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Free turbulent shear layer in a point vortex gas as a problem in nonequilibrium statistical mechanics
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This paper attempts to unravel any relations that may exist between turbulent shear flows and statistical
mechanics through a detailed numerical investigation in the simplest case where both can be well defined. The
flow considered for the purpose is the two-dimensional (2D) temporal free shear layer with a velocity difference
�U across it, statistically homogeneous in the streamwise direction (x) and evolving from a plane vortex sheet
in the direction normal to it (y) in a periodic-in-x domain L × ±∞. Extensive computer simulations of the
flow are carried out through appropriate initial-value problems for a “vortex gas” comprising N point vortices
of the same strength (γ = L�U/N ) and sign. Such a vortex gas is known to provide weak solutions of the
Euler equation. More than ten different initial-condition classes are investigated using simulations involving up
to 32 000 vortices, with ensemble averages evaluated over up to 103 realizations and integration over 104L/�U .
The temporal evolution of such a system is found to exhibit three distinct regimes. In Regime I the evolution
is strongly influenced by the initial condition, sometimes lasting a significant fraction of L/�U . Regime III
is a long-time domain-dependent evolution towards a statistically stationary state, via “violent” and “slow”
relaxations [P.-H. Chavanis, Physica A 391, 3657 (2012)], over flow time scales of order 102 and 104L/�U ,
respectively (for N = 400). The final state involves a single structure that stochastically samples the domain,
possibly constituting a “relative equilibrium.” The vortex distribution within the structure follows a nonisotropic
truncated form of the Lundgren-Pointin (L-P) equilibrium distribution (with negatively high temperatures; L-P
parameter λ close to −1). The central finding is that, in the intermediate Regime II, the spreading rate of the
layer is universal over the wide range of cases considered here. The value (in terms of momentum thickness) is
0.0166 ± 0.0002 times �U . Regime II, extensively studied in the turbulent shear flow literature as a self-similar
“equilibrium” state, is, however, a part of the rapid nonequilibrium evolution of the vortex-gas system, which
we term “explosive” as it lasts less than one L/�U . Regime II also exhibits significant values of N -independent
two-vortex correlations, indicating that current kinetic theories that neglect correlations or consider them as
O(1/N ) cannot describe this regime. The evolution of the layer thickness in present simulations in Regimes I
and II agree with the experimental observations of spatially evolving (3D Navier-Stokes) shear layers. Further,
the vorticity-stream-function relations in Regime III are close to those computed in 2D Navier-Stokes temporal
shear layers [J. Sommeria, C. Staquet, and R. Robert, J. Fluid Mech. 233, 661 (1991)]. These findings suggest
the dominance of what may be called the Kelvin-Biot-Savart mechanism in determining the growth of the free
shear layer through large-scale momentum and vorticity dispersal.
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I. INTRODUCTION

In a celebrated paper titled Statistical Hydrodynamics,
Onsager [1] presented a penetrating discussion of two-
dimensional vortex dynamics in a “gas” of positive and
negative point vortices in an ideal fluid. (It is convenient to use
the word “gas” for describing the problem following Miller
[2], in spite of the fact that intervortex interactions described
by the Biot-Savart relationship have very long range.) The
motion of such a gas is governed by a Hamiltonian and
may be expected to lend itself to the formalism of statistical
mechanics. (The demonstration that chaotic motion can occur
in a collection of more than three vortices [3,4] establishes
an underlying stochastic dynamics that justifies a statistical
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treatment.) Onsager showed that the motion of the vortices
could be analyzed in terms of energies and entropies as in
classical statistical mechanics, but the temperature derived
therefrom would have to be permitted to take negative values.
This is because the entropy S as a function of the energy E

displays a maximum; hence, ∂S/∂E can be negative. He also
showed that such a gas possesses equilibrium solutions which
consist of large-scale vortex clusters or structures, positive and
negative segregated from each other.

Since then, considerable work has been done in this
direction (see [5], for example). In particular, the nature of the
equilibrium state in such a gas has been extensively discussed
[6–8], especially in connection with the emergence of large-
scale, long-lived vortices in the vortex gas. Several attempts
(beginning with Marmanis [9], most recently Chavanis [10])
have also been made to derive a Bogoliubov-Born-Green-
Kirkwood-Yvon hierarchy of equations governing vortex
distribution functions, based on the Liouville equation, begin-
ning with single-particle analogs of the Boltzmann equation
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FIG. 1. (Color online) (a) A schematic of a spatially evolving
shear layer. (b) The temporal analog (in an Euler or Navier Stokes
fluid) often studied in simulations. (Note that we use Reynolds
decomposition. U indicates averaged velocity that depends only on
y, and u′ and v′ are the x and y components of the fluctuating velocity
which has zero mean, respectively. Subscript 0 indicates initial value.)
(c) The vortex-gas formulation of the temporal shear layer showing
the configuration of vortices at the initial instant. We track the vortices
only in the L domain, 0 < x < L (which are denoted by dark dots).
The governing equations account for the velocities induced by all
the vortices in the L domain as well as all those present in x < 0,
x > L (shown in light colored dots) at separations of +kL and −kL,
respectively (k = 1,2, . . . ,∞), for each vortex. l = L/N is the initial
intervortex separation in x.

and followed by higher members in the hierarchy involving
multiple-vortex correlations [11]. A favored target for the
application of these ideas has been Jupiter’s famous red spot
[12,13], seen as one dramatic example of the kind of large-scale
long-lived vortex predicted by Onsager.

In the fluid-dynamical literature, observations of large-scale
coherent vortical structures have been reported in many turbu-
lent shear flows, including, in particular, the so-called “mixing
layer.” The spatially developing mixing layer [Fig. 1(a)] is the
flow which develops between two streams moving with differ-
ent velocities U1 and U2, separated from each other for x < 0
by a thin splitter plate, and mixing with each other for x > 0.
While extensive measurements have been made on this flow

for more than 50 years [14–20], the most striking development
has been the convincing demonstration by Brown and Roshko
[15] of the until-then unsuspected presence of highly organized
large-scale vortices as an integral part of what was a canonical
fully developed turbulent flow. This work established that
turbulent shear flows could contain ordered motion and led
to a search for and the study of such coherent structures
in a wide variety of other shear flows [21,22]. The general
point that all this work drove home was that the character of
turbulent shear flows is fundamentally different from that of
statistically homogenous isotropic turbulence, to the extent that
ordered motion plays a significant (sometimes dominant) role
in determining certain characteristics of sheared turbulence,
such as, for example, entrainment of irrotational ambient fluid
into rotational turbulent shear flow.

The plane incompressible “temporal” shear layer [Fig. 1(b)]
is arguably the simplest conceivable turbulent shear flow, as
its specification in the high Reynolds number limit involves
only one parameter, namely the velocity differential across
the layer. This is a time-dependent flow that is statistically
homogeneous in x and evolves temporally in y, from an initial
condition at t = 0 when the two streams moving at +�U/2
and −�U/2 are separated by a thin vortical layer at y = 0. The
temporal shear layer is related via a Galilean transformation
to the spatially evolving case in the limit 2(U1 − U2)/(U1 +
U2) → 0. Further, it is favored for numerical simulations of
the Navier-Stokes equations (e.g., Sommeria et al. [23] in two
dimensions (2D) and Rogers and Moser [24] in 3D) because
of its simplicity and the unambiguous initial and boundary
conditions that can be prescribed for the problem. It is usually
studied in a domain 0 � x � L that is periodic in x with
period L. This is a valid approximation to the infinite-domain
shear layer as long as the relevant length scales in the initial
conditions and in the flow field are much smaller than the
domain size.

The chief object of the present study is to make a
comprehensive simulation of the vortex-gas analog of the
temporal shear layer and to carry out a detailed statistical
investigation of its evolution. As shown in Fig. 1(c), the
problem can be formulated in terms of a row of equally
spaced point vortices, located at t = 0 along the x axis,
say, and allowed to develop in the xy plane for t > 0. It is
convenient and interesting to study the evolution for a class
of initial conditions in which the vortices are given small
displacements in y at t = 0. This system should not be viewed
as a discrete model of a vortex sheet that rolls ups smoothly,
but rather as a statistical (chaotic) evolution of a gas of point
vortices.

