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In this paper we discuss the formulation of the fluctuating Navier-Stokes equations for multispecies, nonreactive
fluids. In particular, we establish a form suitable for numerical solution of the resulting stochastic partial
differential equations. An accurate and efficient numerical scheme, based on our previous methods for single
species and binary mixtures, is presented and tested at equilibrium as well as for a variety of nonequilibrium
problems. These include the study of giant nonequilibrium concentration fluctuations in a ternary mixture in the
presence of a diffusion barrier, the triggering of a Rayleigh-Taylor instability by diffusion in a four-species mixture,
as well as reverse diffusion in a ternary mixture. Good agreement with theory and experiment demonstrates that
the formulation is robust and can serve as a useful tool in the study of thermal fluctuations for multispecies fluids.
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I. INTRODUCTION

Since the pioneering work of Einstein and Smoluchowski
on Brownian motion it has been clear that hydrodynamic
fluctuations are essential in the study of fluid dynamics at
mesoscopic scales. In fact, fluctuations play an important role
in many physical, chemical, and biological processes, ranging
from phase separation to ion transport in cells. For exam-
ple, high-fidelity molecular simulations reveal that thermal
fluctuations significantly affect fluid mixing, both in simple
diffusion [1,2] and in the Rayleigh-Taylor instability [3,4]. The
accurate modeling of droplets in nanojets [5,6] and lipid bilayer
membranes [7,8] necessitate the inclusion of hydrodynamic
fluctuations. Chemical processes, including combustion and
explosive detonation, also depend strongly on spontaneous
thermal fluctuations [9,10]. Finally, the manifestation of
hydrodynamic fluctuations is not restricted to mesoscale
phenomena. Laboratory experiments involving gases, liquids,
or crystals demonstrate that, away from equilibrium, thermal
fluctuations lead to large-scale structures, the so-called giant
fluctuation effect [11–14].

As an extension of conventional hydrodynamic theory,
fluctuating hydrodynamics incorporates spontaneous thermal
fluctuations in a fluid by adding stochastic flux terms to
the deterministic fluid equations [15]. These noise terms are
white in space and time and are formulated using fluctuation-
dissipation relations to yield the equilibrium covariances of
the fluctuations. This construction was first introduced by
Landau and Lifshitz [16] for a single component fluid. Fox
and Uhlenbeck [17,18] provide theoretical derivations of the
fluctuation terms from perspectives of Brownian motion and
the Boltzmann equation. Numerous extensions of the theory
have been developed, such as to extended thermodynamics
[19] and plasma dynamics [20].

The generalization of fluctuating hydrodynamics to binary
mixtures was first presented by Cohen et al. [21] and by Law
and Nieuwoudt [22,23]. Multicomponent gaseous systems
are discussed within the GENERIC framework in the work of
Ottinger [24]. The standard fluctuating hydrodynamics theory
for (thermo)diffusion in binary mixtures (see, for example,
Ortiz de Zarate and Senger [15]) has recently been extended to

nonideal ternary mixtures in thermodynamic equilibrium by
Ortiz de Zarate et al. [25].

Early work on numerical methods for the linearized
fluctuating Navier-Stokes equations was performed by Garcia
et al. [26,27]. More recently, we developed accurate and robust
numerical techniques for the full nonlinear system of equations
[28–31]. In this paper, we extend to multicomponent systems
the algorithm developed for binary gas mixtures by Bell et al.
[29] and subsequently improved by Donev et al. [30].

There are three reasons why this extension to multispecies
fluids is significant. First, it allows us to consider interesting,
realistic chemical reactions, which is a subject for future
research. Second, the majority of microscopic systems of
interest (and certainly all biological systems) have negligible
gradients of velocity and temperature. The dominant mecha-
nism for nonequilibrium entropy production in these systems
is from gradients of chemical potential (i.e., concentration
gradients). Third, there are interesting interaction effects due
to coupling of diffusion among the species. In a single
species fluid, the (deterministic) thermodynamic fluxes are
always in the direction of their conjugate thermodynamic force
(e.g., heat flux is always from hot to cold). For a binary
mixture there is an interaction between concentration and
temperature (e.g., heat flux due to a concentration gradient);
however, this coupling is typically weak. As we show in two
examples in Sec. IV, diffusion barriers (zero concentration
flux in the presence of a concentration gradient) and reverse
diffusion (concentration flux from low to high concentration)
can occur in multispecies mixtures (see for instance Duncan
and Toor [32]). Giant fluctuations in binary mixtures out
of thermodynamic equilibrium have been studied for a long
time, and here we demonstrate that the coupling between
the diffusive fluxes for different species also induces long-
ranged correlations between the concentrations of different
species.

The paper is organized as follows. The mathematical
formulation is summarized in Sec. II, and the numerical
scheme in Sec. III. Computational results validating the
methodology are presented in Sec. IV along with examples
illustrating its capabilities. Conclusions and directions for
future work are discussed in Sec. V.
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II. THEORY

In this section, we summarize the mathematical formulation
of the full multicomponent, fluctuating Navier-Stokes (FNS)
equations and establish the elements needed to develop a
suitable numerical method for the resulting stochastic partial
differential equations. Our formulation of species diffusion is
based on classical treatments, such as in Refs. [33–35]. We
want to be able to utilize existing software for computing
transport properties of realistic gases such as the EGLIB

package [36] commonly used in the reacting flow community.
Consequently, we will adopt the notation given by Giovangigli
[37]. The formulation is general with the specific case of ideal
gas mixtures treated in Sec. II D.

A. Multicomponent hydrodynamic equations

The species density, momentum and energy equations of
hydrodynamics are given by

∂

∂t
(ρk) + ∇ · (ρkv) + ∇ · F k = 0, (1)

∂

∂t
(ρv) + ∇ · [ρvvT + pI] + ∇ · � = ρg, (2)

∂

∂t
(ρE) + ∇ · [(ρE + p)v] + ∇ · [Q + � · v] = ρv · g,

(3)

where ρk , v, p, g, and E denote, respectively, the mass
density for species k, fluid velocity, pressure, gravitational
acceleration, and total specific energy for a mixture with Ns

species (k = 1, . . . ,Ns). Note that vvT is a (tensor) outer
product with T indicating transpose and I is the identity tensor
(i.e., ∇ · pI = ∇p). Transport properties are given in terms of
the species diffusion flux, F , viscous tensor, �, and heat flux,
Q. For Newtonian fluids, the deterministic viscous tensor is,

� = −η[∇v + (∇v)T ] − (
κ − 2

3η
)
I(∇ · v), (4)

where η and κ are the shear and bulk viscosity, respectively.
Exact mass conservation requires that the species diffusion

flux satisfies the constraint,

Ns∑
k=1

F k = 0, (5)

so that summing the species equations gives the continuity
equation.

∂

∂t
ρ + ∇ · (ρv) = 0, (6)

where the total density ρ = ∑Ns

k=1 ρk . The mass fraction of the
kth species is denoted by Yk = ρk/ρ with

∑Ns

k=1 Yk = 1.
In fluctuating hydrodynamics, we augment the fluxes in (1)–

(3) by adding a zero-mean stochastic flux to the deterministic
flux. For example, the viscous tensor becomes � + �̃ where
〈�̃〉 = 0 with 〈 〉 denoting a suitably defined ensemble average.
The stochastic viscous flux tensor is a Gaussian random field

that can be written as [16,38]

�̃(r,t) =
√

2kBT η Z̃v +
(√

kBκT

3
−

√
2kBηT

3

)
Tr(Z̃v),

(7)

where kB is Boltzmann’s constant, T is temperature, and Z̃v =(
Zv + (Zv)T

)
/
√

2 is a symmetric Gaussian random tensor
field. (The

√
2 in the denominator accounts for the variance

reduction from averaging.) Here Zv is a white-noise random
Gaussian tensor field; i.e.,〈

Zv
αβ(r,t)Zv

γ δ(r′,t ′)
〉 = δαγ δβδ δ(r − r′) δ(t − t ′).

