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Scaling laws for drop impingement on porous films and papers
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This study investigates drop impingement on highly wetting porous films and papers. Experiments reveal
previously unexplored impingement modes on porous surfaces designated as necking, spreading, and jetting.
Dimensional analysis yields a nondimensional parameter, denoted the Washburn-Reynolds number, relating
droplet kinetic energy and surface energy. The impingement modes correlate with Washburn-Reynolds number
variations spanning four orders of magnitude and a corresponding energy conservation analysis for droplet
spreading shows good agreement with the experimental results. The simple scaling laws presented will inform
the investigation of dynamic interactions between porous surfaces and liquid drops.
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I. INTRODUCTION

Interesting phenomena can be observed when a liquid
droplet impacts a liquid or solid surface. Crown formation
of milk droplets upon impact with water represents a well-
known example of this phenomena [1]. Recently, however,
drop impingement on solid surfaces has gained significant
attention. This is largely due to state of the art micro- and
nanofabrication methods which have enabled novel functional
surfaces. Among the functionalized surfaces, superhydropho-
bic surfaces have been a major thrust [2,3] in part due
to their unique impingement properties. Conversely, drop
impingement on highly wetting porous films or paper has been
largely neglected. Though there have been investigations of the
dynamics of droplets on porous media [4–8], most studies have
explored thick surfaces where the droplet radius is negligible
compared to the substrate thickness.

In this study we investigate droplet dynamics on highly
wetting thin porous surfaces. First, we present a modified en-
ergy equation accounting for capillary effects that successfully
captures droplet spreading upon impact on highly wetting
porous surfaces. The modified energy equation reveals a
dimensionless parameter denoted the capillary-Weber number,
which expresses the relative influence of the matrix potential
and the kinetic energy of the impinging drop. Additionally,
dimensional analysis leads to a nondimensional parameter,
which we will call the Washburn-Reynolds number (ReW ),
which strongly correlates with impingement modes on highly
wetting porous surfaces. The Washburn-Reynolds number
balances inertial effects of the impinging droplet and capillary
transport in the porous film.

II. EXPERIMENTAL METHODS

Electrophoretic deposition (EPD) and breakdown anodiza-
tion (BDA) were used to produce highly wetting micro- and
nanoporous surfaces [9,10]. For EPD, TiO2 nanoparticles
(20 nm, anatase, Sigma-Aldrich) and acetic acid were used
to make 1 g/liter TiO2 suspensions. Electric potentials up to
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120 V were supplied for 10–30 min during the anodization
process to make thin films on the substrate. De-ionized (DI)
water pH was adjusted to pH = 3 using nitric acid (70% ACS
reagent, Sigma-Aldrich) for the electrolyte during BDA. The
electrolyte was maintained at a specified temperature using
a water reservoir surrounding the BDA cell. Titanium plates
(Ultra Corrosion-Resistant Titanium Grade 2, 0.020 in. thick,
McMaster) were used as anode and cathode for both EPD and
BDA. BDA was conducted first to make microporous layers
followed by EPD of TiO2 nanoparticles on the microporous
layers to realize hierarchical structures. In BDA, the electric
potential and the anodization time were varied to obtain
different surface properties. In EPD, however, the same
conditions were used on each surface to provide consistent
nanoscale features. BDA results in microscale porous titania
surfaces on titanium substrates [Fig. 1(a)]. Nanoscale porous
layers were produced by EPD on the microporous surfaces
with titanium dioxide nanoparticles [Fig. 1(b)].

The resulting surfaces display effective contact angles near
0° with high capillary pressures and spreading speeds. The
porous surfaces showed near perfect wetting for several liquids
including water, ethanol, ethylene glycol, and glycerol. The
surfaces can be characterized with respect to capillary pressure,
Pcap, and spreading speed constant, Ccap, through capillary
rise measurements [12]. The capillary rise height, h, can be
expressed as h2 = 1

2 Ccapt (Washburn’s equation) [13], with
Ccap = γ rccos θ/μ, and rc is the effective capillary radius,
γ is the liquid surface tension, θ is the native contact angle
of capillary surface, and μ is dynamic viscosity of the liquid.
The value of Ccap can be determined by the gradient of the
time-dependent experimental capillary rise height. Capillary
pressure can be obtained from the maximum rise height, hmax,
and is expressed by Pcap = ρghmax = 2γ cos θ/rc.