A major argument against the possible relevance of point
vortex dynamics to “real-world” (3D Navier-Stokes) turbulent
flows is the obvious one about dimensionality. There are,
however, real-world flows which are quasi-2D in some sense:
The most well known of these is atmospheric motion at higher
latitudes, where the large scales are governed by the dynamics
of conserved potential vorticity oriented normal to the surface
of Earth [25]. Indeed, the reverse energy cascade characteristic
of 2D turbulence [26,27] has given much insight into the
dynamics of terrestrial and other planetary atmospheres.
Another argument is about the complete absence of viscosity
(and other molecular transport parameters that may be relevant
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for true mixing). No purely inviscid model can handle the
phenomena of mixing and dissipation, and consequently both
the Richardson cascade and Kolmogorov-type similarity are
beyond vortex-gas dynamics. For this reason, we prefer the
term “free shear layer” to “mixing layer” in referring to the
flow we study.

A related argument [7] is that the long-time evolution of
vortex blobs in real fluids cannot be described by vortex-gas
motions as the effect of viscosity (say ν), however small, does
become manifest on time scales of order ν−1. Interestingly,
these arguments take on a different complexion in the free
shear layer. Plane 3D Navier-Stokes turbulent shear layers
(2D in the mean) do have 3D structures and motions, but the
large coherent structures that dominate the growth of the layer
(in time or space) are quasi-2D [15,28]. One consequence
of such growth is that the local Reynolds number of the
flow (based on layer thickness), actually increases linearly
with downstream distance x in spatially evolving flow or
with time t in the temporally evolving flow. Thus, the effect
of viscosity progressively diminishes (equivalently a locally
scaled ν → 0) as x → ∞ or t → ∞, and the viscous time
scale of O(ν−1) consequently recedes to ∞ in the limit, as
long as the layer keeps growing. In any case, the effects of
viscosity on vorticity dispersal can, if necessary, be taken into
account by the addition of a random walk component in the
model [29].

In spite of such objections, early vortex-gas simulations
[30,31] were remarkably successful in mimicking several dom-
inant features of evolving shear layers, such as their growth
through amalgamation events among the coherent structures.
In retrospect, they were limited by inadequate numerical
accuracy in integration, small vortex populations, and short
integration times. Much more accurate and comprehensive
simulations are, however, possible with today’s computational
resources and, regardless of any possible connection with real
shear layers, are of fundamental importance as a study of the
simplest conceivable “shear turbulence.” They further provide
insights into understanding the interplay between chaos and
order in such flows through a statistical-mechanics treatment.

Our approach to the problem is akin to that of studying the
statistical mechanics of a system of molecules via molecular
dynamics. Usual molecular dynamics techniques become
ineffective in the presence of long-range forces; but in our
context, the two-dimensionality of the problem somewhat
compensates for this handicap. We therefore follow the
complete evolutionary trajectory of the vortex-gas system all
the way from its initial conditions [such as that shown in
Fig. 1(c)] to the final asymptotic state (if one exists) as t → ∞.
Compared to earlier work, the present simulations are much
longer in time (by a factor of 104), are far more precise
(Hamiltonian conserved to within 0.001% per L/�U ), and

involve large (up to 103 member) ensembles; these (as we
demonstrate) turn out to be crucial for obtaining the results
reported here.

The temporal development of the solution is analyzed
from two viewpoints. The first is in terms of statistical
mechanics and describes the evolution of the vortex gas,
through distribution functions, possible equilibrium states,
and temperatures. Such analyses point to the existence of
certain universalities that appear to be novel in nonequilibrium
statistical mechanics. The second viewpoint is in terms of
concepts that have been found useful in the study of turbulent
shear flows, such as self-similarity, growth rate of the shear
layer, and effect of initial conditions on subsequent flow
development. The two viewpoints together yield fresh insights
into questions that have been widely discussed but still remain
controversial in the fluid-dynamical literature.

The organization of this paper is as follows. In Sec. II,
we formulate the problem, present a critical review of earlier
calculations, and describe the present computational strategy.
Then we discuss the results of our simulations, identifying
and describing three distinct regimes in the temporal evolution
in Sec. III; detailed results and analyses of the intermediate
nonequilibrium universal regime (II) are presented in Secs. IV
and V. The domain-influenced regime (III) and the possible
final asymptotic state of the system are discussed in Sec. VI.
The relevance of the present study to Navier-Stokes shear
layers is described in Sec. VII.

II. CURRENT APPROACH

A. Formulation

Many of the earlier vortex-gas studies involve vortices
in an infinite plane (e.g., Lundgren and Pointin [6]), in a
doubly periodic box (e.g., Montgomery and Joyce [32]) or
on a cylinder (e.g., Buhler [33]). The present study of a
temporal shear layer in a point vortex gas is formulated
as a periodic-in-x array of N point vortices of identical
sign and strength (γ = L�U/N ), as shown in Fig. 1(c).
Our objective is to study the evolution of this system in
(x,y,t) space.

The velocity with which any vortex moves is the vector
sum of the velocities induced at its location by all other
vortices in the system via the Biot-Savart relationship. In
the present setup, the velocity at any vortex (xi,yi) in
the L domain is the sum of the velocities induced at
its location by vortices at {xj + kL,yj },j = 1 to N ; k =
{−∞, . . . ,−2,−1,0,1,2, . . . ,∞}. This leads to an infinite
convergent series that sums up to the following expressions:

dxi

dt
=

N∑
j=1,j �=i

−γ

2L

sinh[2π (yi − yj )/L]

cosh[2π (yi − yj )/L] − cos[2π (xi − xj )/L]
, (1)

dyi

dt
=

N∑
j=1,j �=i

γ

2L

sin[2π (xi − xj )/L]

cosh[2π (yi − yj )/L] − cos[2π (xi − xj )/L]
. (2)
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These equations appear to have been first written down
by Friedmann and Poloubarinova [34]. The first reported
calculations using (1) and (2) were performed by hand by
Rosenhead [35]. Subsequent work using (1) and (2) is reviewed
in Sec. II C.

We could consider x an angular variable as the system is x

periodic. In the numerical implementation, vortices that leave
the domain during the evolution are relocated modulo L using
the x periodicity of the system.

The point vortex gas in an infinite plane possesses the
Hamiltonian [36]

H = − γ 2

4π

N∑
i=1

N∑
j=1,j �=i

ln[|ri − rj |/R0], (3)

where ri ≡ (xi,yi) and R0 is an arbitrary length scale,
often taken as the radius of gyration of the vortex system,
[(1/N )

∑N
i=1(x2 + y2)]1/2. For the system shown in Fig. 1(c),

the Hamiltonian (often also called Kirchhoff’s function) takes
the form [30]

H = − γ 2

8π

N∑
i=1

N∑
j=1,j �=i

ln

(
1

2

{
cosh

[
2π (yi − yj )

L

]

− cos

[
2π (xi − xj )

L

] })
. (4)

Equations (1) and (2) can be cast in the Hamiltonian form

d(xi
√

γ )

dt
= ∂H

∂(yi
√

γ )
;

d(yi
√

γ )

dt
= − ∂H

∂(xi
√

γ )
. (5)

Thus, the present formulation leads to a Hamiltonian system
of 2N ODEs that can be solved as an initial-value problem.

B. The major questions

Before posing the major questions, some simple sim-
ulations over a relatively long duration are useful. These
were performed with N = 800, initially equispaced in x and
with small initial y values drawn randomly from a uniform
probability distribution of amplitude a(P [y] = 1/(2a) for
|y| < a; 0 for |y| > a).

Figure 2 shows the evolution of vortex positions with
time for a/L = 10−6. The initial evolution is qualitatively
consistent with earlier simulations of this kind [30,31]; in
particular, as is clear from Fig. 2, for example, the vortices
cluster to form what has been called in the fluid-dynamical
literature “coherent structures.” These structures grow in size
by successive amalgamations among themselves. The average
size of the structures and the spacing between them increase
with time, while the total number of structures in the domain
decreases. We also find that beyond t�U/L ∼ 4, there is only
one structure left in each periodic domain.

