48],

F ∗ = 1 + 2Kn

1 + 3CKn + [(9/4π )(γ − 1)/γ ]PrKn2 , (44)

where Pr is the Prandtl number and γ is the ratio of specific
heat capacities. Here we consider a monatomic gas, i.e., Pr =
2/3 and γ = 5/3. Also included is the solution of Grad’s 13
moment equations [49],

F ∗ = (1 + 2Kn)(1 + 7.5CKn) + (π/6)Kn2

(1 + 3CKn)(1 + 7.5CKn) + (9/5π )(4 + 9CKn)Kn2 ,

(45)

and the result derived from the kinetic theory [50],

F ∗ = 8 + π

18(0.619 + Kn)

(
1 + 0.31Kn

0.785 + 1.152Kn + Kn2

)
,

(46)

as well as experimental data [51] and fitting curve [52],

F ∗ = [1 + Kn(1.142 + 0.558e−0.999/Kn)]−1. (47)

Most of these reference formulations can also be found in
Ref. [48]. We also show the results of Ref. [28] in the figure

(denoted by “ENS-Guo”) where the following slip boundary
condition was employed:

uθ = A1λe∂ruθ − A2λe∂r (λe∂θuθ ) , (48)

with A1 = 1.0 and A2 = 0.5. This boundary condition is a
direct extension of that for flat walls and the curvature effect
is not considered, which is problematic for general curved
walls [3]. Actually this boundary condition does not work
well for the cylindrical Couette flow due to the absence
of curvature effect. It is interesting that, however, the drag
coefficients predicted by the ENS with this boundary condition
are nearly the same as those with the present microslip
boundary condition. From Fig. 8 it can also be observed that
the results from kinetic theory agree well with the experimental
data, while the predictions of the standard Navier-Stokes
model with either the classical first-order or the second-order
slip boundary conditions show great derivations except for
rather small values of Kn (�0.1); the solution of the Grad’s
13 moment model gives some slight improvement, although
it is still not satisfactory. On the other hand, the present

0 2 4 6 8 10
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0.8

1

(r − R)/l

u
′ r

(a) δ = 0.1

δ = 1.0

δ = 10

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

(r − R)/l

u
′ θ

(b)

δ = 10.0

δ = 1.0

δ = 0.1

FIG. 9. (Color online) Velocity profiles at different Knud-
sen numbers. Here l = (2/

√
π )λ, u′

r = ur/u∞ sin θ , and u′
θ =

−uθ/u∞ cos θ . Open circles: solution of the linearized Boltzmann
equation [53]; solid lines: solution of the extended Navier-Stokes
model with present boundary condition; dashed lines: solution of
the Navier-Stokes equations with first-order slip boundary condition
[54].
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method gives much improved predictions and is satisfactory
as Kn � 0.2. It is also interesting that the prediction can be
further improved if we treat the parameter n in the second-order
slip term as an adjustable parameter. An example of n = 9
is shown in Fig. 8. It can be seen that with this choice the
predicted drag coefficient agrees with the kinetic theory and
experimental data up to Kn = 0.4. This may suggest that we
may treat n as a free model parameter rather than a fixed one
in applications. We also measured the velocity distributions
from the computed values of f under different sphere radius.
The two normalized components in three cases are shown
in Fig. 9, where the solutions of the linearized Boltzmann
equation [53] and the analytical solution of the Navier-Stokes
equations with the classical slip boundary condition [54] are
also included for comparison. It can be seen that as the inverse
Knudsen mumber, δ = (

√
π/2)Kn−1, is large (δ = 10.0), the

results of the three methods agree well with each other in
whole region; as δ decreases to 1.0, both the present results and
the Navier-Stokes solutions deviate form the kinetic solutions
greatly, particularly the tangential component in the near-wall
region. As δ goes further down to 0.1, the velocity deviations of
both methods are more significant in the near-wall region, and
the predictions of the tangential velocity component are even
unacceptable in this case. However, it can also be observed that
the present method can give better predictions than the classical
Navier-Stokes with the slip boundary condition in all cases.

IV. SUMMARY

It is a changeling task to model rarefied nonequilibrium gas
flows in the continuum framework. The difficulty lies mainly in
the capturing of the flows in the Knudsen layer. Recently some
extended Navier-Stokes models, in which the Knudsen layer
effects are incorporated through an effective viscosity, have
been developed. However, it is still an open problem about
how to specify a suitable boundary condition for such models.
In this work we first identified two types of slip velocities at the
solid wall. One is the usual fictitious macroscopic slip velocity
for the standard Navier-Stokes equations, which plays a key
role for capturing the bulk flow, and the other is the microscopic
slip velocity that describes the average molecular velocity at
the wall. A generalized second-order slip boundary condition
for this microscopic slip velocity was then developed, which
can be used for the extended Navier-Stokes models.

Coupled with certain extended Navier-Stokes models, the
proposed slip boundary condition has been applied to several
rarefied gas flows involving planar and curved boundaries,
including the Kramers’ problem, the planar Poiseuille flow,
the cylindrical Couette flow, and the flow over a sphere. It
is shown that the fundamental flow behaviors of these flows
can be successfully captured by the present method, which

suggests that the proposed boundary condition is a good and
potential model for the extended Navier-Stokes equations in
the description of rarefied gas flows. However, it should be
noted that in the case of flow over a sphere, the improvements
are still limited. This limitation presumably is not only related
to the proposed slip boundary condition, but also is related to
the adopted form of the extended Navier-Stokes equations
that incorporates the effective mean-free path for simple
planar gas systems and may not be accurate for complex
flows.

Finally, we would like to emphasize how the present work
differs from several related ones [28,30,40,41]. In Ref. [28]
a scheme similar to Eq. (8) is presented, but the scheme
is for fully diffuse flat walls, and the two slip coefficients
(A1 = 1, A2 = 0.5) were taken from the classical second-order
slip boundary conditions for macroslip velocities. With this
scheme, the Poiseuille flow in a channel with fully diffuse
walls was simulated, but no results were reported for cases
of partial diffuse walls; the flow around a microsphere was
also simulated with the boundary condition, but the curvature
effect was not considered. The scheme used in Ref. [40] is
the same as that in Ref. [28] except for A2 = 0.31, which
was taken from the macroscopic slip boundary condition
proposed in Ref. [10]. With this scheme the Poiseuille flow
in a channel was simulated where again only cases of fully
diffuse walls were considered. In Ref. [41], the cylindrical
Couette flow was investigated by solving an ENS model with
a first-order slip boundary condition, where the slip coefficient
A1 was again set to be the same as that used in classical
slip boundary conditions (A1 = (2 − σ )/σ ). It is interesting
that the velocity inversion was also observed with this slip
boundary condition. In Ref. [30] a slip boundary condition for
fully diffuse walls was proposed in terms of stress rather than
strain rate, just like the present scheme. The main difference
lies in the second-order terms [refer to Eqs. (8) and (12)]: In the
scheme of Ref. [30] both the mean-free path and the effective
mean-free path are involved, while the present scheme uses
only the effective one. Furthermore, the slip coefficients in
these two schemes are also different. To summarize, the slip
boundary condition in the present work is different from those
used in the previous studies, and with this boundary condition
the numerical results for some test problems are also different
from those reported in Refs. [28,30,40,41].
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