When liquid droplets impact the surfaces, we observed four
impingement modes (Fig. 2). We find that impingement modes
are determined by the value of ReW = Uoρrccos θ/μ. Mode
A1 consists of oscillating and spreading of the droplet. In Mode
A2 the droplets show necking followed by fast spreading.
Mode B consists of smooth spreading without oscillations
or necking. Finally, Mode C is characterized by radial
jetting and spreading. The Supplemental Material contains
a high-speed video with examples of each impingement
mode [14].
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FIG. 1. Scanning electron microscope (SEM) images of as-
prepared surfaces show microscale and nanoscale porous structures
produced by breakdown anodization (BDA) (a) and electrophoretic
deposition (EPD) (b), respectively [11]. The combined BDA/EPD
process yields highly wetting micro- and nanoscale hierarchical
porous structures.

III. THEORY

Energy conservation is employed to predict droplet spread-
ing upon impact. The energy conservation approach has shown
good agreement with experiments, and it has helped to find
useful scaling parameters for droplet dynamics [16–18]. In
this study we modify the energy equation with two additional
terms accounting for viscous dissipation inside porous media
and the matrix potential, which we denote as �c and Emp,
respectively. The modified energy equation can be expressed
as

Ėk + Ėg + Ės + Ėmp + �l + �v + �c = 0, (1)

where Ek is the droplet kinetic energy, Eg is the gravitational
potential energy, Es is the surface energy of the droplet, �l

is line dissipation, and �v is viscous dissipation inside the
droplet.

For simplicity, we model water droplets impacting solid
surfaces as cylinders with a time-dependent radius, R(t), and
height, H (t) (Fig. 3) [16,17]. The model droplet has the same

FIG. 3. (Color online) Schematic diagram of the cylindrical
droplet impact model with time-dependent radius, R(t), and height,
H (t). The model cylindrical droplet has the same volume and impact
velocity as the actual droplet.

volume as the actual droplet. Assuming mass conservation
(neglecting evaporation) and fluid incompressibility, the height
and radius have the following relationship:

H (t) = V–o
πR (t)2 ,

where V–o is the volume of the actual droplet with an initial
diameter, Do. The modeled droplet has the same impact
velocity as the actual droplet and thus the same kinetic energy.

A. Kinetic energy

The kinetic energy of a droplet after impact can be
calculated from the internal velocity field in the droplet.
In the cylindrical model, we assume flow in the droplet is
irrotational [19]. The vertical flow velocity, vz, and the radial
flow velocity, vr , can be defined as

vz = −2
z

R

dR

dt
and vr = r

R

dR

dt
.

These velocities are internal flow velocities at a specific instant
such that R and dR/dt are spatially independent. The kinetic

FIG. 2. Droplets show four different impingement modes depending on the Washburn-Reynolds number after impacting highly wetting
porous surfaces. The Washburn-Reynolds number can be expressed as ReW = Uoρrccos θ/μ, where Uo is the impact velocity, ρ is the liquid
density, rc is the effective capillary radius, θ is the surface contact angle, and μ is the liquid viscosity. Mode A1: compressing-oscillating, Mode
A2: necking and spreading, Mode B: spreading, and Mode C: radial jetting and spreading (see Supplemental Material [14]). A high-speed
camera (Photron) was used to record the behavior of liquid droplets on the surfaces. The scale bar in each image is 1 mm.
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energy of the droplet can be obtained by integrating the internal
velocities over the droplet volume, V–o, as follows:

Ek = 1

2
ρ

∫
V–O

(
v2

z + v2
r

)
dV–

= ρV–o
2

(
1

2
+ 4

3

V–2
o

π2R6

)(
dR

dt

)2

= Ek,o

(
1

8
+ 16

27

1

R∗6

)(
dR∗

dt∗

)2

, (2)

with the initial droplet kinetic energy, Ek,o = 1
2ρV–oU 2

o , the
dimensionless drop radius, R∗ = R(t)/(Do/2), and the
dimensionless time, t∗ = t(Uo/Do).

B. Gravitational energy

Utilizing the location of the time-dependent center of mass,
H (t)/2, gravitational energy can be determined:

Eg = ρgV–o
H (t)

2
= ρgV–2

o

2πR2
= Eg,o

2

3

1

R∗2
, (3)

where the initial droplet gravitational energy is defined as
Eg,o = 1

2ρgV–oDo.

C. Droplet surface energy

The surface energy of a droplet on a solid surface can
be calculated by integrating the surface tension of the entire
surface, A. In the cylindrical impact model, the surface tension
of the liquid-solid interface can be obtained with Young’s
equation, and the surface energy is found to be

Es =
∫

A

γ dA = γ (Aair − Awet cos θe) ,

where Aair is the droplet surface area in contact with air, Awet is
the wetted area (the projected area of the solid-liquid interface),
and θe is the equilibrium contact angle on the surface. Since
the surfaces used in this work exhibit complete wetting (i.e.,
contact angle near zero), the equation for a cylindrical droplet
can be reduced as follows:

Es = 2πγRH = 2γV–o
R

= 2

3

πγD2
o

R∗ = 2

3

Es,o

R∗ , (4)

with the initial droplet surface energy, Es,o = πγD2
o .