To quantify these observations, we introduce a rough
measure of layer thickness δ, defined as the maximum y

distance at time t between any two vortices in the system
(see Fig. 2). (This measure is analogous to the visual thickness
of a laboratory mixing layer.) The evolution of δ with time is
shown in Fig. 3 for a/L = 10−6 and 10−2. (Similar results are
obtained if other measures of thickness are used instead of δ.)

FIG. 2. (Color online) Typical evolution of vortex positions with
time (N = 800,a/L = 10−6).

It can be seen that for a/L = 10−6 δ grows approximately
linearly between 0.04 < t�U/L < 2 but seems to saturate
at 0.8 for t�U/L � 4. In the simulation with a much
higher initial amplitude of a/L = 10−2, the onset of “linear”
growth takes place much later at around t�U/L ∼ 0.2, but
the trajectory beyond that point seems to roughly follow
the simulation with a/L = 10−6, indicating a possibility of
universal growth.

These two simulations immediately highlight the presence
of at least three regimes in the evolution. For some time after
initiation, the solution strongly depends on the initial condition
(which we call Regime I), but the effects seem weaker at later
times as δ grows linearly in time (Regime II). At longer times
(constituting Regime III) the layer thickness seems to fluctuate
roughly around a value of O(1). This regime has never been
explored in earlier simulations.

FIG. 3. (Color online) Evolution of thickness δ with time, in
exploratory simulations of (1) and (2) (with N = 800). Note the
existence of different regimes in evolution.
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These preliminary simulations raise the following basic
questions.

(a) What are the scaling laws in different regimes in the
evolution of (1) and (2)?

(b) Are any of the regimes “universal”? If so, which ones
and in what variables?

(c) Wherever there is universality, what is the statistical-
mechanical explanation?

(d) What is the nature of the solution as t → ∞?
We now briefly review earlier studies of vortex-gas shear

layers with the above questions in mind.

C. Review of earlier simulations

Earlier vortex-gas simulations (mostly carried out with a
fluid-dynamical perspective) have not explicitly identified the
above three regimes and hence no attempt has been made to
tackle the questions raised above. This is due to one or more
of the following factors.

1. Large statistical uncertainties due to small number of vortices,
low accuracy, and non-use of ensemble averaging

The most extensive vortex-gas computations to date are
due to Aref and Siggia [31], who have N = 4096. They use
a cloud-in-cell method which saves computer effort using
integer algebra and look-up tables for the calculations, but
the technique also introduces a numerical viscosity. With only
a single realization they estimated the uncertainty level as 30%
in the layer thickness. Delcourt and Brown [30], also using a
cloud-in-cell method, reported a 6% change in the Hamiltonian
in the computations. No attempt was made to exploit ensemble
averaging to arrive at reliable statistics in temporal simulations.

2. Short integration times

The maximum t�U/L reported in earlier work is 1.2 [30].
This is far too short to reach an asymptotic state. For certain
classes of initial condition, e.g., those involving long-wave
sinusoidal displacements of the point vortices (e.g., Rosenhead
[35], Acton [37]), the time of integration is too short even to
move out of Regime I.

3. Desingularization and variable number of vortices

Many simulations (most recently [38,39]) adopt desingu-
larization (following Krasny [40]) to study the smooth roll-up
of a vortex sheet, as point vortices have been considered
to be too chaotic to satisfactorily represent a vortex sheet
[41–43] (see also [44,45]). Further, some of these studies
adaptively vary the number and hence the strength of vortices
to accurately discretize the vortex sheet at all times. However,
in the present study, both the flow under consideration and
the objectives are different. We wish to study the chaotic
evolution of a prototypical turbulent shear flow for which
a statistical mechanical treatment is possible. Hence, it is
preferable to work with a fixed number of vortices of constant
strength, without any desingularization. Some preliminary
results [46] suggested that adopting desingularization in the
present problem may delay the onset of the linear growth
(Regime II) but not the spreading rate. A detailed report on
these studies will be presented elsewhere.

D. Present computational strategy

The N point vortices, placed along the x axis with a given
intervortex spacing l, are displaced along y by a specified
amount at t = 0. This displacement is typically randomly
generated using a specified probability distribution for each
case, but in a few special cases the displacement is taken as a
sinusoidal function of x. To obtain the time evolution (1) and
(2) are solved numerically using a standard (explicit) fourth
order Runge-Kutta algorithm to advance in time the locations
of all the vortices. The time step used for integration and the
precision of the calculations play an important role in the level
of fidelity of the computation to pure Hamiltonian dynamics
[47]. (This is also relevant to the issue of recurrence [48],
which we discuss in Sec. VI.) To investigate the fidelity of
the numerics we perform a set of simulations (with a/l =
10−3,N = 1600; detailed results not presented here) with
different time steps and precisions. We find that the evolution
of the relevant (ensemble-averaged) statistics, such as the layer
thickness and single- and two-particle distribution functions,
show no significant variation for �t < 1.0l/�U , although
individual vortex trajectories are found to be different due to
the inherently chaotic nature of the system. To understand the
role of numerical noise, we simulate cases (with N = 3200,
not shown here) with a/l = 0 and a/l = 10−10, each with
two different time steps, �t�U/l = 0.1 and 0.5 and with
double precision. We found that the initial evolution (early
Regime I) with a/l = 0 was different for the two different
values of time step, or (equivalently) of the magnitude of
the numerical noise. It has to be noted that this initial
condition is a stationary but unstable solution of the point
vortex system. Therefore, the numerical noise was essential
for triggering the instability and hence its value was important
in determining the initial evolution. However, the subsequent
evolution, especially Regime II, was independent but for a shift
in the virtual origin in time. We find that for a/l = 10−10 the
evolution did not depend on time step for t > 0. This suggests
that as long as the “disturbance” in the initial condition is
sufficiently large (a/l � 10−10), it dominates the effect of
numerical noise throughout the evolution.

The above results suggest the following. There is, of
course, nonzero numerical noise in the present study due
to the truncation and round-off errors that are inevitable
in any computer simulation. Therefore, in principle, we
cannot conclude that our simulations are representative of
pure Hamiltonian dynamics. However, our results seem to
be robustly independent of the magnitude of the numerical
noise, provided it is small and nonzero. Most importantly, the
spreading rate in Regime II was found to vary by less than a
percent as �t is varied by a factor of 40 (from 0.025l/�U to
1.0l/�U for a case with a/l = 10−3,N = 1600) or between
double and quadruple precision simulations (for a case with
N = 400). Hence, all calculations in this work use double
precision and adopt �t = 0.1l/�U as the time step except
when stated otherwise. Note that in terms of outer units often
quoted in other work, �t�U/L = 6.25 × 10−5 for N = 1600
and 7.81 × 10−6 for the simulation with N = 32 000 (we use
�t = 0.25l/�U for the latter). This may be compared with
the lowest value for �t�U/L of 2 × 10−4 used by Krasny
[47]. We also note that the small numerical noise can be
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considered a proxy for the nonzero disturbances always found
in experiments and may also imply, in part, a correspondingly
small numerical viscosity [Reynolds number based on which
can be loosely estimated to be O(107) based on the decay in
the Hamiltonian; details presented elsewhere].

We do not adopt desingularization for the reasons high-
lighted in Sec. II C. The conservation of the Hamiltonian
prevents any two vortices from getting arbitrarily close to each
other. We find that using the present algorithm and adopted
time step, the distance a vortex moves during any time step
rarely exceeds that to its nearest neighbor and is almost always
at least an order of magnitude less. Hence, the unbounded
velocity in the neighborhood of a point vortex does not present
a serious issue in the numerical integration of (1) and (2).