B. Stochastic diffusion and heat fluxes

The formulation of the multispecies stochastic diffusion and
heat fluxes is complicated by the couplings among the species
fluxes (cross-diffusion effects) and by the thermal diffusion
contribution (Soret and Dufour effects). The starting point
for determining these fluxes is the entropy production for a
mixture, as formulated by de Groot and Mazur [33] and by
Kuiken [35], which establishes the form of the thermodynamic
forces and fluxes. We then use the fluctuation-dissipation
principle to formulate the corresponding noise terms. Here
we only need to consider the contributions of the heat flux
and mass diffusion fluxes to entropy production. The entropy
production also has a contribution due to the stress tensor,
however, due to the Curie symmetry principle [33], fluxes and
thermodynamic forces of different tensorial character do not
couple. As such, the stochastic flux in the momentum equation
is the same as for a single species fluid, as given by (7).

The entropy production for a multicomponent mixture at
rest, in the absence of external forces1 and chemistry, is given
by [33]:

v = − 1

T 2
Q′ · ∇T − 1

T

Ns∑
i=1

F i · ∇T μi (8)

= − 1

T 2
Q′ · ∇T − 1

T

Ns−1∑
i=1

F i · ∇T (μi − μNs
), (9)

where μi is the chemical potential per unit mass of species i

and

Q′ = Q −
Ns∑
k=1

hkF k = Q −
Ns−1∑
k=1

(hk − hNs
)F k, (10)

where hk is the specific enthalpy of the kth component (see
discussion in Sec. II D). In other words, Q′ is the part of
the heat flux that is not associated with mass diffusion. Here,
∇T is a gradient derivative taken holding temperature fixed,
that is,

∇T μi(p,T ,X1, . . . ,XNs−1)=∇μi−
(

∂μi

∂T

)
p,X1,...,XNs−1

∇T ,

1This contribution is also zero if the external specific force acting on
each species is constant, as with a constant gravitational acceleration.
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where Xk = nk/
∑Ns

j=1 nj are mole fractions, and nk are
number densities. The mole fraction for species k is given
in terms of the mass fractions by Xk = (m/mk)Yk , where
mk is the mass of a molecule of that species, and m =
(
∑Ns

k=1 Yk/mk)−1 is the mixture-averaged molecular weight
[35]. Note that only Ns − 1 of the mass or mole fractions are
independent.

The general form of the phenomenological laws expresses
the fluxes as linear combinations of thermodynamics forces,
written in matrix form as

J̄ = L̄X̄ where v = J̄T X̄ = X̄T L̄
T X̄.

Here we use an overbar to denote the system expressed in
terms of the first Ns − 1 species. From (9) the fluxes J̄ and the
thermodynamics forces X̄ are given by

J̄ =
[

F̄
Q′

]
and X̄ =

[
− 1

T
∇T (μi − μNs

)

− 1
T 2 ∇T

]
,

respectively, where F̄ = [F1, . . . ,FNs−1]T is a vector of
Ns − 1 independent species mass fluxes. By Onsager reci-
procity the matrix of phenomenological coefficients is sym-
metric so we can write L̄ as

L̄ =
[

L̄ l̄
l̄T 


]
,

where L̄ is a symmetric Ns − 1 × Ns − 1 matrix that depends
on the multicomponent flux diffusion coefficients, l̄ is an Ns −
1 component vector that depends on the thermal diffusion
coefficients, and the scalar 
 depends on the partial thermal
conductivity (see Sec. II D).

Before discussing the form of the noise terms we will first
recast L̄ in a slightly different form. This form will facilitate
comparison with the continuum transport literature (e.g., [37])
and lead to a more efficient numerical algorithm. We introduce

ξ̄ = L̄−1 l̄ and ζ = 
 − ξ̄ T L̄ξ̄

so that

L̄ =
[

L̄ L̄ξ̄

ξ̄ T L̄ ζ + ξ̄ T L̄ξ̄

]
. (11)

It is important to point out that this construction works even
when L̄ is not invertible, which happens when some of the
species are not present. This is because ξ̄ is always in the
range of L̄.

We now want to establish the form of the stochastic fluxes
in the fluctuating hydrodynamic equations. Since the fluxes
are white in space and time we can write them in the form

˜̄Jα = B̄Z̄ (α), where ˜̄Jα =
[˜̄Fα

Q̃′
α

]
and

Z̄ (α) =
[
Z̄ (F ;α)

Z (Q′;α)

]
,

where α = x,y,z denotes spatial direction and Z̄ (F ;α) =
[Z̄ (1;α), . . . ,Z̄ (Ns−1;α)]T is a vector of independent Gaussian

white noise terms, that is,

〈Z̄ (i;α)(r,t)Z̄ (j ;β)(r′,t ′)〉 = δij δαβ δ(r − r′)δ(t − t ′),

〈Z (Q′;α)(r,t)Z (Q′;β)(r′,t ′)〉 = δαβ δ(r − r′)δ(t − t ′),

and 〈Z̄ (F ;α)Z (Q′;β)〉 = 0.
To satisfy fluctuation dissipation balance, we need [15,25]

B̄B̄T = 2kB L̄.

If we write the noise amplitude matrix in the form

B̄ =
[

B̄ 0
ξ̄ T B̄

√
ζ

]
then we obtain fluctuation-dissipation balance provided

B̄B̄T = 2kBL̄. (12)

Note that the matrix B̄ is not uniquely defined; for numerics
we employ the Cholesky factorization of L̄ to compute B̄,
corresponding to choosing a lower-triangular B̄. From the
above, the species diffusion flux noise is then,˜̄Fα = B̄ Z̄ (F ;α) (13)

and the heat flux noise is

Q̃α = Q̃′
α + h̄T ˜̄Fα

=
√

ζZ (Q′;α) + (ξT + h̄T )˜̄Fα,

where h̄ is a vector with components hk − hNs
, the excess

specific enthalpy. The conservation of mass equation remains
valid in the FNS equations so the sum of the species diffusion
noise terms for the full system must be zero. Thus the stochastic
mass flux for species Ns is fixed by mass conservation.

For a given hydrodynamic system, the procedure for com-
puting the noise is to determine L̄ in terms of mass diffusion
coefficients from the phenomenological law for F k and use
(12) to compute B̄. The phenomenological law for the heat
flux can be used to find expressions for ξ̄ and ζ . An example
of this procedure is given in Sec. II D for a gas mixture.
More general nonideal fluid mixtures are a subject for future
research, including the relation of the above formulation to
the Stefan-Maxwell form of expressing the phenomenological
relations between fluxes and thermodynamic forces [35].

C. Full-system construction

The form of the equations above requires that we distinguish
a particular species, numbered Ns , which must be present
throughout the entire system. For many applications, this
introduces an artificial requirement on the system that is
difficult to deal with numerically. In this section we transform
the reduced form with Ns − 1 equations, used by de Groot and
Mazur, to an equivalent full-system construction. It is noted
in de Groot and Mazur that the Onsager reciprocal relations
remain valid in the presence of linear constraints such as (5).
In particular, we can consider the full system with Ns + 1
equations (including thermal diffusion) with the constraint∑

k(Fk + F̃k) = 0 by defining an augmented system that gives
exactly the same entropy production. In particular, we define
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an augmented Onsager matrix L of the form

L =
[

L̄ −L̄u
−uT L̄ uT L̄u

]
,

where u = [1, . . . ,1]T . Here the final row gives FNs
, the

diffusion flux of the last species. The extra row and column of L
are fully specified by the requirement that column sums vanish
(a consequence of vanishing of the sum of species fluxes) and
the Onsager symmetry principle.

Using L we can write the phenomenological laws for the
full system as

J = LX,

where the fluxes J and thermodynamics forces X are given by

J =
[

F
Q′

]
and X =

[
− 1

T
∇T μ

−∇T
T 2

]
with

L =
[

L l

lT 


]
and l =

[
l̄

−uT l̄

]
,

reflecting the fact that the Soret coefficients summed over all
species vanishes. Here, μ is a vector of all of the chemical
potentials. A direct computation shows that (5) gives

v = J̄T X̄ = JT X = XT LX.

Hence the full-system form gives exactly the same entropy
production as the original form.