D. Line dissipation

Dissipation occurs in the process of moving the contact line
and the amount is proportional to the contact line speed, vR ,
and an effective viscosity, μL. According to the de Gennes
approach [20], the line dissipation can be expressed by

�l = 1

2
μL

∫
S

v2
RdS = μLπR

(
dR

dt

)2

= 1

8
μLπDoU

2
o R∗

(
dR∗

dt∗

)2

= �l,o

R∗

4

(
dR∗

dt∗

)2

(5)

FIG. 4. (Color online) Schematic diagram of capillary flow for
the assumed cylindrical droplet geometry. The porous region can be
considered as several cylindrical capillaries in parallel, each having a
height, 2rc. The porous region has height, Hc, and the flow velocity,
vr , at a distance, R(t), from the center, assuming the ratio of the height
of the porous region to the initial droplet diameter, Hc/Do, is small.
θs is the sliding contact angle, the contact angle of the droplet on the
top surface of the porous layer during spreading.

where S is the moving contact line, vR is the line velocity,
�l,o = 1

2μLπDoU
2
o , and μL can be obtained from

μL = μ
3l∗

θs

,

where l∗ = ln(lmax/lmin) with maximum length scale, lmax (the
droplet diameter), minimum length scale, lmin (the microscopic
length scale, 2rc in this work), and θs , the sliding contact angle,
which is the contact angle at the interface of the droplet, the
top surface of the porous layer, and air when the droplet is
spreading, as shown in Fig. 4. In other words, the sliding
contact angle is the advancing contact angle of the spreading
droplet. Sliding contact angles were experimentally obtained
from high-speed images at 2R/Do = 2.5 when the actual
droplets were spreading after impact. For example, to obtain
Fig. 6, sliding contact angles were determined to be 2.6°, 2.9°,
7.4°, 5.7°, and 19.6° for water, ethanol, ethylene glycol, a
60/40 (v/v) glycerol and water mixture, and a 90/10 (v/v)
glycerol and water mixture, respectively.

E. Viscous dissipation inside a droplet

The total viscous dissipation in the boundary layer can be
found by integrating the shear stress, τ , multiplied by slip
velocity, vs , for the no-slip area, As . To calculate the shear
stress generated in the boundary layer inside the droplet, the
boundary layer thickness must be estimated. It is clear that the
boundary layer thickness is time dependent from lubrication
theory, and the time-dependent boundary layer thickness has
shown close agreement with experimental results [21,22].
However, to simplify the analysis, we employ a time-
independent boundary layer thickness assuming irrotational
flow inside the droplet. In the literature [17–19,23], others have
successfully formulated the kinetic energy and the viscous
dissipation assuming irrotational flow and time-independent
boundary layer thickness to predict the droplet behaviors.
To calculate the shear stress, we assumed that the effective
boundary layer thickness is Do/(2fb), where fb is a correction
factor, which was proposed by Bechtel et al. [18]. The
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slip velocity, vs , was assumed to be the radial velocity, vr ,
and the no-slip area is equal to the projected area of the
cylinder. Thus, we obtain the following expression for viscous
dissipation:

�v =
∫

As

τvsdA ≈
∫

As

fbμ
vr

Do

vrdA

= π

2

fbμ

Do

R2

(
dR

dt

)2

= �v,o

3

64
fbR

∗2

(
dR∗

dt∗

)2

, (6)

with

�v,o = μV–o

(
2Uo

Do

)2

and fb =
√

π

Oh
,

where the Ohnesorge number is Oh = μ/(ργDo)1/2.

F. Matrix potential

Matrix potential is the surface energy inside the capillary
network that drives fluid transport [24]. The matrix potential
is proportional to the wetted volume of the porous region and
the capillary pressure [25]. Taking the droplet as the system
of interest, work is done on the droplet so the matrix potential
can be expressed as

Emp = −
∫

V–wet

PcapdV– = −πPcapHcR
2 = −Emp,ofcR

∗2,

(7)

where V–wet is the wetted volume of the porous region, Hc is the
height of the porous region shown in Fig. 4, fc is the ratio of
the height of the porous region to the pore diameter, 2rc (fc =
Hc/2rc) (Fig. 4), and Emp,o is the reference matrix potential,

Emp,o = 2rcPcapπ

(
Do

2

)2

.