The accuracy of the algorithm has been further assessed in
two ways. The first is based on computations on vortices in an
infinite plane without the periodicity but otherwise identical
initial conditions and parameters as in the shear layer. In
this case, the x and y centroids, the second moment, and
the Hamiltonian [Eq. (3) are conserved quantities [5]. The
Hamiltonian exhibits a deviation of 9 × 10−6 from its initial
value at t�U/L = 0.78 for N = 3200. The first moments of
the vorticity distribution about the x and y axes are conserved
to within 10−16 and 3 × 10−13 times l, and the second moment
is conserved to within 1.3 × 10−9 of its initial value. Second,
it was found that, in (case R1 of) the present simulations, the
variation of the Hamiltonian given by (4) is within 2.5 × 10−5

of the initial value during the time of integration considered
(for Regime II, t�U/L = 0.75,N = 3200).

Study of Regime III involves long-time integration so a
shorter time step of 0.025l/�U is adopted. As a result,
the Hamiltonian is conserved to within 0.5% for an in-
tegration time of 3.6 × 104L/�U (0.58 × 109 time steps).
These numbers demonstrate that the current computations are
substantially more accurate than any previous work.

Apart from δ (defined in Sec. II B) there are different metrics
one can adopt to specify the “thickness” of the layer, such as
moments of vortex y positions. In order to enable comparison
with Euler and Navier-Stokes shear layers, we generally adopt
the so-called momentum thickness θ as the metric, as it is
commonly used in the fluid-dynamics literature [20] and in
several earlier vortex-gas shear layer studies (e.g., Aref and
Siggia [31]). It is defined as

θ [t] = 1

4

∫ ∞

−∞
dy

⎛
⎝1 −

(
U [y,t]

�U/2

)2
⎞
⎠ , (6)

where the x-averaged x velocity defined by

U [y,t] = (1/L)
∫ L

0
u[x,y,t]dx

is computed by x averaging the induced x velocity u on a grid
of 0.4 N points in x and 200 points in y once every 100 time
steps. (Note: There are rare occasions when a vortex can come
arbitrarily close to a grid point and induce very high velocity.
This can reflect in the x-averaged velocities and hence the
momentum thickness. In principle, this effect can be addressed
by use of a very fine grid and by averaging over a thin strip
enclosing the vortex, as this leads to a cancellation of the large

FIG. 4. (Color online) Effect of ensemble averaging. Note that
individual realizations have large fluctuations (even for N = 3200)
and average over a large number of realizations is essential. The
rms departure from the respective means (at t�U/l = 160) ∼ n−1/2

(shown in dashed line) for a given N and ∼N−1/2 for a given n.

induced velocities of opposite signs near the vortex. However,
we find that, while computing θ , neglecting the contributions
made by those rare instances when x-averaged velocities are
not within ±U/2, is an equivalent but easier alternative for
numerical implementation. Such a strategy does not change
the computed value of θ by more than 1% in 99.9% of cases
when t�U/l > 10, suggesting that the computed θ is a robust
measure.)

E. Ensemble averaging

In computational statistical-mechanics ensemble averaging
is commonly adopted to reduce statistical fluctuations. For
measurements in statistically stationary turbulent flow in
fluid dynamics long-time averaging is often adopted as an
alternative to ensemble averaging. As the present system is
nonstationary in time but statistically homogeneous in x, x

averaging is, in principle, equivalent to ensemble averaging.
However, we find that an average over an ensemble of
realizations (with initial conditions varied within a clearly
specified class) is worthwhile due to the following reasons.

We first note that the statistical error (at a given t�U/l)
may be expected to vary with N as N−1/2 (observed also
in our present simulations, as shown in Fig. 4), while
the computational effort grows as N2. If we simulate n

realizations with N vortices each, the error goes as (nN )−1/2

while the computational effort goes as nN2, i.e., as n−1

for a given error. It is this result that makes the ensemble
approach so attractive. However, a sufficiently large N = L/l

is required in each realization to have a sufficiently long extent
and preserve the inherent distinction between the different
regimes observed in Fig. 3. But, once N is sufficiently
large, the ensemble averaging approach is computationally
far more economical. It also has the practical advantage
of using parallel computers more effectively, as different
“realizations” can be independently simulated on different
processors without any need for data communication.
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We also find that the ensemble average of θ computed
from the x-averaged velocity profile for each realization
is not very different (for large N and n) from the value
computed from the ensemble average of the (x-averaged)
velocity. Throughout this study, we use the former for the
sake of numerical convenience. We also note that, for a
given initial-condition class, the standard deviation of the
Hamiltonian across realizations is never more than 1% of
its mean value for present simulations with more than 400
vortices and is often much less: e.g., less than 0.01% for the
set of simulations presented in Sec. IV. Hence, the present
ensemble can be considered a microcanonical ensemble.

We discuss the significant implications of inadequate
averaging in detail in Sec. VII.

III. RESULTS: THE THREE REGIMES IN EVOLUTION

With the objective of determining the precise scaling laws in
each of the three regimes already noted in the simulations, we
carry out several additional simulations with different initial
displacements drawn from uniform random distributions with
amplitudes ranging from 10−4l to 10l, with different domain
sizes ranging from 200l to 1600l, and with averages over up
to 12 realizations. A summary of the results is presented in
Fig. 5 as a composite diagram. In order to shed light on the
different scaling laws in the different regimes, it is useful to
adopt, depending on the regime, either δ or θ as the measure
of the layer thickness and l/�U or L/�U as the time scale. It

is therefore important to pay attention to the precise variables
used as the abscissa and ordinate in Fig. 5.

Initial-condition dominated Regime I. As shown in Fig. 5,
the evolution is widely different for different initial conditions
during the initial Regime I. Here δ is adopted as the measure
of layer thickness as θ cannot be accurately determined for
t�U/l < 10 (see Sec. II D). It is seen that the duration of this
regime (tRI), varying from 10−2 to 10 times l/�U for the cases
considered here, strongly depends on the initial conditions,
as shown in an inset in Fig. 5. For certain initial-condition
classes, including those where the y displacement of vortices
is a long-wave sinusoidal function of x, Regime I may be
much longer [O(103)l/�U for case P1 shown in Sec. IV].
In such cases the transition to Regime II may even be
nonmonotonic.

Domain-limited Regime III. Jumping now to Regime III, we
find from Fig. 5 that, at times comparable to or larger than the
domain size time scale (i.e., t�U/L > 1), the effects of finite
domain size become noticeable and the growth of the layer
departs from the linear variation with time seen in Regime II.
As shown in the inset in Fig. 5, the dynamics in the initial
stages of Regime III are governed by the interactions among
a small number of coherent structures. Figure 5 shows the
approximate collapse of θ/L vs t�U/L beyond t�U/L = 1
for data obtained from simulations with L/l ranging from
200 to 1600, confirming that the scaling length changes from
l in Regime I (and II) to L in Regime III (and also II; see
below). Beyond t�U/L ∼ 4 the magnitude of changes in

FIG. 5. (Color online) Composite diagram showing effect of initial conditions and domain size on the evolution of the shear layer. Note the
use of δ and θ in different parts of the diagram and the change in the abscissa from t�U/l with a logarithmic scale up to 500, the linear scale
between 500 and 1500, and a switch to t�U/L thereafter. Appropriate changes have been made on both the abscissa and the ordinate to ensure
that the evolution curve should go smoothly from one regime to the next. The inset on the top left gives the variation of initial transient with
the amplitude of the initial vortex displacement. The two insets on the right give pictures of the configuration of the vortices at t�U/L = 1
(upper) and at t�U/L = 4 (lower).
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the thickness of the layer (in a statistical sense) is greatly
reduced. This is because there is only one structure left in
the domain (see lower inset in Fig. 5), and hence there is no
further opportunity for the layer to grow by amalgamation
among structures. The evolution of the single structure to its
final stage and its connections to vortex-gas equilibrium are
discussed in Sec. VI.

The intermediate linear Regime II. It can be observed from
Fig. 5 that between Regimes I and III is an intermediate Regime
II in which the layer exhibits linear growth.

From a mechanics viewpoint, the transition between the
short-time initial and long-time asymptotic states is governed
by an intermediate asymptotics that can be derived by methods
similar to those used by Millikan [49] in channel flow and
Kolmogorov [50] in turbulence spectra (see Narasimha [51]).