Before constructing the noise for the full system, we note
that we can write the augmented Onsager matrix L in a
form analogous to (11). The key observation here is that the
construction of an extended ξ remains valid because l = Lξ

is in the range of L. Note that ξ is not uniquely determined.
We choose ξ such that ξT u = 0. With these definitions, the
Onsager matrix and associated noise term are given by

L =
[

L Lξ

ξT L ζ + ξT Lξ

]
. (14)

Ottinger [24] gives a derivation of this form using the GENERIC

formalism subject to the linear constraint
∑Ns

k=1 Yk = 1. From
(14) we can then obtain the deterministic species flux

F = − 1

T
L

[
∇T μ + ξ

T
∇T

]
(15)

and the deterministic heat flux

Q = −ζ
∇T

T 2
+ (ξT + hT )F , (16)

where h is the vector of specific enthalpies.
We can now construct the noise for the full system. We note

that since 2kBL̄ = B̄B̄T we have that

2kBL = BBT , where B =
[

B̄ 0
−uT B̄ 0

]
.

In this form the species diffusion noise is given by F̃α =
BZ (F ,α), where Z (F ,α) = [Z̄ (F ,α),0]. Although B is of size

Ns × Ns , only Ns − 1 noise terms are needed because the
last column of B is identically zero. Note also that the last
row is chosen so that the sum of the noise terms over all
species vanishes. We can now define the noise matrix for
species diffusion, B, such that fluctuation-dissipation balance
is obeyed, BBT = 2kBL, namely,

B =
[

B 0
ξT B

√
ζ

]
. (17)

The augmented stochastic heat flux is thus given by

Q̃α =
√

ζZ (Q′;α) + (ξT + hT )F̃α,

in analogy (and fluctuation-dissipation balance) with the
deterministic heat flux (16). This form is identical to that given
by Ottinger [24] and we use it in the next section to establish
the relationship between the Onsager matrix and deterministic
transport models. Note that ζ � 0 since L̄ must be positive
definite while L must be positive semidefinite.

Finally, the methodology can also be applied when not all
species are present. Rows and columns of L corresponding to
missing species are identically zero. By applying a suitable
permutation matrix P to obtain Ľ = P LP T we can arrange
for the missing species to be the last rows and columns of Ľ.
If m species are present then the upper m × m block has rank
m − 1 with the structure discussed above. For ξ̌ = Pξ the first
m elements sum to zero and the last Ns − m elements are equal
to zero. We note that although the extension of the formalism
is straightforward, some care is needed to prevent numerical
roundoff error from spuriously generating small amounts of
absent species.

D. Gas mixtures

The hydrodynamic properties of a fluid are fixed by its
thermodynamic functions (e.g., equation of state) and its
transport properties. This section summarizes these relations
for a multispecies mixture of gases, following the notation in
Ref. [37]. The ideal gas equation of state is

p = RuT

Ns∑
k=1

ρk

Wk

= ρRuT

Ns∑
k=1

Yk

Wk

= ρRuT

W
, (18)

where Ru = kBNA is the universal gas constant, NA is
Avogadro’s number, the molecular weight of the kth species
is Wk = mkNA, and W = mNA is the mixture-averaged
molecular weight.

The total specific energy is

E = 1
2 |v|2 + e, (19)

where e is the specific internal energy. For an ideal gas mixture
we can write,

e (T ,Yk) =
Ns∑
k=1

Ykek(T ), (20)

where ek is the specific internal energy of the kth species.
Similarly, we can write the specific and partial enthalpies
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as

h = e + p

ρ
=

Ns∑
k=1

Ykhk(T ) and hk = ek + Ru

Wk

T . (21)

The specific heats at constant volume and pressure for the
mixture are:

cv(T ) =
(

∂e

∂T

)
Yk,v

=
Ns∑
k=1

Ykcv,k(T );

cp(T ) =
(

∂h

∂T

)
Yk,p

=
Ns∑
k=1

Ykcp,k(T ).

Given cv,k and cp,k one obtains ek(T ) and hk(T ) by integration.
For a calorically perfect gas, cv,k and cp,k are constants, and
for a thermally perfect gas they are usually expressed as
polynomial expressions in T .

For an ideal gas the chemical potential per unit mass can
be written as,

μi = RuT

Wi

(ln Xi + ln p) + f (T ),

where f (T ) is a function only of temperature. Recalling that
μ represents the vector of μi then we have

∇T μ = RuTW−1X−1∇X + RuT

p
W−1u∇p

= RuT

W
Y−1∇X + W

ρ
W−1u∇p,

where X and Y are vectors of mole fractions and mass
fractions, respectively, X , Y , and W are diagonal matrices
of mole fractions, mass fractions and molecular weights, and
u is vector of all ones.

We will use this form to relate the transport coefficients to
the noise amplitude matrix. Software libraries, such as EGLIB

[36], used to compute these transport coefficients typically
express fluxes in terms of gradients of X, p, and T rather
chemical potential. In particular, these packages typically com-
pute: a matrix of multicomponent flux diffusion coefficients,
C, a vector of thermal diffusion coefficients θ or rescaled
thermal diffusion ratios, χ̃ ; and either thermal conductivity λ

or partial thermal conductivity λ̂ = λ + p

T
χ̃TX θ . Here, θ and

χ̃ are related by

CX χ̃ = ρYθ.

Computation of χ̃ and λ is more computationally efficient
than computation of θ and λ̂ so we will focus on relating L as
given in (14) to the diffusion fluxes expressed in terms of C, χ̃
and λ.

In terms of these variables we then have

F = −C
(

d + X χ̃
∇T

T

)
; (22)

Q′ = Q − hT F = −λ∇T + RuT χ̃TW−1F . (23)

For an ideal gas, the diffusion driving force [35] is

d = ∇X + (X − Y )
∇p

p
.

In (22) and (23) we can replace d with d̂ where

d̂ = ∇X + X
∇p

p
.

These forms are equivalent because CY = 0 and θT Y = 0.
The additional term in d is to enforce dT u = 0 by adding to d̂

an appropriate element in the null space of C.
By comparison, in the phenomenological laws, J = LX,

the flux is given by

F = −L
(

1

T
∇T μ + ξ

1

T 2
∇T

)
= −L

(
Ru

W
Y−1∇X + RuW−1 ∇p

p
+ 1

T 2
ξ∇T

)
.

By matching the ∇X terms we have,

L = W

Ru

CY . (24)

A bit of algebra gives the same result for the ∇p term, which
is the barodiffusion contribution. Note that, in general, the ∇X

and ∇p terms will yield the same result since the barodiffusion
contribution is of thermodynamic origin and thus it does not
have an associated transport coefficient [16]. From the ∇T

term,

ξ = RuT

W̄
Y−1X χ̃ = RuTW−1χ̃ ,

which corresponds to the Soret term in the species diffusion
equations.

Similarly, in the phenomenological laws, using the expres-
sion for heat flux we have,

Q′ = Q − hT F = − ζ

T 2
∇T + ξT F ,

which by comparison to (23) gives the relation

ζ = T 2λ. (25)

III. NUMERICAL SCHEME

The numerical integration of (1)–(3), (6) is based on a
method of lines approach in which we discretize the equations
in space and then use an ODE integration algorithm to advance
the solution. Here we use the low-storage third-order Runge-
Kutta (RK3) scheme previously used to solve the single- and
two-component FNS equations [30], using the weighting of
the stochastic forcing proposed by Delong et al. [39]. We can
write the governing equations in the following form:

∂U
∂t

= −∇ · FH − ∇ · FD − ∇ · FS + H ≡ R(U,Z), (26)

where U = [ρ,ρYk,ρv,ρE]T is the set of conservative vari-
ables, FH , FD , and FS are the hyperbolic, diffusive and
stochastic flux terms, respectively and H is a forcing term.
Here, R is a shorthand for the right-hand side of the equation
used later for describing the temporal discretization scheme
and Z is a spatiotemporal discretization of the random
Gaussian fields Z used to construct the noise.
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The fluxes are given by

FH =

⎡⎢⎢⎣
ρv

ρvYk

ρvvT + pI
ρv(E + p)

⎤⎥⎥⎦; FD =

⎡⎢⎢⎣
0
F
�

Q + � · v

⎤⎥⎥⎦;

FS =

⎡⎢⎢⎢⎣
0

F̃
�̃

Q̃ + �̃ · v

⎤⎥⎥⎥⎦. (27)

Here we consider only a gravitational source term H =
[0,0,ρg,ρg · v]; however, in a more general case H can include
both deterministic and stochastic forcing terms (e.g., chemical
reactions). Thus, for Ns species, k = 1, . . . ,Ns there is a total
of 5 + Ns governing equations in three dimensions. Note
that for a single-species fluid the equation for ρ1 and ρ are
identical.2

A. Spatial discretization

The spatial discretization uses a finite volume representa-
tion with cell spacings in the x, y, and z directions given by �x,
�y and �z. We let Un

ijk denote the average value of U in cell
ijk at time step n. To ensure that the algorithm satisfies discrete
fluctuation-dissipation balance, the spatial discretizations are
done using centered discretizations (see Donev et al. [30]).