Here, the thickness, Hc, is the average height of the porous
layer considering its void volume measured by a profilometer
(measurement system: Tencor P-16 Surface Profilometer). The
negative sign indicates that energy is put into the droplet.

G. Viscous dissipation inside porous media

The shear stress, τc, in the porous region can be approx-
imated in the same manner used to estimate the viscous
dissipation in the droplet [Eq. (6)] as follows:

τc ≈ fcμ
vr

rc

,

where vr is the flow velocity in the porous region at a distance
R from the center of the droplet (Fig. 4). If we assume that the
contact line of the droplet coincides with the wetted boundary
of the porous region, the total viscous dissipation inside the
porous region can be expressed as

�c =
∫
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τcvrdA ≈ π

2
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(
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)2
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16
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(
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, (8)

where As is the no-slip area of the porous region and the
characteristic viscous dissipation can be expressed as

�c,o = μV–wet,o

(
Uo

rc

)2

,

and the reference volume of the wetted porous region is
V–wet,o = πHcD

2
o/4.

H. Energy conservation equation

When Eqs. (2)–(8) are substituted into Eq. (1), the final
energy conservation equation can be obtained as a function of
the time-dependent droplet radius,

Uo
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We can divide this equation by Ek,o(Uo/Do) to obtain a
dimensionless energy equation:
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Here, the initial drop diameter, Do, and impact velocity, Uo,
are used to formulate a dimensionless time, t∗ = t /(Do/Uo),
and fL = μL/μ is the dimensionless contact line viscosity.
The first term is the kinetic energy of the droplet. The
gravitational energy and the surface energy are a function of the
Froude number, Fr = U 2

o /gDo, and the Weber number, We =
ρDoU

2
o /γ , respectively. The matrix potential is a function of

the capillary-Weber number, Wec, where

Wec = ρDoU
2
o

fcγ cos θ
∼ Ek,o

Emp,o

=
1
2ρV–oU 2

o

V–wet,oPcap
. (10)

The capillary-Weber number is the ratio of the initial kinetic
energy (Ek,o) of the droplet to the reference matrix potential
(Emp,o) corresponding to the initial wetted volume [V–wet,o =
π (Do/2)2Hc] of the surface. In the case of either Hc = 0 (no
porous region) or θ = 90° (nonwetting), the capillary energy
term is negligible. In the dissipation terms, we can see the
dimensionless contact line viscosity, fL = μL/μ, the Reynolds
number, Re = ρDoUo/μ, and the capillary-Reynolds number,
Rec = ρrcUo/μ.

To solve Eq. (9) numerically, the initial conditions were
specified in order to yield the same surface energy and
kinetic energy as the real droplet [17]. Therefore, the radius
and the impact velocity of the cylindrical model droplet
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FIG. 5. (Color online) Schematic illustrations of droplet spread-
ing on highly wetting porous surfaces. (a) At high capillary-Weber
numbers (Wec > 103), the kinetic energy determines droplet expan-
sion, while the contact line and viscous effects dissipate mechanical
energy. (b) At low capillary-Weber numbers (Wec < 10), the capillary
energy (matrix potential energy) governs droplet spreading, and
viscous dissipation is most prominent inside the porous region.

are slightly different from those of the real droplet used in
the drop impingement experiment. First, we set the initial
radius of the cylindrical model droplet as R(0) = Do/2. The
initial height of the cylindrical model droplet, H (0), can be
calculated using mass conservation as H (0) = V–o/[πR(0)2],
where V–o = (1/6)πD3

o . The cylindrical model droplet has
the same initial surface area as the real droplet, Amodel =
Areal, where Amodel and Areal are the surface areas of the
cylindrical model droplet with radius R(0) and the real droplet
with radius Rreal, respectively. This information is used to
calculate the initial radius of the cylindrical model droplet. The
cylindrical model droplet has the same initial kinetic energy
as the real droplet; 1

2ρV–oU 2
o = 1

2ρV–realU
2
real, where V–real and

Ureal are the volume and the impact velocity, respectively, of
the real droplet used in the experiment. The initial droplet
spreading speed, dR/dt |t=0, can be calculated using Eq. (2).
As a result, the initial conditions for Eq. (9) are R∗(0) = 1 and
dR∗/dt∗|t=0 = 1.18.