The evolution of a measure of thickness δ̂[t] can be written
as

dδ̂

d(t�U )
= Fi

[
t�U

l
,
L

l
,
{xi[0],yi[0]}

l

]
. (7)

Note that one can equivalently use any characteristic length
scale of the initial condition instead of l.

If we hypothesize that the solution (7) evolves to a state
independent of the precise initial configuration for sufficiently
large t�U/l, the third argument of Fi in Eq. (7) will drop out
in the limit. In what may be called the long-time or “outer”
limit (see Van Dyke [52]), t�U/L = O(1), the solution may
be expected to be dominated by the finite domain size and
scale as

dδ̂

d(t�U )
= Fo

[
t�U

L

]
, t�U/l → ∞, t�U/L fixed.

(8)

Note that the above argument would strictly hold only in the
early part of Regime III (t�U/L < 4), as we show in Sec. VI.

If we postulate an overlap between (7) and (8) in the
simultaneous limits t�U/l → ∞ and t�U/L → 0 (in the
spirit of matched asymptotic expansions [52]), the only
possibility is an overlap Regime II in which

dδ̂

d(t�U )
= C1, (9)

where C1 is independent of time; i.e., the layer thickness grows
linearly with time.

IV. UNIVERSALITY AND FLUID-DYNAMICAL
EQUILIBRIUM OF REGIME II

Is C1 universal (for different initial-condition classes)? In
order to answer this question, a total of 11 cases, with widely
different initial-condition classes for yi0, domain length,
number of vortices, and ensemble size have been performed.
The results are presented in Fig. 6.

The initial conditions considered (details in Table I) include
uniform random distributions (cases R1, R2, R3, R4-32000,
R4-1600, R4-400) with amplitude ratio a/l varying from 10−8

to 10−1, Gaussian distributions(G1), bimodal distributions
in the form of sums of symmetric or asymmetric displaced
Gaussians (respectively BM1, BM2), and distributions varying

FIG. 6. (Color online) (a) Universality of Regime II. Note the
wide range of initial conditions including those with very long
transients. See the change in scale beyond t�U/l of 1000.
(b) Estimate of uncertainties in Regime II growth rate. The error
bars show the 95% confidence limits (computed using Student’s t

distribution). The dotted line is drawn through the reference (R1)
growth rate.

sinusoidally in x (P1 and P2). In the case of random initial
conditions each realization is initialized with a different
set of random numbers from the same class. The different
“realizations” required for ensemble averaging for sinusoidal
initial conditions (yoi = aw sin[2πxi/
 + φ0], where aw and

 are the amplitude and wavelength of the perturbation) can be
generated with different initial phases (φ0) of the wave at t = 0
with respect to that at the beginning of the domain (x = 0).
(Small differences in numerics lead to different solutions in
terms of individual vortex trajectories over time due to the
chaotic nature of the system, but not in the statistics.) This
strategy is used in case P2. An alternative is to add a small
random disturbance to the wave at the initial instant and draw
it from some specified distribution. This is done for case P1,
whose discussion is deferred to Sec. VII.

The respective growth histories in Regime II are shown
in Fig. 6. A best fit to the growth is obtained by minimizing∑t=tIIe

t=tIIb
(1 − ((At�U + B)/θ [t]))2 with respect to A and B,

where tIIb and tIIe are the estimated beginning and end of
Regime II. We choose tIIe to be 0.8t�U/L or the end of
the simulation, whichever is earlier. The locations of tIIb
are indicated in Fig. 6 by short vertical bars. We take as
reference the best-fit value for R1 (N = 3200; n = 577) in
which Regime II extends over more than two decades in t�U/l

(20–2400) and dθ/dt = 0.0166�U + const.
Figure 6(b) shows the ensemble-averaged best-fit growth

rates and the 95% confidence limits for the eleven cases
considered. Based on these results, the evolution of momentum
thickness in Regime II is given by

θRegime II = 0.0166(±0.000 15)t�U + C3, (10)
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TABLE I. Details of different cases and the respective spreading
rate in Regime II.

Initial Best fit
Code N n conditions dθ

d(t�U )

R1 3200 577 Uniform random 0.016 618
a/l = 5 × 10−2

R4 400 512 Uniform random 0.016 51
a/l = 1 × 10−3

R4 1600 512 Uniform random 0.016 532
a/l = 1 × 10−3

R4 32 000 14 Uniform random 0.016 506
a/l = 1 × 10−3

R2 10 000 11 Uniform random 0.016 685
a/l = 1 × 10−1

R3 1600 256 Uniform random 0.016 587
a/l = 1 × 10−8

G1 1600 512 Gaussian 0.016 689
σ/l = 1

BM1 1600 1024 Bimodal 0.016 737
σ1/l = 1 × 10−1

σ2/l = 1 × 10−1

d/l = 6 × 10−1

BM2 1600 1024 Bimodal 0.016 534
σ1/l = 1 × 10−2

σ2/l = 2 × 10−2

d/l = 4 × 10−2

P1 3200 288 Sinusoidal 0.016 635
aw/l = 4 × 10−1

an/ l = 4 × 10−4

λ/l = 100
P2 1600 512 Sinusoidal 0.016 624

aw/l = 1.188 × 10−2

an/ l = 0
λ/l = 50

with a universal slope. The generally nonuniversal intercept
ranges from −3.1l (P2) to 0.7l (G1) in the present simulations
(the corresponding “virtual origin”, i.e., the intercept to the
Regime II growth line on the time axis would be 186l/�U and
−42l/�U ). The departures in Regime II growth rate across
the wide range of initial conditions are within a band of ±1%
from the reference value, and may be compared with the 30%
uncertainty reported by Aref and Siggia [31]. Figure 7 shows
snapshot of vortex positions in Regime II for R4-32000.

FIG. 7. (Color online) Snapshot of vortex positions at the end
of the simulation (t�U/L = 0.25) of one realization of R4-32000.
Note that there are around 2000 vortices per structure, and the vortices
resolve features within each structure as well as in the “braids.”

FIG. 8. (Color online) Self-similarity and universality of x-
averaged (fluid) velocity and “Reynolds shear stress” profiles. The
latter has been evaluated using integral of vorticity flux (computed
from 64 member ensembles).

Figure 8 shows that profiles of mean velocity and Reynolds
shear stress for the case P1 and (at two different times) for
the case G1. (It is easily shown from the Reynolds-averaged
Euler equations that, for the 2D temporal mixing layer
considered, the streamwise momentum balance reduces to
∂τ/∂y = −v′ω′, where τ = u′v′ is the Reynolds shear stress
and v′ω′ is the mean vorticity flux at y. In the present vortex-gas
shear layer, the Reynolds shear stress at y can be computed by
evaluating − ∑

viγi/L over all the vortices with yi < y, where
vi is the vertical velocity induced on the ith vortex.) In the nor-
malization used in similarity theory [53], with velocities scaled
with �U and normal displacement with θ , it is seen that the
three profiles agree for both mean velocity and Reynolds stress,
indicating both self-similarity and universality, and hence of
(fluid-dynamical) equilibrium in the sense of Narasimha and
Prabhu [54]. This implies that universality extends to any
measure of thickness based on the mean velocity profile.

For two illustrative cases (G1 and P2), Fig. 9 shows that
the moments of the vortex positions, mk = 〈|yi |k〉1/k , become
universal multiples of the momentum thickness at sufficiently
long times, in general longer for the sinusoidal initial condition
(P2) compared to the Gaussian initial condition (G1), estab-
lishing similarity and universality irrespective of the measure
used to describe layer thickness.