To obtain the hyperbolic fluxes we first compute the
primitive variables, ρ, Yk , v, T , and p from the conserved
variables at cell centers. These values are then interpolated
to cell faces using a PPM-type [40] spatial interpolation. For
example, for temperature we set

T n
i+1/2,j,k = 7

12

(
T n

i+1,j,k + T n
i,j,k

) − 1
12

(
T n

i−1,j,k + T n
i+2,j,k

)
.

(28)

From these interpolants we evaluate the flux terms at the face.
The divergence of the fluxes is then computed as Df −c FH

where Df −c is the standard discrete divergence operator that
computes the cell-centered divergence of a field defined on
cell faces.

The computation of the diffusive and stochastic terms is
a bit more complex. The evaluation of the deterministic heat
flux and the species diffusion terms is done in a straightforward
fashion using the face-based operators and simple arithmetic
averages to compute transport coefficients at cell faces.
However, a complication arises because the viscous stress
tensor � uses a symmetrized gradient, namely

� = −η[∇v + (∇v)T ] − (
κ − 2

3η
)
(I ∇ · v).

Standard discretizations of the stress tensor in this form do
not satisfy a discrete fluctuation dissipation balance. More
precisely, they lead to a weak correlation between velocity
components at equilibrium. These problems stem from the
fact that the concept of a symmetric stress tensor does not

2We note that technically, we to not need to solve a separate
continuity equation since ρ = ∑

k ρYk . We do so here simply for
diagnostic purposes.

have a natural expression on a cell-centered grid as employed
here [30]. By contrast, if a staggered grid is used to handle
the momentum equation, it is straightforward to construct
a symmetric stochastic stress tensor using straightforward
centered second-order staggered difference operators [31].
The staggered grid discretization is particularly useful for
incompressible flow; here we consider the full compressible
equations and focus on cell-centered grids.

Extending the development in Ref. [30] to the case of
variable viscosity, we first rewrite the viscous term in the form,

∇ · � = −∇ · (η∇v) − ∇[(
κ + 1

3η
)

(∇ · v)
]

+ [(∇η)(∇ · v) − (∇η) · (∇v)T ]. (29)

Observe that the last two terms only involve first derivatives
of v and, in fact, vanish completely when η is a constant and
were not omitted in Ref. [30]. We note that this rewriting of
the stress tensor can be written in a conservative form in which
there are cancellations in the last two terms,

� = −∇ · (η∇v) − ∇ · [(
κ + 1

3η
)

I (∇ · v)
]

+{∇ · [η I (∇ · v)] − ∇ · [η(∇v)T ]}.
Our spatial discretization follows this conservative form and
thus ensures discrete conservation of momentum.

We use different discretizations of the different terms in
Eq. (29). For the first term, we approximate

∇ · (η∇v) ≈ Gc−f (η Df −cv), (30)

where Gc−f defines normal gradients at cell faces from
cell centered values. Here, we average adjacent cell-centered
values of η to edges. For the remaining terms we use a nodal
(corner) based discretization. For example we approximate

∇[(
κ + 1

3η
)

(∇ · v)
] ≈ Gc−n

[(
κ + 1

3η
)

Dn−cv
]
, (31)

where Dn−c uses nodal values of a field to compute the diver-
gence at cell centers and Gc−n computes gradients at corner
nodes from cell-centered values. Again, the discretizations
are standard second-order difference approximations. Here,
coefficients are computed by averaging cell-centered values at
all eight cell centers adjacent to the node. We also discretize
the last terms in (29) using nodal discretizations based on the
conservative form,

{∇ · [η I (∇ · v)] − ∇ · [η(∇v)T ]}
≈ Gc−n(η Dn−cv) + Dn−c[η (Gc−nv)T ], (32)

noting that the second-order derivative terms cancel at the
discrete level just as they do in the continuum formulation,
leaving only first-order differences when the two terms are
combined.

With these definitions, we have that Df −c = −(Gc−f )T and
Dn−c = −(Gc−n)T , i.e., both the nodal and face-based discrete
divergence and gradient operators are discretely skew-adjoint.
These skew-adjoint properties are important for numerically
satisfying discrete fluctuation-dissipation balance. The viscous
heating contribution to the energy equation, ∇ · (� · v) is
evaluated using face centered values of � multiplied by an
arithmetic average of v to faces from cell centers. The terms
of � corresponding to (30) are defined on faces; the terms
corresponding to (31) and (32) are computed by averages
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of corner values to faces and forming � · v at faces then
computing the divergence of the fluxes using Df −c.

The noise terms in the momentum equation that represent
the stochastic stress tensor need to respect the correlation
structure given in (7). In addition, the discrete treatment of
the noise needs to match the discretization of the deterministic
stress tensor. In particular, they need to use the same discrete
divergence. This, combined with the skew adjoint construction
of the gradient operators, is needed for fluctuation-dissipation
balance. For that reason, we generate noise terms for the first
two terms in (29) separately. No stochastic terms are added for
the last two terms because they only involve first derivatives
of v.

The stochastic stress tensor is expressed as �̃ = �̃
(f ) +

�̃
(n)

. The term �̃
(f )

corresponds to the ∇ · (η∇v) contribution
to the dissipative (viscous) flux; at a face we form it as

�̃
(f )
i+ 1

2 ,j,k
=

√
2kB(ηT )i+ 1

2 ,j,kSZ(v,x),

where

(ηT )i+ 1
2 ,j,k = (ηi,j,kTi,j,k + ηi+1,j,kTi+1,j,k)/2, (33)

and Z(v,x) are three-component, independent face-centered
standard Gaussian random variables and

S = 1√
�x�y�z�t

(34)

is a scaling due to the δ function correlation in space and time of
the noise, see [30,39] for a more precise derivation. Other faces
are treated analogously and the resulting stochastic momentum
fluxes are differenced using the discrete divergence Df −c.

The stochastic flux corresponding to the contribution
∇[(κ + 1

3η) (∇ · v)] in the dissipative flux is generated at
corner nodes [30]. Namely,

�̃
(n)
i+ 1

2 ,j+ 1
2 ,k+ 1

2
=

√
2kB

[(
κ + 1

3η
)
T

]
i+ 1

2 ,j+ 1
2 ,k+ 1

2
SZ(v,n),

where Z(v,n) are three-component, independent node-centered
standard Gaussian random variables. Note that the coefficients
at the corner nodes are averages over the eight cells adjacent to
the node, analogously to (33). The divergence of these nodal
fluxes is computed using the discrete divergence operator
Dn−c. The viscous heating contribution from the stochastic
stress is computed analogously to the deterministic contribu-
tion described above.

The noise terms for the species and energy equation are
generated in the full-system form B using the expressions
written in terms of L, ξ , and ζ . Here we use the particular
form of these expressions given for gas mixtures. In particular,
for edge i + 1

2 ,j,k we define

Li+ 1
2 ,j,k =

(
Wi,j,k + Wi+1,j,k

2Ru

)(
(CY)i,j,k + (CY)i+1,j,k

2

)
and obtain B by forming the Cholesky decomposition of
Li+ 1

2 ,j,k ,

Bi+ 1
2 ,j,kBT

i+ 1
2 ,j,k

= 2kBLi+ 1
2 ,j,k.

The stochastic flux for species is then given by

F̃i+ 1
2 ,j,k = Bi+ 1

2 ,j,kSZ
(F,x)
i+ 1

2 ,j,k
,

where Z(F,x) are face-centered independent standard
Gaussian random variables. Stochastic fluxes on other edges
are constructed analogously and the divergence is computed
with Df −c.

We then define

ξi+1/2,j,k = Ru(Ti,j,k + Ti+1,j,k)

2
W−1

(
χ̃i,j,k + χ̃i+1,j,k

2

)
.