We find that each dissipation term in Eq. (9) has different
significance depending on Wec, as shown schematically in
Fig. 5. Contact line dissipation and viscous dissipation inside
the droplet are important at high Wec [Fig. 5(a)]. However,
for low Wec (Wec < 10), viscous dissipation inside the porous
region is the main dissipation term in Eq. (1). As depicted in
Fig. 5(b), line dissipation and viscous dissipation are negligible
at low Wec because droplet expansion can be considered as a
free surface flow driven by the capillary pressure in the porous
region.

IV. RESULTS AND DISCUSSION

In Fig. 6 we compare the predicted droplet spreading
obtained from Eq. (9) with the experimental results when
Wec > 103. The liquid and surface properties utilized are given
in Table I. As suggested in Fig. 5, viscous dissipation inside
the porous layer was not considered in the energy equation
for high Wec. The surfaces showed varying Pcap and Ccap

values depending on the liquid utilized. The predicted droplet
spreading is in good agreement with the experimental data
(Fig. 6). This suggests that the matrix potential is essential
to appropriately predict droplet spreading. In spite of the
geometrical simplifications, the energy equation captures the
major energy transfer mechanisms during impingement.

We derived simplified energy conservation equations for
four cases with different We, Fr, and Wec regimes to investigate

FIG. 6. (Color online) Theoretical and experimental droplet
spreading for multiple liquids after impact on highly wetting porous
surfaces. Solid lines represent spreading radii obtained from Eq. (9)
while circles are experimental data. The impact velocities are selected
such that Wec exceeds 103. The table provides the surface and liquid
properties and the dimensionless parameters of the energy equation
for each data set. Viscous dissipation inside the porous layer, which
is the column highlighted in gray in the table, is not considered when
Wec > 103. Here we only considered impingement Modes A1 and B
because the droplet mass is not conserved in Modes A2 and C due to
necking and jetting behavior, respectively.

the dependence of R∗(t) on each dimensionless parameter.
To simplify the expressions, we ignored the constant values
of each term and consider the line dissipation dominant
because Ref −1

L is smaller than the other dissipation terms,
as shown in Fig. 6. In addition, the initial conditions of
R∗(0) = 0 and/or dR∗/dt∗|t=0 = 1 are used to derive
the simplified energy conservation expressions as functions
of dimensionless parameters. These initial conditions are
different from those of the numerical solutions shown in
Fig. 6. Table II provides a summary of the simplified energy
equations and the dimensionless droplet radius change with
different ranges of We, Fr, and Wec. From Table II, we
see that the gravitational energy and the surface energy do
not significantly affect droplet spreading. The kinetic energy
influences expansion largely in the initial stage of impact, and
the radius is asymptotic to a specific value dependent upon
the Re. With respect to the matrix potential, the dimensionless
droplet radius increases linearly with time, and the expansion
rate is proportional to the ratio of Re to Wec. As the matrix
potential is dominant in Table II, Eq. (9) can be simplified
to dR∗/dt∗ � Re/Wec for large t∗ when the kinetic energy is
dissipated (Wec � 1). This simplified equation means that the
droplet expansion rate is determined by the ratio of Re to Wec.
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Therefore, theoretically, R(t)* does not achieve a constant
value if the capillary pressure (Pcap) is nonzero. In Fig. 6,
the curves for highly viscous liquids appear to converge to
constant values but in actuality they slightly increase at a rate
of Re/Wec. In Fig. 6, the initial drastic increase of R∗ is mainly
attributed to the kinetic energy, and the linear increase of R∗
after the initial stage of impact is due to the matrix potential.
As a result, the assumption that line dissipation is dominant
can be justified by comparing the simplified energy equations
and the experimental data in Fig. 6. The kinetic energy and
the matrix potential are the main driving forces for droplet
spreading when Wec � 1 and Wec � 1, respectively. The
initial droplet spreading results from the relationship between
line dissipation and kinetic energy. After the kinetic energy is
dissipated, the linear droplet spreading is due to the balance
between line dissipation and matrix potential. Both spreading
regimes are displayed in Fig. 6.

In the case of Wec < 10, viscous dissipation in the porous
region is the dominant dissipation mechanism and the other
dissipation terms are ignored, as shown in Fig. 5. To justify this
assumption, note that Rec is small relative to Re in the energy
equation. When Rec and Re are compared in the dissipation
terms, however, we must carefully consider the no-slip area
(As). In the viscous dissipation inside the droplet and the line
dissipation, the contact surface between the droplet and the
surface is assumed as the no-slip surface. This assumption is
valid when Wec is sufficiently high (Wec > 103). When Wec is
small, however, the no-slip surface becomes a slip boundary
because the flows inside the porous layer induce spreading via
capillary pressure. Therefore, the viscous dissipation inside
the droplet and the line dissipation are negligible when Wec

is small (Wec < 10). Furthermore, gravitational energy and
droplet surface energy are much weaker than the matrix
potential when Wec < 10 and R∗ > 1. Therefore, the energy
equation becomes a function of the viscous dissipation and
matrix potential. In this case Eq. (9) for the dimensionless
droplet radius becomes