FIG. 9. (Color online) Evolution of various measures of thick-
ness based on vortex positions for G1 and P2. All of them settle to
a constant factor of θ in Regime II for the two very different initial
conditions.
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V. THE NONEQUILIBRIUM STATISTICAL MECHANICS
OF REGIME II

Is there a statistical-mechanical explanation for the ob-
served universality in Regime II? To answer this, we first ex-
plore the possibility of describing Regime II using approaches
based on existing “vortex-gas kinetic theories” inspired by the
Boltzmann equation [9–11,13,55,56]. This may be done by
computing the single- and two-vortex distribution functions
in the present simulations. We consider cases R4-1600 and
R4-400 as they involve a short Regime I and large ensemble
sizes and also provide an opportunity to assess the effect of
the number of vortices on the simulations. We also analyze
simulations with a/l = 2, N = 400 to study the effect of initial
conditions (if any). The domain is divided into 40 × 40 boxes
of equal size, the width of each box (�x) being fixed, while
the height (�y) increases linearly with time to cover the entire
layer with optimum resolution at each instant. The number
of vortices present in each box at a given time is averaged
over an ensemble of 512 realizations. This gives the single
vortex distribution function f1[x,y,t], which is normalized
such that

∑
f1�x�y = L2. (We use this normalization for

convenience as it renders f1 dimensionless, in contrast with
the conventional definition.) Note that this single-particle dis-
tribution function is related to the ensemble-averaged vorticity
as f1 = 〈ω〉/(�U/L). Since the system is homogeneous in x,
large-ensemble averages should be independent of x. However,
even for the ensemble sizes used in the present simulations,
there are fluctuations in f1 of up to 10% along x. Therefore,
in order to improve the statistics, f1[x,y,t] is averaged over x

to obtain f1[y,t], with
∑

f1�y = L.
From Fig. 10(a), which shows Regime II data at different

times for two cases in which initial conditions and number
of vortices are both different, f1[y,t] takes the universal form
given by

θ [t]

L
f1[y,t] = �1

[
y

θ [t]

]
, (11)

where �1 is the self-similarity function; i.e., the function
f 1[y,t] of two independent arguments is reduced to a function
a single argument y/θ [t].

Further, when t�U is such that C3 � t�U � L, Eq. (10)
shows that θ is linear in t�U . Therefore, in the limit of t/tRI →
∞ (equivalently, L/l → ∞ for a given a/l), f1 follows self-
similar scaling in Regime II:

f1[y,t] = L

t�U
�2

[ y

t�U

]
. (12)

This relation is closely followed for the case R4-1600 beyond
t�U/L = 0.2, as seen in Fig. 10(b). This result is important,
for the similarity form of the solution (12) is not admitted by
the kinetic theory proposed by Chavanis (Eq. 129 of [55]).

To explore this issue further, we compute the two-vortex
distribution function f2[x1,y1,x2,y2] by ensemble averaging
the product of the number of vortices in two given boxes
around (x1,y1), (x2,y2) at a given time. We define the two-
vortex correlation function f ′

2 as

f ′
2[x1,y1,x2,y2] = f2[x1,y1,x2,y2] − f1[x1,y1]f1[x2,y2].

(13)

FIG. 10. (Color online) (a) Single-particle distribution function
for different cases when scaled by momentum thickness. (b) Self-
similar scaling of single-particle distribution function (for R4-1600).

If f1[x1,y1] is statistically independent of f1[x2,y2], i.e.,
if we make the analog of Boltzmann’s “molecular” chaos
assumption, then the right hand side will vanish. Now due to
x homogeneity f ′

2 should depend only on y1,y2 and |x1 − x2|
for a sufficiently large ensemble. Again, averaging over x to
improve the statistics we present f ′

2[|x1 − x2|,y1,y2] versus
|x1 − x2| for fixed y1 and y2 (both set close to zero) in Fig. 11.
It can be immediately seen that f ′

2 shows a systematic variation
with |x1 − x2| and can take values several times that of the local
f1 ∗ f1 at small |x1 − x2|. Furthermore, f ′

2 takes both large

FIG. 11. (Color online) Temporal evolution of f ′
2 as a function

of x separation at y1 = y2 = 0.0029t�U during Regime II of case
R4-1600. Note that there is self-similar scaling except at very small
|x1 − x2|.
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positive and large negative values, indicating the presence
of strong two-vortex correlations of both signs alternating
between each other.

To understand the |x1 − x2| dependence of f ′
2 exhibited in

Fig. 11, it is instructive to relate it to the coherent structures in
the flow, in particular to the length scales associated with their
size and the spacing. These are obtained as follows. From an
analysis of the snapshots of the vortex configurations such as
those in Fig. 7, we find that the average number of coherent
structures in the L domain during Regime II is approximately
4L/t�U in the limit C3 � t�U � L, and hence the average
x distance between their centers is approximately (1/4)t�U ,
equivalently about 15θ from Eq. (12). Further, from Fig. 7,
the size of the structures is approximately half the spacing
between their centers, i.e., about (1/8)t�U or 7.5θ . The
nearest “braid” region therefore lies between approximately
0.06 and 0.19t�U from the center of a structure.

Returning to Fig. 11, it is seen that the functional depen-
dence of f ′

2 on the x separation exhibits four distinct regions.
(A) At small separations (|x1 − x2| < 0.05t�U near the

x axis), which approximately corresponds to distances within
the same structure (i.e., less than half the average size of the
structure), f ′

2 is several times f1 ∗ f1 and positive.
(B) At distances 0.05t�U < |x1 − x2| < 0.15t�U , f ′

2 is
of order f1 ∗ f1 and negative. This clearly characterizes the
braid region between two neighboring structures.

(C) At somewhat larger separations f ′
2 oscillates between

positive and negative values, with amplitude diminishing with
distance. The first positive peak is located at approximately
0.22t�U , which is roughly the distance to the center of the next
structure, and reflects the degree of order in the arrangement of
nearby structures. The peaks progressively decay with larger
separation.

(D) At large distances (|x1 − x2| � 0.4t�U ) f ′
2 is negli-

gible, indicating that vortex positions are uncorrelated. It is
only in this region that the analog of Boltzmann’s “molecular
chaos” is valid.

It can be seen from Fig. 12 that the observed values of
f ′

2 are N independent to a very good approximation. Hence,
in the vortex-gas shear layer, f ′

2 can neither be neglected as
in most Boltzmann-inspired “kinetic theories” [10,13,55,56]
nor be considered as O(1/N ) as proposed in some recent work
[11]. This indicates that large values of f ′

2 in the present system
are not finite-N effects, but rather an indication of the strong
correlations attributable to the observed size and spacing of
the coherent structures.

Further, it can also be seen from Fig. 12 that f ′
2 at two

different values of y coordinates is qualitatively similar but
quantitatively different. This may be related to the scatter of y

locations of the coherent structures, but a detailed analysis of
the complete structure of f ′

2 will be separately presented.
Also shown in the same figure is the variation of f ′

2 for
two initial conditions whose amplitudes differ by three orders
of magnitude. The differences in f ′

2 are negligible, in general,
but become barely noticeable between the two cases as |x1 −
x2| → 0. On returning to Fig. 11, we can also observe the
lack of self-similarity of f ′

2 as |x1 − x2| → 0. However, there
does not seem to be any evidence against self-similarity and
universality of f1 (Fig. 10).

FIG. 12. (Color online) Variation of f ′
2 with number of vortices

(note that the maximum value of f2 changes by less than 5% from
N = 400 to 1600, which is within the statistical uncertainty), initial
conditions and with y/θ at t�U/L = 0.8.

A possible heuristic explanation for this apparent incon-
sistency is as follows. When the structures grow in size
with time, the average intervortex spacing is expected to
increase in most parts of the system. In order to conserve
the Hamiltonian, this has to be balanced by reduction of
intervortex spacing somewhere else in the system, possibly
near the center of the structures. This explanation would not
be inconsistent with the observation self-similarity of f ′

2 except
at the center of the structures, i.e., when |x1 − x2| → 0, where
the normalized f ′

2 increases with time (i.e., the relative vortex
density, and hence the correlations, increase at the center of the
structures as they grow in size with time). Similarly, different
classes of initial conditions would have different values for the
Hamiltonian, whose conservation would demand a variation
in density of cores and hence correlations across the different
initial-condition classes. We return to this in Sec. VI.

However, it has to be noted that the coherent structures
occur at different y locations, as observed in Figs. 2 and 7.
As a consequence, on averaging over different realizations,
the effect of the vortex distribution within the clusters plays an
insignificant role in determining the single-particle distribution
function f1. This is also explained in detail during the analysis
of Regime III in the following section. We show that as long
as more than one structure is present (which is also the case in
Regime II), the vortex distribution within the structure does
not significantly alter either the single-particle distribution
function and hence the mean vorticity and velocity profiles,
or the layer thickness, but becomes important when only one
structure is left in the domain.