The noise term, Q̃x , in the energy flux is then

Q̃i+ 1
2 ,j,k = √

kB(ζi,j,k + ζi+1,j,k)SZ(Q,x)

+ (
ξT

i+ 1
2 ,j,k

+ hT

i+ 1
2 ,j,k

)
F̃i+ 1

2 ,j,k,

where Z(Q,x) are face-centerd independent standard Gaussian
random variables. Here, hi+ 1

2 ,j,k is obtained by evaluating the
specific enthalpies at the temperature

Ti+ 1
2 ,j,k = (Ti,j,k + Ti+1,j,k)/2,

and the same face-centered value of (ξi+ 1
2 ,j,k + hi+ 1

2 ,j,k) is
used to weight the contribution of mass fluxes to the heat flux
for both the deterministic and the stochastic fluxes.

B. Temporal discretization

The temporal discretization uses the low-storage third-order
Runge-Kutta (RK3) scheme previously discussed in Donev
et al. [30] using the weights specified in Ref. [39]. With this
choice of weights, the temporal integration is weakly second-
order accurate for additive noise (e.g., the linearized equations
of fluctuating hydrodynamics [15]).

The RK3 scheme involves three stages, which can be
summarized as follows:

Un+1/3
i,j,k = Un

i,j,k + �tR(Un,Z1);

Un+2/3
i,j,k = 3

4 Un
i,j,k + 1

4

[
Un+1/3

i,j,k + �tR(Un+ 1
3 ,Z2)

]
; (35)

Un+1
i,j,k = 1

3 Un
i,j,k + 2

3

[
Un+2/3

i,j,k + �tR(Un+ 2
3 ,Z3)

]
,

where the Zi denote the random fields used in each stage of the
integration. To compute the weights for each stage, we generate
two sets of normally distributed independent Gaussian fields,
ZA and ZB , and set

Z1 = ZA + β1Z
B ;

Z2 = ZA + β2Z
B ;

Z3 = ZA + β3Z
B,

where β1 = (2
√

2 + √
3)/5, β2 = (−4

√
2 + 3

√
3)/5, and

β3 = (
√

2 − 2
√

3)/10.

C. Boundary conditions

In addition to periodicity, our implementation of the
methodology described above supports three boundary condi-
tions. The first is a specular wall at which the normal velocity
vanishes and the other velocity components, mole fractions,
and temperature satisfy homogeneous Neumann boundary
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TABLE I. Molecular properties for the equilibrium test case.

Molecular
k Species Weight (g/mol) Diameter (cm) Yk Xk

1 Helium 4.0026 2.18 × 10−8 0.25 0.7428
2 Neon 20.1797 2.58 × 10−8 0.25 0.1473
3 Argon 39.9480 3.63 × 10−8 0.25 0.0744
4 Krypton 83.8000 4.16 × 10−8 0.25 0.0355

conditions. A second type of boundary condition is a no-slip
reservoir wall at which the normal velocity vanishes and the
other velocity components, mole fractions, and temperature
satisfy inhomogeneous Dirichlet boundary conditions. The
third boundary condition is a variant of the no-slip condition

for which the wall is impermeable to species so that the
normal derivative of mole fraction vanishes. When a Dirichlet
condition is specified for a given quantity, the corresponding
diffusive flux is computed as a difference of the cell-center
value and the value on the boundary. In such cases the
corresponding stochastic flux is multiplied by

√
2 to ensure

discrete fluctuation-dissipation balance, as explained in detail
[31,41].

IV. NUMERICAL RESULTS

In this section we describe several test problems that
demonstrate the capabilities of the numerical methodol-
ogy. The first two examples serve as validation that the
methodology produces the correct fluctuation spectra in
both equilibrium and nonequilibrium settings. The other two

(a) (b)

(c) (d)

(e) (f)

1.200

1.143

1.086-

1.029

0.971

0.914

0.857

0.800

FIG. 1. (Color online) Static structure factors. (a) 〈(δρ̂)(δρ̂∗)〉), (b) 〈(δĴx)(δĴx

∗
)〉, (c) 〈(δρ̂E)(δρ̂E

∗
)〉, (d) 〈(δρ̂1)(δρ̂1

∗)〉, (e) 〈(δρ̂4)(δρ̂4
∗)〉,

(f) 〈(δT̂ )(δT̂ ∗)〉. Data range is set to ±20% of the theoretical value of unity, as shown in the color bar. The wave number domain represented
here is [−3.93 × 107,3.93 × 107] × [−3.93 × 107,3.93 × 107] in units of cm−1.
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examples illustrate the type of phenomena that can occur in
multicomponent systems.

A. Equilibrium mixture of gases

We start with equilibrium simulations of nonreacting,
multispecies mixtures, specifically, four noble gases (see
Table I). The hard sphere model was used with the ideal gas
equation of state and cv,k = 3kB/2mk . For the hard sphere
transport coefficients, η and λ were evaluated using the dilute
gas formulation in Ref. [42]; for χ̃ it was more convenient to
use the formulation in Ref. [43]. Finally, the binary diffusion
coefficients, as formulated in Ref. [42], were used to obtain C
using a numerically efficient iterative method from Ref. [37].

The system was initialized at rest with pressure p = 1.01 ×
106dyn/cm2 and temperature T = 300 K. The density was

ρ = 4.83 × 10−4g/cm3 with initial mass fractions of Yk =
0.25 for each species, leading to a wide range in mole fractions,
as shown in the table. The simulations were run in a 643

domain with periodic boundary conditions, cell dimensions
of �x = �y = �z = 8 × 10−6 cm, and a time step of �t =
10−12 s, corresponding to an acoustic Courant number [30] of
between 0.15 and 0.2. At these conditions, the fluctuations are
fairly significant with instantaneous variations in ρ within the
domain of the order of 10%.

Simulations were initially run for an equilibration time of
40 000 time steps and then the run continued for approximately
500 000 additional time steps, with data collected every 10 time
steps. The data from the spatial computational grid was then
Fourier transformed in three dimensions and pairwise corre-
lations were computed for each wave number and averaged

(a) (b)

(c) (d)

(e) (f)

(b)

(d)

(f)

2.00 x 10-1

1.71 x 10-1

1.43 x 10-1

1.14 x 10-1

8.57 x 10-2

5.71 x 10-2

2.86 x 10-2

0.00

FIG. 2. (Color online) Magnitude of correlations: (a) |〈(δρ̂)(δĴx

∗
)〉|, (b) |〈(δρ̂)(δT̂ ∗)〉|, (c) |〈(δĴx)(δĴy

∗
)〉|, (d) |〈(δĴx)(δρ̂E

∗
)〉|, (e)

|〈(δρ̂1)(δρ̂∗
4 )〉|, (f) |〈(δv̂x)(δT̂ ∗)〉|. In all cases the theoretical value is zero for all wave numbers. Data range is set to 20% of the normalization,

as shown in the color bar. The wave number domain represented here is [−3.93 × 107,3.93 × 107] × [−3.93 × 107,3.93 × 107] in units of
cm−1.
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in time. These static structure factors were normalized by the
equilibrium values (see Appendix A) except for the case of cor-
relations that are zero at equilibrium. For those correlations the
normalization used the corresponding variances, for example,
|〈(δρ̂)(δT̂ ∗)〉| is normalized by

√
〈(δρ̂)(δρ̂∗)〉〈(δT̂ )(δT̂ ∗)〉 [30].

In Fig. 1 we present selected static structure factors from
the simulation. In each case, the color scale is adjusted to
represent ±20% of the equilibrium value, which is inde-
pendent of wave number. The simulations show excellent
agreement with the theoretical values. The structure factor
for ρ, given by 〈(δρ̂)(δρ̂∗)〉, is the noisiest. This occurs
because the continuity equation (6) does not contain either
a diffusive term or a stochastic flux so density fluctuations
are solely driven by velocity fluctuations in the hyperbolic
flux. Nevertheless, the (unnormalized) variance of density (i.e.,
the average static structure factor over all wave numbers) is
5.7904 × 10−11g2/cm6, which is within 0.07% of the analytic
value of 5.7942 × 10−11g2/cm6. The other relatively noisy
structure factor is 〈(δρ̂4)(δρ̂∗

4 )〉, which is a result of the
relatively low mole fraction, which makes ρ4 noisy with over
40% instantaneous variation. Here again, the average variance
is correct to within 0.15%. Note that the grid-based finite-
volume methods we employ here are neither translationally
(Galilean) invariant nor rotationally invariant, and this leads
to nonisotropic structure factors for finite time step sizes (i.e.,
to nonisotropic spatial truncation errors), particularly for high
wave numbers.