− d

dt∗

(
12

Wec
R∗2

)
+ 1

Rec

3

8
fcR

∗2

(
dR∗

dt∗

)2

= 0. (11)

From Eq. (11), the dimensionless droplet expansion rate is
found to be

dR∗

dt∗
= 64

fc

Rec

Wec

1

R∗ = 64
C∗

cap

R∗ . (12)

By integrating Eq. (12), the droplet radius can be expressed as

R∗2 = 128
1

fc

Rec

Wec
t∗ = 128C∗

capt
∗. (13)

As a result, R(t)* is only dependent on t∗ and C∗
cap and the

initial condition of Eq. (13) is not needed.
Equation (13) effectively predicts the droplet radius change

on wetting surfaces at low Wec, as shown in Fig. 7. Here
the independent axis is C∗

capt
∗ and the dependent axis is R∗2 in

Fig. 7 to display the linearity of Eq. (13) and the corresponding
experimental data. We used Wec less than 100 for the drop
impingement experiments in Fig. 7, but the theoretical data
obtained from Eq. (13) assume that Wec is less than 10. Our
intent was to show that the experimental data become closer
to the theoretical data when their Wec is close to 10. As shown

FIG. 7. (Color online) Experimental results for droplet spreading
at low capillary-Weber number for the liquids shown in Table I.
The symbols and the black solid line indicate the experimental
data when Wec < 100 and the theoretical data obtained from
Eq. (13), respectively. Viscous dissipation inside the droplet and line
dissipation, which are the columns highlighted in gray in the table,
are not considered in the energy equation because Wec is low. The
square of the dimensionless radius change is linearly proportional
to the dimensionless time. The table provides the surface properties,
liquid properties, and the dimensionless parameters of the energy
equation for each data set. The impingement modes are confined to
Modes A1 and A2 because ReW < 0.2 when Wec < 100.

in Fig. 7, the experimental data obtained with Wec higher than
10 show larger deviations from the theoretical data. However,
the nearly linear experimental data, obtained when Wec is
higher than 10, are recovered after initial impact because the
kinetic energy is dissipated through the initial moments of
droplet expansion. Wec only reflects the initial impact speed
of the droplet. Therefore, after the droplet loses its kinetic
energy the expansion more closely follows the theoretical
prediction. This is why droplets with Wec higher than 10
show nonlinearity in the initial impact region. It reveals that
the droplet expansion rate at low Wec is governed by the
spreading speed constant, Ccap. In highly viscous liquids, the
initial kinetic energy is dissipated through droplet deformation
resulting from viscous effects inside the droplet after impact;
therefore the impingement modes of highly viscous liquids
are confined to Mode A and mainly governed by the matrix
potential.

We can see Modes A1 and B in Fig. 6 (high Wec), and
Modes A1 and A2 in Fig. 7 (low Wec). In Figs. 6 and 7, we
used the experimental data obtained from Modes A1 and B
because the mass conservation is not valid in Modes A2 and
C due to necking and jetting behavior, respectively. From the
investigation of Wec and ReW , we can say that very low and
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TABLE I. Liquid and surface properties used in the drop impingement experiments and numerical simulations. The properties of the
glycerol and water mixture were obtained from the literature [15]. Highly wetting porous titania (TiO2) surfaces were produced by an
electrochemical fabrication method [11]. The porous titania surfaces showed wide variations in capillary pressure and spreading speed. The
thin layer chromatography (TLC) plates were obtained from Sigma-Aldrich. The gel-blotting paper is a chromatography paper (grade 230)
obtained from Genesee Scientific. The coffee filter is a commercial product made by Melitta USA, Inc. The symbols correspond to the symbols
in the plot of drop impingement modes (Fig. 8).