The central message these analyses convey is that the
vortex-gas shear layer is strongly correlated and existing
“kinetic theory” approaches based on the Boltzmann equation
that neglect correlations or consider them as O(1/N ) are
inapplicable in Regime II. Furthermore, several of the features
of the two-particle correlation function can be qualitatively
explained or interpreted in terms of the observed properties of
the coherent structures.
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VI. REGIME III AND CONNECTIONS TO
STATISTICAL-MECHANICAL EQUILIBRIUM

Most statistical-mechanical analyses of a system involve
questions regarding its final or asymptotic state. For an
isolated vortex-gas system, it was proposed by Onsager that
for energies greater than a critical value, the formally defined
temperature becomes negative and leads to the emergence of
large-scale order by clumping of like-signed vortices. These
ideas were further developed by Joyce and Montgomery [57]
and by Lundgren and Pointin [6]. The latter derived a closed-
form expression for the equilibrium single-particle distribution
of point vortices of same sign and identical strength in an
infinite plane. Miller [2] and Robert and Sommeria [58]
developed statistical theories for the Euler equation (which is a
fluid-dynamic analog of the Lynden-Bell theory [59] of stellar
systems). The kinetic theory of vortices formulated by Chava-
nis [10,55], in a spirit similar to that of the Boltzmann equation
for gases, considers the evolution of the system as a relaxation
to a “Boltzmann distribution” defined for the vortex gas.

The present simulations provide a basis for an assessment
of the various theoretical ideas concerning relaxation to an
asymptotic state. Figure 13 shows the evolution of momentum

thickness during long-time vortex-gas simulations in six cases.
We recall from Sec. III that Regime III is that part of the
solution where the statistics depart from the universal linear
growth of Regime II and exhibit a dependence on (and scale
with) domain size. Figure 13 reveals that this regime has
three distinct subregimes. It can be observed in all the cases
simulated here that, immediately following Regime II, there
is a rapid but nonlinear and domain-dependent increase in
thickness that scales with L and extends to about t�U/L ∼
4. We call this Regime III(a). Beyond this, the thickness
evolves very slowly over very long time scales, changing over
104L/�U by less than 20% of its value at 4L/�U . This
subregime is labeled III(b) and appears to reach asymptotically
a final state of constant thickness, Regime III(c).

Each of these subregimes of Regime III is now considered
in turn.

Regime III(a). From Fig. 13(a), it is seen that although
the evolution of momentum thickness begins to depart from
the linear growth of Regime II at around (t − t0)�U/L ∼
1, it remains universal (with L as the length scale) and is
independent of initial conditions or N , until about t�U/L ∼
3. We find that in Regime III(a) the number of structures can
vary from 4 to 1.

FIG. 13. (Color online) (a) Complete evolution of shear layer thickness, showing subregimes of Regime III and their relation to Regimes I
and II for different initial conditions and N . [In order to optimize computational effort, large member ensemble averages have been used for
Regimes I, II, and III(a) and a combination of ensemble and short time averaging has been used at later times; data for t�U/L > 103 are from
single realizations.] (b) Distribution of vortices within “structures” in Regimes III(a) (top row) and III(b) (bottom row), with “gentle” (case
400a) and “highly disturbed” (case 400b) initial conditions.
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Figure 13(b) shows a snapshot of vortex locations for cases
400a and 400b (with two different realizations in each case),
both having the same number (400) of vortices but initial y

displacements drawn from uniform random distributions of
widely different amplitudes, 1.25 × 10−5L (to be called the
“gentle” case) and 0.04L (“highly disturbed” stronger case),
respectively. It can be observed from Fig. 13(b) that, in the
left panel, simulations in the gentle case show structures with
dense cores, characterized by high concentration of vortices.
With highly disturbed initial disturbances (right panel, 400b)
the cores are not so dense.

From the snapshots in the top panel in Fig. 13(b), at
t�U/L = 2.5 corresponding to an early phase in Regime
III(a), it can be seen that the size and relative locations of the
two coherent structures present in the domain are similar. Also,
there is almost no difference in the x- (and ensemble) averaged
single-vortex distribution function f1. This suggests that the
averaged vorticity and velocity profiles have only a weak
dependence on the distribution of vortices within each coherent
structure as compared to the distribution of the coherent
structures in the domain. The bottom panel, at t�U/L = 15, is
discussed in the next section. These observations indicate why
the evolution of θ obtained from the x- and ensemble-averaged
velocity distribution is universal for different initial-condition
classes, whereas the vorticity distribution within a single
coherent structure is not. Variations in the y locations of
the structures averages out the effect of vorticity distribution
within each structure. This also explains the universality of
f1 in spite of the nonuniversality of f ′

2 at small |x1 − x2| in
Regime II shown in Fig. 12.

Regime III(b). Figure 13 shows that, following III(a), the
momentum thickness varies very slowly, ((�(θ/L) < 0.01
during 4 < t�U/L < 104, a change less than 20% of that seen
during 0 < t�U/L < 4). Indeed, θ seems to asymptotically
approach a constant value. Further, beyond t�U/L ∼ 4,
there is only one structure left in the domain [for evidence,
see inset in Fig. 5, also Fig. 13(b)], and the evolution of
momentum thickness is no longer universal. We label this
subregime III(b).

The lack of universality in Regime III(b) [and subsequently
also in III(c)] is consistent with the argument presented above
for Regime III(a); namely, the gentler initial conditions lead
to higher vortex density in the core of the structure. It can be
seen from Fig. 13(b) that, in contrast to III(a), III(b) shows
significant differences in f1, which has a tall narrow peak
at the center, showing the small dense cores in the gentle
initial condition case. Since III(b) involves a single structure,
and since the y centroid is invariant in time, the ordinate
of the core of the structure would be similar in different
realizations. Hence, unlike in Regimes II and III(a), an altered
distribution of vorticity within the structure does affect the
ensemble-averaged statistics. This explanation is consistent
with the observation of lower thickness for the gentler initial
conditions in Regime III(b), shown in Fig. 13(a). Further, the
early part of III(b) follows Euler dynamics under certain limits,
and the thickness is a function of only a/L, as shown in the
inset. This is discussed further when we compare the present
results with Navier-Stokes solutions in Sec. VII.

Regime III(c). We label the statistically stationary asymp-
totic state (t�U/L → ∞) III(c). In the present simulations

FIG. 14. (Color online) (a) Vortex positions in Regime III(b) at
times t�U/L = 15 000 (left) and 21 000 (right). (b) The single vortex
distribution of (x − xcore,y) at t�U/L = 15 000 and 21 000, averaged
over 250L/�U . Note invariance with time.

with N = 400, this state appears to be attained (for all practical
purposes) when t�U/L > 104.

To study this regime, very long-time simulations (t�U/L

up to 3 × 104) have been performed, with N ranging from 50
to 400. Figure 14(a) shows snapshots of the vortex locations
at two different times, respectively, 15 000 and 21 000 L/�U .
It can be seen that at both times there is a single structure
with a similar configuration of vortices within the structure,
but the structure itself is found at different x locations. The
lone structure in the domain, in fact, keeps moving back
and forth in x, sampling the entire domain over time scales
of O(103L/�U ). Figure 15(a) shows the time series of the
position of the core of the structure. (The core represents
the zone of highest vortex density, and its position is taken
as the x location xcore of the vertical strip with the highest
number of vortices, out of 101 vertical strips of equal width
over the domain.) On the right in Fig. 15(a) the histogram
representing the probability density function (PDF) of xcore

shows that it samples the entire domain with roughly equal
probability. This is consistent with ergodicity because, unlike
in the case of the infinite plane, the x centroid (in the sense it
has been used in this paper) of the present x-periodic system
is not conserved [however, (

∑
i xi)modL is conserved]. From

Fig. 15(b) it is seen that the PDF of the velocity of the core
does not change with time beyond 15 000L/�U , and appears
to agree well with a Gaussian of zero mean. All this evidence
confirms that xcore[t] tends to a stationary stochastic process
in the limit t → ∞ (at any fixed N ).