We also examine correlations between different hydro-
dynamic variables as a function of wave number. A set of
representative correlations are presented in Fig. 2. In each of
these cases the correlation should be zero and the results show
that the normalized values are indeed quite small. Of particular
note is absence of a correlation for different components of
momentum (|〈(δĴx)(δĴy

∗
)〉| ≈ 0) validating the treatment of

the stress tensor in the momentum equations. Furthermore,
the correlation between δρ1 and δρ4 is near zero, illustrating
that there is no spurious correlation in the treatment of species
diffusion. The relaxation time for the largest wavelengths is
extremely long, which is manifested as a large statistical error
at the lowest wave numbers.

B. Long-ranged correlations in a diffusion barrier

The next example considers a nonequilibrium system in
which the fluctuations exhibit long-range correlations in the
presence of concentration gradients. Here we use a hard sphere
gas mixture where the three gases (called Red, Blue, and Green
or R, B, G) have equal molecular masses, taken as the mass
of argon used in the previous example. Furthermore, Red and
Blue are the same diameter, taken as that of argon, so that they
are dynamically equivalent, with the diameter of Green being
a factor of 10 larger. We set YR = YB = 0.25 and YG = 0.5 at
the center of the domain and impose gradients of dYR/dy =
28.935, dYB/dy = 90.760, and dYG/dy = −119.695cm−1

for Red, Blue, and Green, respectively across the domain.
These conditions produce a diffusion barrier for the Red
species, that is, the deterministic flux of Red is zero in spite
of its gradient. The initial temperature in the domain is 300 K
and the initial pressure is one atmosphere. The top and bottom
boundaries are no-slip walls at a constant temperature of 300 K

with fixed reservoir boundaries for concentrations. Fluctuating
hydrodynamics theory predicts that the spectrum of the
concentration fluctuations exhibits long-range correlations due
to the nonequilibrium conditions, even for the nonfluxing Red
species, see derivation in Appendix B.

Obtaining good statistics requires a long simulation, con-
sequently we use a domain that is only one cell thick in the
z direction, corresponding to an essentially two-dimensional
domain. It can be shown using linearized fluctuating hydrody-
namics (i.e., small fluctuations, which corresponds to a system
of thickness much larger than molecular in the z direction) that
the spectrum of the concentration fluctuations is not affected
by dimensionality. Namely, upon taking a Fourier transform
in the directions perpendicular to the gradient, only the square
of the perpendicular component of the wave vector enters,
and in three dimensions one obtains the same spectrum as
a function of the modulus of the wave vector as one does
in two dimensions. This is easily seen in a quasiperiodic
approximation, as detailed in Appendix B, but is true even
in the presence of confinement [44].

We take �x = �y = �z = 2.7 × 10−5 cm on a 256 ×
128 × 1 domain and a time step of �t = 10−10 s. A no-slip
boundary was used in the y direction and periodic boundary
conditions were used in the x direction. The simulation is
run for 200 000 steps to relax to a statistical steady state
and then run for an additional 2.8 × 106 steps, computing
〈(δρ̂R)(δρ̂R)∗〉, 〈(δρ̂B)(δρ̂B)∗〉, and 〈(δρ̂R)(δρ̂B)∗〉 in Fourier
space on the vertically averaged profiles every 10 steps. An
image illustrating a typical snapshot of ρR is shown in Fig. 3(a).
In Fig. 3(b) we subtract off the background variation in ρR

to more clearly show the large scale structures. Horizontal
variation of ρR is apparent in the image.

(a)

4.90 x 10-4

4.66 x 10-4

4.41 x 10-4

4.17 x 10-4

3.93 x 10-4

3.69 x 10-4

3.44 x 10-4

3.20 x 10-4

(b)

5.40 x 10-6

3.77 x 10-6

2.14 x 10-6

5.14 x 10-7

-1.16 x 10-6

-2.74 x 10-6

-4.37 x 10-6

-6.00 x 10-6

FIG. 3. (Color online) Typical snapshot of density of Red species
in diffusion barrier simulation is shown in (a). In (b) we subtract
the background stratification and show the variation from the
background. The range of the color scale in (b) is approximately
±5σR where σR is the standard deviation of equilibrium fluctuations
based on the value of ρR in the center of the system. The domain is
6.912 × 10−3 cm × 3.456 × 10−3 cm × 2.7 × 10−5 cm. Units are
g/cm3.
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FIG. 4. (Color online) Static structure factor of vertically aver-
aged densities showing effect of giant fluctuations. Dashed lines
represent the predictions of linearized fluctuating hydrodynamics
theory, see Appendix B. The constant limit obtained at high k in
the two autocorrelations corresponds to the equilibrium values given
by Eq. (B4).

To provide a quantitative characterization of the large-scale
fluctuations, we plot in Fig. 4 a comparison of the computed
static spectra of the species densities, averaged along the
direction of the gradient, with theory (see Appendix B). It
is these spectra that can be measured experimentally using
low-angle light-scattering and shadowgraph techniques. We
note that at low wave numbers the comparison breaks down
because of finite-size effects [15]. Otherwise the agreement
between theory and simulation is excellent.

These results show that the correlations are long ranged
with the characteristic k−4 power-law decay [13,45,46], as in
binary mixtures [2], even for the first species which has no
mass flux. This demonstrates that the long-ranged correlations
are associated with the system being out of thermodynamic
equilibrium, and not with diffusive fluxes per se. Interestingly,
we find that there are giant fluctuations in all species and also
giant correlations between the fluctuations in different species.
It is anticipated that measurement of these giant fluctuations in
ternary mixtures can be used to calculate diffusion and Soret
coefficients in mixtures [46]. The main difficulty is the ability
to experimentally observe the fluctuations in different species
independently.

C. Diffusion-driven Rayleigh-Taylor instability

In this example, we illustrate how multicomponent
diffusion can induce density stratification leading to a

TABLE II. Molecular properties and configuration for the diffu-
sion Rayleigh-Taylor instability.

Molecular Diameter
Species Weight (g/mol) (cm) Yk at top Yk at bottom

1 2.0 2.0 × 10−8 0.4 0.1
2 20.0 20.0 × 10−8 0.4 0.1
3 2.0 20.0 × 10−8 0.1 0.4
4 20.0 2.0 × 10−8 0.1 0.4

1.60 x 10-4

1.47 x 10-4

1.34 x 10-4

1.21 x 10-4

1.09 x 10-4

9.57 x 10-5

8.29 x 10-5

7.00 x 10-5

FIG. 5. (Color online) Vertical cross section of total density, ρ,
for the Rayleigh-Taylor instability simulation at early times (t =
2.5 × 10−8 s). The cross section shown is 2.4 × 10−3 cm × 1.2 ×
10−3 cm. Units are g/cm3.