Effective Layer Droplet Surface Capillary Spreading
pore radius thickness diameter tension Viscosity Density pressure constant

Symbol Surface Liquid rc (μm) Hc (μm) Do (mm) γ (mN/m) μ (cP) ρ (kg/m3) Pcap (Pa) Ccap (mm2/s)

A Porous titania surface 1 Water 10.6 8.6 2.8 72.8 0.9 998 783 49
B Porous titania surface 1 Water 10.6 8.6 2.2 72.8 0.9 998 783 49
C Porous titania surface 1 Water 10.6 8.6 5 72.8 0.9 998 783 49
D Porous titania surface 2 Water 13.4 9.2 2.8 72.8 0.9 998 1048 104.4
E Porous titania surface 3 Water 13.1 9.2 2.8 72.8 0.9 998 930 88.6
F Porous titania surface 4 Water 13 9.2 2.8 72.8 0.9 998 773 72.2
G Porous titania surface 5 Ethanol 8.85 9.5 2.2 22.3 1.1 789 1084 38.6
H Porous titania surface 6 Ethylene glycol 28 10.5 2.8 47.3 16 1113 863 21.0
I Porous titania surface 6 Glycerol 60% 25 10.5 3 67 9 1154 733 19.8

+water 40%
J Porous titania surface 6 Glycerol 90% 21 10.5 2.9 63.6 164 1232 665 0.85

+water 10%
K Porous titania surface 7 Glycerol 13.6 9.4 2.8 63 1258 1261 495 0.37
L Silica TLC Water 4.2 250 2.8 72.8 0.9 998 959 9.5
M Cellulose TLC Water 5.8 100 2.8 72.8 0.9 998 1076 20.4
N Aluminum TLC Water 5.1 250 2.8 72.8 0.9 998 1546 22.4
O Gel-blotting paper Water 5.6 340 2.8 72.8 0.9 998 1395 24.0
P Coffee filter Water 7.9 120 2.8 72.B 0.9 998 1420 60.4

high Wec numbers correspond to Modes A and C, respectively,
because these Wec regimes correspond to low and high ReW .
However, to predict the transition between the impingement
modes, viscous dissipation inside the porous region must
be considered. From Eq. (13), we see that Ccap includes
the viscosity effects in the porous region; therefore, ReW

incorporates the effects of kinetic energy, matrix potential, and
viscous dissipation. This is why we can predict impingement
mode transitions with ReW . Dimensional analysis is a useful
tool to extract pertinent dimensionless groups using parameters
obtained from the modified energy equations. Dimensionless
groups are formed from the parameters, Ccap, Pcap, and Hc,
which relate to the highly wetting surfaces in addition to the

parameters, Do, Uo, ρ, μ, and γ . We find that a dimensionless
parameter obtained from a combination of the dimensionless
capillary spreading constant, C∗

cap = Ccap/(UoDo), and the
Weber number governs the drop impingement modes. We
denote this nondimensional number the “Washburn-Reynolds”
due to its similarity to the traditional Reynolds number and its
relationship with Washburn’s equation [26]. The Washburn-
Reynolds number, ReW , is expressed by

ReW = C∗
capWe = Uoρrc cos θ

μ
. (14)

The spreading speed constant, Ccap, is obtained from
capillary rise measurements and combined with the Weber

TABLE II. Simplified energy conservation equation and dimensionless droplet radius at different physical regimes. The line dissipation
in Eq. (9) is considered dominant and the other dissipation terms are ignored to obtain simplified energy conservation equations as functions
of common dimensionless parameters. The dimensionless droplet radius can be expressed as a function of the Reynolds number and another
dimensionless parameter; therefore, we can characterize the droplet radius change with respect to the relative influence of the Reynolds number.

Dominant Dimensionless Simplified energy Dimensionless Characteristic
effect parameters equation droplet radius

Kinetic energy We � 1, Fr � 1, Wec � 1 d

dt∗
[(

dR∗
dt∗

)2] ≈ − 1
Re R

∗( dR∗
dt∗

)2
R∗ = √

Re tanh
(√

1
Re t

∗
)

Asymptotic to Re1/2

Gravitational We � 1, Fr � 1, Wec � 1 d

dt∗
[

1
Fr

(
1

R∗
)2] ≈ − 1

Re R
∗ (

dR∗
dt∗

)2
R∗ = (

Re
Fr t

∗)1/5 Weak due to 1
5 power

potential energy dependence

Surface energy We � 1, Fr � 1, Wec � 1 d

dt∗
(

1
We

1
R∗

) ≈ − 1
Re R

∗ (
dR∗
dt∗

)2
R∗ = (

Re
We t

∗)1/4 Weak due to 1
4 power

dependence

Matrix potential We � 1, Fr � 1, Wec � 1 d

dt∗
[

1
Wec

(R∗)2
] ≈ 1

Re R
∗ (

dR∗
dt∗

)2
R∗ = Re

Wec
t∗ Linearly

energy proportional to Re/Wec
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FIG. 8. (Color online) Impingement mode transitions correlate
with the Washburn-Reynolds number, as shown in the log-log plot
of ReW vs cos θ/Oh2, where Oh is the Ohnesorge number and θ is
the Young’s contact angle of the surface. Ccap/υ has the same form
of cos θ/Oh2, where υ is the kinematic viscosity of liquids used.
Both dimensionless parameters can be used to distinguish wetting
properties of the surfaces. Symbols: �, �, �, and © indicate Modes
A1, A2, B, and C, respectively. The capital letter under each vertical
line indicates the surface name shown in Table I. The inset shows the
mode transitions in a narrow Ccap/υ region of 1–100.