Rayleigh-Taylor instability [47,48]. We model a four-species
hard sphere mixture in which two of the species are light
particles and two are heavy particles, specifically, m1 = m3 <

m2 = m4. For each mass, we have two different diameters,
large and small, specifically, d1 = d4 < d2 = d3; see Table II.
We initialize two layers, each of which has identical numbers
of light and heavy particles in hydrostatic equilibrium with
pressure of one atmosphere at the bottom of the domain. The
result is a stably stratified isothermal initial condition of 300 K
with a switch in composition in the middle of the domain as
shown in Table II. The simulation used a 400 × 400 × 200 grid
with �x = �y = �z = 6 × 10−6 cm and �t = 5 × 10−12

s. Gravity is set to g = 4 × 1012cm/s2 in order to reduce
the time needed for the instability to develop. Boundary

(a)

5.00 x 10-5

4.37 x 10-5

3.74 x 10-5

3.11 x 10-5

2.49 x 10-5

1.86 x 10-5

1.23 x 10-5

6.00 x 10-6

(b)

5.00 x 10-5

4.37 x 10-5

3.74 x 10-5

3.11 x 10-5

2.49 x 10-5

1.86 x 10-5

1.23 x 10-5

6.00 x 10-6

(c)

5.00 x 10-5

4.37 x 10-5

3.74 x 10-5

3.11 x 10-5

2.49 x 10-5

1.86 x 10-5

1.23 x 10-5

6.00 x 10-6

FIG. 6. (Color online) Vertical cross section of ρ2, the species
with large, heavy particles. Frames correspond to (a) t = 7.5 × 10−8

s, (b) t = 15.0 × 10−8 s, and (c) t = 22.5 × 10−8 s. The cross section
shown is 2.4 × 10−3 cm × 1.2 × 10−3 cm. Units are g/cm3.
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(a) (b)

(c)

5.00 x 10-5

4.37 x 10-5

3.74 x 10-5

3.11 x 10-5

2.49 x 10-5

1.86 x 10-5

1.23 x 10-5

6.00 x 10-6

FIG. 7. (Color online) Horizontal slice through the center of the domain showing ρ2 at (a) t = 7.5 × 10−8 s, (b) t = 15.0 × 10−8 s, and
(c) t = 22.5 × 10−8 s. The cross section shown is 2.4 × 10−3 cm × 2.4 × 10−3 cm. Units are g/cm3.

conditions are periodic in x and y with specular walls in the
z direction.

The large particles diffuse slowly compared with the small
particles so that diffusion of the latter dominates the early
dynamics. Initially the small, light particles are concentrated
in the upper half of the domain while the small, heavy

particles are concentrated on the lower half. This results in
diffusion creating an unstable (heavier fluid on top of lighter
fluid) density stratification [48], as shown in Fig. 5. At later
times fluctuations within the system trigger a Rayleigh-Taylor
instability, as illustrated in Figs. 6 and 7, which show the
density of species 2 (large, heavy particles).

(a) (b) (c) (d) (e)

7.00 x 10-4

6.57 x 10-4

6.14 x 10-4

5.71 x 10-4

5.23 x 10-4

4.86 x 10-4

4.43 x 10-4

4.00 x 10-4

FIG. 8. (Color online) Slices showing temporal evolution of ρN2 . Frames correspond to (a) t = 0.0 s, (b) t = 4.0 × 10−9 s, (c) t =
8.0 × 10−9 s, (d) t = 24.0 × 10−9 s, and (e) t = 40.0 × 10−9 s. Cross section shown is 8.64 × 10−5 cm × 2.32 × 10−5 cm. Units are g/cm3.
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D. Reverse diffusion experiment

Our final example illustrates an application of the method-
ology using realistic gas properties. In particular, we consider
a three-species mixture whose constituents are molecular
hydrogen, carbon dioxide, and nitrogen. Instead of using the
hard sphere model, for this final test case the fluid properties of
the gas mixture were accurately modeled using EGLIB [36], a
general-purpose FORTRAN library for evaluating transport and
thermodynamic properties of gas mixtures.

This test case is qualitatively similar to the reverse diffusion
experiments of Duncan and Toor [32]. The domain is split
into two sections (chambers in the experiment) with equal
pressures, temperatures, and nitrogen densities. The lower
half of the domain is rich in carbon dioxide (XH2 = 0.1,
XCO2 = 0.4, XN2 = 0.5) while the upper half is rich in
hydrogen (XH2 = 0.4, XCO2 = 0.1, XN2 = 0.5). The system
is initialized at T = 312.5 K and atmospheric pressure. The
simulation is performed in a 32 × 32 × 64 mesh so that each
half is 323 with a uniform mesh spacing of 2.7 × 10−6 cm
in each direction with periodic boundaries in x and y and a
specular walls in the z. The simulation is run for 100 000 times
steps with �t = 4. × 10−13 s. We note that there is no gravity
in this problem and ordinary diffusion occurs for the carbon
dioxide and hydrogen.

In Fig. 8, we show slices of nitrogen density, ρN2 , at a
sequence of times. At t = 4.0 × 10−9 s we see that, although
its concentration is initially uniform, due to interdiffusion
effects there has been a flux of N2 into the upper half of the
domain. In spite of the adverse gradient, diffusive transport
continues to increase the amount of N2 in the upper half as
seen in Fig. 8(c). This reverse diffusion of nitrogen is driven
by the rapid diffusion of H2 out of the upper half, as compared
with the slow diffusion of carbon dioxide into it. The last two
frames in Fig. 8 show the slow return towards uniform nitrogen
concentration.

This reverse diffusion phenomenon is shown quantitatively
in Fig. 9 where we plot the time history of the average
mole fractions in the upper and lower halves of the domain.
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FIG. 9. (Color online) Time evolution of average composition in
upper and lower halves of the domain.

We see that there is a flux of N2 into the upper half until
approximately t = 8.0 × 10−9 s in spite of the adverse N2

gradient, at which point a diffusion barrier occurs (gradient
of N2 without a flux). At later times the diffusion is normal
for all three species. We note that the data in Fig. 9 is in
qualitative agreement with the experimental results of Duncan
and Toor; the primary differences between the simulation
and the experimental setup are the size and geometry of the
system. Thermal fluctuations do not play a significant role in
this numerical experiment, although the appearance of giant
fluctuations due to the transient concentration gradients is
expected. The primary purpose of this final numerical test
is to demonstrate the ability of our implementation to simulate
gas mixtures using transport and thermodynamic properties
given by the EGLIB library, allowing quantitative comparison
with experiments.

V. CONCLUSIONS AND FUTURE WORK

The four examples in the previous section confirm the
accuracy of our numerical formulation for the multispecies
fluctuating Navier-Stokes equations. Furthermore, they il-
lustrate some of the interesting phenomena unique to such
fluid mixtures. While these numerical examples were all gas
mixtures the methodology is directly extendable to liquids, the
main challenge being the formulation of accurate thermody-
namic and transport properties [25]. Work in this direction is
a subject for future research and fluctuating hydrodynamics
should prove useful for experimental studies of the properties
of liquid mixtures [46].

A numerical limitation of the methodology presented here
is that the stochastic PDE solver is explicit. This restricts
practical application of the method to the study of phenomena
of mesoscopic duration (≈ microsecond) given the magni-
tude of the algorithm’s stable time step. This restriction is
particularly severe for liquid mixtures for which there are
orders of magnitude of separation between the fast acoustic,
intermediate viscous, and slow diffusive time scales, at which
phenomena of interest occur (e.g., minutes or hours for giant
fluctuation experiments [13]). To lift the time step limitation
we are investigating low-Mach number approximations for
mixtures [41]. Another important avenue of research is to
extend our formulation to nonideal multispecies mixtures of
nonideal fluids [25,35].

We are also extending the formulation to reacting, mul-
ticomponent mixtures, which will lay the groundwork for
the investigation of a wide variety phenomena combining
hydrodynamic and chemical fluctuations. Numerical methods
for fluctuating reaction-diffusion systems date back to the early
1970s [49–51] but these methods neglect all hydrodynamic
transport other than diffusion and typically diffusion is also
simplified [52]. While this is a good approximation for many
phenomena, a complete description of transport is required for
combustion.
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APPENDIX A: VARIANCES IN A MULTICOMPONENT
GAS MIXTURE

For species i the number of molecules in a volume V is Ni =
Vρi/mi where mi is the mass of a molecule. At equilibrium for
an ideal gas this number is Poisson distributed and independent
of other species so 〈δNiδNj 〉 = N̄iδij and,

〈δρiδρj 〉eq = ρ̄2
i

N̄i

δij = ρ̄2
i kBT̄

P̄ X̄iV
δij , (A1)

where the subscript “eq” indicates an equilibrium result. At
equilibrium the variance of density is thus,

〈δρ2〉eq =
∑

i

∑
j

〈δρiδρj 〉eq =
∑

i

ρ̄2
i

N̄i

= ρ̄2

N̄

∑
i

Y 2
i

Xi

= ρ̄2kBT̄

P̄ V

∑
i

Y 2
i

Xi

. (A2)