number to obtain ReW . Using the liquids and surfaces in
Table I, drop impingement experiments were conducted with
varying impact velocities. It is worth noting that when the
contact angle is small [cosθ � 1] the Washburn-Reynolds
number ReW is close to the capillary-Reynolds number Rec,
the Reynolds number inside a single capillary tube with radius
rc and flow speed Uo.

When the impingement modes were plotted with respect to
We or Re, there were several orders of magnitude differences
between mode transitions for different liquids. However, ReW

correlates with mode transitions for a wide range of liquid
and surface properties, impact velocities, and for various
highly wetting porous surfaces (Fig. 8). As shown in Fig. 8,
increasing ReW governs transitions between impingement
modes. Interestingly, in Mode A (ReW < 0.5), observation
of Mode A1 or Mode A2 appeared to vary with cos θ/Oh2,
where Oh is the Ohnesorge number expressed as Oh =
μ/(rcργ )1/2 and θ is the Young’s contact angle of the surface.
This parameter has the same form of another dimensionless
group of Ccap/υ, where υ is the kinematic viscosity of liquids
used. We found that these two dimensionless groups can
effectively characterize the wetting ability of surfaces for
various liquids. In Mode A1 we believe that kinetic energy
is transferred to viscous dissipation through the observed
oscillations in the low cos θ/Oh2 region (cos θ/Oh2<30).
Conversely, for the high cos θ/Oh2 region (cos θ/Oh2>30)
the matrix potential is compensated by the necking behavior
observed in Mode A2. Modes A1 and A2 are combined as
Mode A since both are observed in the same ReW range.
Further investigation is needed to illuminate the role of Ccap

for the transition between Modes A1 and A2. The biggest

advantage of the Washburn-Reynolds number is that we can
predict the impingement modes based upon three factors:
surface properties (rc and θ ), liquid properties (ρ and μ), and
impact velocity (Uo). Therefore, once the surface and liquid are
determined, we can change the impingement modes using the
impact velocity. Alternatively, if the impact velocity is limited
to a specific range, the impingement modes can be altered by
the surface and liquid properties. However, in this case, the
modes available are limited because Ccap and μ have narrower
ranges than Uo.

The Washburn-Reynolds number (ReW ) can be interpreted
as the ratio between the inertia of the impinging droplet and
capillary driven transport in the porous thin film. At high ReW ,
the droplet inertia is dominant, resulting in Mode C (jetting).
In Mode B, the inertial and capillary effects are balanced and
smooth spreading is observed. Conversely, Mode A (low ReW )
results in capillary driven flows. When the capillary radius is
large and the contact angle is small, the surfaces generally show
high spreading speed. This can result in oscillating motions
(Mode A1) at low Ccap and necking (Mode A2) at high Ccap.
In Mode A, droplets spread largely due to the matrix potential
since the initial droplet kinetic energy is negligible.

V. CONCLUSIONS

In this work, we propose an energy conservation equation to
predict droplet spreading on highly wetting porous thin films.
Notably, we find that the matrix potential must be included
to accurately simulate droplet spreading. This effect can be
evaluated with the capillary-Weber number, Wec, which is the
ratio of the initial kinetic energy of the impinging droplet
to the initial matrix potential. Furthermore, we discovered
a dimensionless parameter, the Washburn-Reynolds number
(ReW ), which correlates with impingement modes on highly
wetting porous surfaces. ReW can be derived from dimensional
analysis or the simplified energy equations at low and high
Wec. At high Wec, the Weber number governs the droplet
expansion rate but at low Wec numbers, the dimensionless
spreading constant, C∗

cap, governs droplet spreading. ReW can
be obtained from We and C∗

cap. ReW has the same form as
the Reynolds number but possesses an effective length scale,
rc cos θ , which reflects the wetting properties of the surface.
ReW effectively correlates with impingement modes across
a wide range of fluid and surface properties. ReW provides
useful insight into droplet dynamics and can be used to
guide the design of highly wetting surfaces for applications
ranging from spray cooling to paper microfluidics and inkjet
printing.
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