From this,

〈δρ2〉eq = ζ 〈δρ2〉(1)
eq , where ζ =

∑
i

Y 2
i

Xi

(A3)

and 〈δρ2〉(1)
eq = ρ̄2/N̄ is the variance for a single species gas at

the same density, temperature, and pressure (i.e., same N̄ =
P̄ V/kBT̄ ). Note that all of the expressions in this Appendix
may be generalized easily to spatial correlations, for example,

〈δρ(r)δρ(r′)〉 = ρ̄2kBT̄

P̄
δ(r − r′)

∑
i

Y 2
i

Xi

. (A4)

For the variance and correlations of momentum the results
are the same as those for a single species gas when v̄ = 0,
specifically,

〈δρδJ〉eq = 0 (A5)

〈δJαδJβ〉eq = ρ̄kBT̄

V
δαβ. (A6)

Similarly, for velocity,

〈δρδv〉eq = 0 (A7)

〈δvαδvβ〉eq = kBT̄

ρ̄V
δαβ. (A8)

Finally, for energy fluctuations,

δE = δ(ρE) = δ

(
1

2
ρv2 +

∑
i

ρiei(T )

)
(A9)

= ρ̄v̄ · δv + 1

2
v̄2δρ +

∑
i

δρiei(T̄ ) + ρ̄cv(T̄ ) δT , (A10)

where

cv(T ) = 1

ρ

∑
i

ρicv,i(T ) =
∑

i

Yicv,i(T ) (A11)

is the molar averaged specific heat. Note that if cv is
independent of temperature then ei(T̄ ) = cv,i T̄ .

The resulting variance and correlations for energy are,

〈δρδE〉eq =
∑

i

ei(T̄ )
〈
δρ2

i

〉
eq; (A12)

〈δJδE〉eq = 0; (A13)

〈δE2〉eq =
∑

i

ei(T̄ )2
〈
δρ2

i

〉
eq + ρ̄2cv(T̄ )2〈δT 2〉eq. (A14)

Similarly for temperature,

〈δρδT 〉eq = 0; (A15)

〈δvδT 〉eq = 0; (A16)

〈δT 2〉eq = kBT 2

ρ̄cv(T̄ )V
. (A17)

APPENDIX B: GIANT FLUCTUATIONS IN A
TERNARY MIXTURE

This Appendix outlines the fluctuating hydrodynamics
theory for the long-range correlations of concentration fluc-
tuations in a ternary mixture, in order to model the simulations
described in Sec. IV B. We neglect the Dufour effect and
assume the system to be isothermal, taking contributions from
temperature fluctuations to be of higher order. Furthermore,
we neglect gravity, assume the system is incompressible, and
take the density and transport coefficients to be constant. We
consider a bulk system [15], i.e., we neglect the influence
of the boundaries. This gives an accurate approximation for
wave numbers that are large compared to the inverse height
of the domain; for smaller wave numbers the boundaries
are expected to suppress the giant fluctuations [13,15,44].
Lastly, we initially ignore the equilibrium fluctuations in
the calculation and simply add them to the nonequilibrium
contribution at the end. This is not necessary and the additional
stochastic diffusive fluxes can easily be accounted for at the
expense of algebraic complications. This confirms that the
equilibrium fluctuations enter additively to the nonequilibrium
ones calculated here, as confirmed by an anonymous reviewer.

As in the problem considered in Sec. IV B, we assume all of
the concentration gradients are in the same direction (say, the y

axis). The incompressibility constraint is most easily handled
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by applying a ∇ × ∇× operator to the momentum equation to
obtain a system involving only the component of the velocity
parallel to the gradient (in this case, the y direction) [15]. With
the above, the momentum and concentration equations yield,

∂t (∇2v‖) = ν∇2(∇2v‖) + ρ−1
0 ∇ × ∇ × (∇ · �̃)

∂t (δY) = −v‖ f + D∇2(δY),

where ρ0 is the constant density, and ν = η/ρ0 is the kinematic
viscosity. Here D = ρ−1C( ∂ X

∂Y ) is a matrix of diffusion
coefficients and ∂ X/∂Y is the Jacobian of the transformation
from mass to mole fractions, which is a function of the mean
molecular mass and the individual species molecular masses.
Here f = d〈Y〉/dy are the imposed mass fraction gradients
and δY = Y − 〈Y〉 is the concentration fluctuation.

This system of equations can be most easily solved in the
Fourier domain, where it becomes

∂t v̂‖ = −νk2v̂‖ + F̂ (B1)

∂t (δŶ) = −v̂‖ f − k2 DδŶ, (B2)

and the covariance of the random forcing F̂ is (see (5.12) in
Ref. [15])

〈F̂ F̂ �〉 = 2kBT0

ρ0
νk2

⊥,

where k⊥ is the component of the wave vector in the
plane perpendicular to the gradient and T0 is the constant
temperature. The equilibrium covariance of the fluctuations,
written as a matrix of static structure factors,

S =
[ 〈v̂‖v̂�

‖〉 〈(δŶ)v̂�
‖〉

〈v̂‖(δŶ)�〉 〈(δŶ)(δŶ)�〉
]

can be obtained most directly by writing the equations
(B1), (B2) in the form of an Ornstein-Uhlenbeck (OU)

process,

∂t

[
v̂‖
δŶ

]
=

[−νk2 0
− f −k2 D

] [
v̂‖
δŶ

]
+

[
F̂

0

]
= M

[
v̂‖
δŶ

]
+ m,

and using the well-known equation for the equilibrium
covariance of an OU process [51] (see, for example, derivation
in Ref. [30]),

M S + SM� = −〈mm�〉. (B3)

This is a linear system of equations for the static structure
factors that can easily be solved using computer algebra
systems. Note that here the equation for the third species is
redundant and it is simpler to develop the theory by considering
the equations for only the first two species.

Turning now to the specific example of a ternary mixture
considered in Sec. IV B: The molecular masses are iden-
tical and therefore mole and mass fractions are the same,
∂ X/∂Y = I . Furthermore, the first two of the three species
are indistinguishable so D has the simple form,

D =
[
D1 D2

D2 D1

]
.

The system is set up with a diffusion barrier, that is, there is
no deterministic flux for the first species. This implies that,

f1 = d〈Y1〉
dy

= −D2

D1

d〈Y2〉
dy

.

We consider the spectrum of the fluctuations of the partial
densities averaged along the direction of the gradient, as
is measured in experiments [13,45,46], i.e., we take k‖ =
0, k = k⊥. The solution of (B3) gives the nonequilibrium
contribution to the static structure factor for vertically averaged
concentration fluctuations to be

〈(δŶ)(δŶ)�〉neq = K

⎡⎣ 8 D1
3 + 5 D1

2ν − ν D2
2

D1
2D2

− 3 D1
2ν + ν D2

2 + 4 D1
3 + 4 D2

2D1

D2
2D1

− 3 D1
2ν + ν D2

2 + 4 D1
3 + 4 D2

2D1

D2
2D1

D2
4ν + 2 D1

4ν + 2 D1
5 + D1

2ν D2
2 + 2 D2

4D1 + 4 D1
3D2

2

D1
2D2

3

⎤⎦ ,

where the common prefactor is

K = kBT

2ρ k4

D1D2

(D1 − D2) (D1 + D2) (D1 + ν + D2) (D1 + ν − D2)
f 2

1 .

The equilibrium static structure factor for the mixture of ideal gases considered here is

〈(δŶ)(δŶ)�〉eq = ρ−2
0

[
m1〈ρ1〉 0

0 m2〈ρ2〉
]

, (B4)

which is to be added to the nonequilibrium contribution to obtain the full spectrum, as shown in Fig. 4.
In the case of liquids, the Schmidt number is very large and D1 � ν and D2 � ν and the expressions simplify considerably,

〈(δŶ)(δŶ)�〉neq = D1D2kBT|∇zY1|2
2η k4 (D1 − D2) (D1 + D2)

⎡⎣ 5 D1
2 −D2

2

D1
2D2

− 3 D1
2 +D2

2

D2
2D1

− 3 D1
2 + D2

2

D2
2D1

D2
4 + 2 D1

4 + D1
2D2

2

D1
2D2

3

⎤⎦ .

This can be more straightforwardly obtained by simply deleting the inertial term ∂t v̂‖ on the left-hand side of the momentum
equation (B1) [44]. Note however that the Schmidt number is not large for gas mixtures and one must retain the complete
expression to obtain a good match to the numerical results.
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