As the size of the structure in the final state scales with L, the
effect of boundaries cannot be neglected in III(c) however large
the domain may be. This shows that the common argument
about a final state independent of the boundary conditions,
widely used in much of statistical mechanics, is not applicable
to the problem of determining the final state of the present
system involving long-range interactions.

However, according to Fig. 15(a) the number of crossings
of x = 0.5L with N = 400 is roughly half that at N = 50, so
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FIG. 15. (Color online) (a) Motion of the core of the structure in Regime III(b). The solution samples all x-translated states but with very
long time scales that increase with increase in number of vortices. Also shown is a histogram of the locations sampled by the core over
t = 15 000–27 000L/�U for N = 400. (b) The motion of the core relaxes to a stationary stochastic process as can been seen from the PDF of
a characteristic velocity (defined as the distance moved by the core as a fraction of the domain during one L/�U ). (c) The velocity of the core
decreases with increasing number of vortices as N−0.4.

the time taken by the structure for crossing the L domain is
twice as long at the higher value of N . From Fig. 15(c), the
standard deviation of a characteristic velocity of the structure
decreases like N−0.4. Thus, if the limit N → ∞ is taken first,
the possibility that the structure may be stationary as t → ∞
cannot be ruled out. The final asymptotic state, as well as
ergodic behavior in x, could therefore depend on the order in
which the limits t → ∞ and N → ∞ are taken (as pointed out
by Chavanis [11] in the more generalized context of vortex-gas
statistical mechanics).

Reverting to the limit t → ∞ of an N -vortex system, we
now study the distribution of the vortices within the structure
relative to the (moving) center. We carry out a “short-time
average” (over a duration of 250L/�U ) of the location of
vortices around the core at 15 000 and 21 000 L/�U . This is
shown in Fig. 14(b). It is seen that there is very little variation
between the single-vortex distributions across the two times.
Further, as the orientation of the oval shape does not change,
the structure as a whole is not in solid body rotation, but
the individual vortices are in relative motion with respect
to each other, as, for example, in density wave motion in
galaxies.

This leads to perhaps the most important question in the
statistical-mechanical analysis of any system, namely whether
a state of equilibrium (relative to a moving structure) exists,
and, if so, whether it has been reached or not at any given time.
A necessary but not sufficient condition for the system to be in
equilibrium is that molecular chaos should have set in; more
precisely, the two-point correlation functions f ′

2 must vanish in
the thermodynamic limit N → ∞. That would be consistent

with all higher order correlation functions also tending to
zero. This question is specifically addressed in Fig. 16. It is

FIG. 16. (Color online) Comparison of distribution functions for
vortices relative to the center in Regime III(c) (averaged over
t�U/L = 15 000–27 000).
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seen that f ′
2 computed from the time-averaged statistics in

the frame of reference of the moving structure [Fig. 16(b)] is
small compared to f1 ∗ f1 [Fig. 16(a)]. Thus, molecular chaos
(f2 = f1 ∗ f1) should be a reasonable assumption in attempts
to analyze the statistics of the distribution of vortices within
the moving structure. A comparison may be made with the
same distribution function in Regime II, where the difference
f2 − f1 ∗ f1 was found to be significant (Figs. 11 and 12).

Now we turn to the necessary and sufficient conditions for
equilibrium: The single-particle distribution must be indepen-
dent of time and be governed by a single parameter, namely
the temperature or its equivalent. The time independence
has already been satisfactorily demonstrated in Fig. 14(b).
The temperature may be estimated based on the results of
Joyce and Montgomery [57] and Chavanis [55]. According to
them, equilibrium is described by the single-vortex Boltzmann
distribution

�U

L
f1 ≡ 〈ω〉 = A exp[−Bψ],

where B = ρβγ , ρ is a density (not necessarily that of the
fluid), β = 1/(kBT ), kB is the Boltzmann constant and ψ is
the stream function defined by u = ∂ψ/∂y,v = −∂ψ/∂x.

The averaged stream function at the ith box, ψ[i], can be
computed numerically from the computed discrete values of
f1 using the expression (easily derived from Eqs. (1) and (2)
and the definition of ψ and f1)

ψ[i] = −�U

L

1

4π

∑
i �=j

f1[j ] ln

(
1

2

{
cosh

[
2π (yi − yj )

L

]

− cos

[
2π (xi − xj )

L

] })
�x�y.

For the present simulation of case 400a, it is seen from Fig. 17
that the ψ-ω relationship in Regime III(c) follows the Boltz-
mann distribution for f1 > 0.03. The value of B, estimated
by best fit to the time-averaged data, is −24.3/(�UL), so

FIG. 17. (Color online) (a) The stream function-vorticity relation
in the frame of the moving structure in Regime III(c) (averaged over
t�U/L = 15 000–27 000) for case 400a. (b) Contour plot of the
stream function for the same.

β = −24.3/ρNγ 2. (The two seemingly distinct branches for
f1 < 0.03 in Fig. 17 correspond to data from the top and
bottom of the layer, implying some up-down asymmetry, but
this is expected to disappear with sufficiently long averaging.)

Since 〈ω〉 ≡ −∇2ψ , a partial differential equation can be
written for the stream function [57] using as source density the
Boltzmann distribution for f1,

−∇2ψ = A exp[−Bψ]. (14)

A closed-form solution of the above equation was derived by
Lundgren and Pointin [6] for the infinite plane, but none has
been reported so far under the present boundary conditions.
One interpretation of the present results emerges from a
comparison of the distribution function obtained numerically
here for the shear layer with the Lundgren-Pointin solution for
the infinite plane,

P [r/R0] = Ã exp[−(1 + λ)(r/R0)2]

[1 − πλÃ(r/R0)2]2
. (15)

Here r is the radial distance from the centroid, R0 is the
radius of gyration, λ = ρNγ 2β/(8π ), and Ã is a normalization
constant that ensures

∫ ∞
0 2πrP [r]dr = 1. Some words of

caution are, however, necessary here as the infinite plane
problem studied by L-P has the Hamiltonian given by
Eq. (3), which is clearly different from the present Hamiltonian
given by Eq. (4). The conserved quantities are also different in
the two cases.

A value for λ can be determined by making a best fit to the
L-P distribution function (18). As seen in Fig. 14(b), the vortex
distribution in the present problem is not isotropic, because
of periodicity only along the x direction and a domain that
extends to ±∞ in y. To analyze the distribution, we perform
sectorwise averaging in the x-y plane and renormalize with
the number of vortices in the respective sector. We then find
that the radial distribution of vortices in each of the three
distinct sectors shown in Fig. 18 approximately follows a
truncated Lundgren-Pointin distribution, with λ (determined
by best fit) taking the values −0.972, −0.985, and −0.9884 as
we move from the sector covering the x axis to that covering
the y axis. With the use of the present nonangular description
for x, the distribution function also gets truncated. We note
that the values of λ thus obtained are close to −1, the lowest
value allowed by L-P. This could be due to the present initial
conditions, wherein the vortices are concentrated in a thin
strip, which result in high energy configurations that lead to
negatively high temperatures.

The inverse temperature β takes values of −24.46/(ρNγ 2),
−24.79/(ρNγ 2), and −24.84/(ρNγ 2) in the three sectors,
respectively, going counterclockwise from x to y axes. Further,
we find that λ based on the LP relation between scaled
energy and λ is −0.999 99 and hence the corresponding
β = −25.167/(ρNγ 2). These values are very close to the
value of −24.3/(ρNγ 2) earlier determined for β using
the ψ-ω relationship. This shows that the temperature of
the present vortex-gas system, regardless of the method of
estimation, is negative, corroborating the seminal idea of
Onsager, namely the connection between negative temperature
states and emergence of order in the form of coherent
structures.
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Onsager did not deal explicitly with questions of the
thermodynamic limit in his paper, but they are important
for the statistical mechanics of the vortex gas. Frohlich and
Ruelle [60] carried out a rigorous analysis of a neutral vortex
gas for the case in which the energy grows linearly with N

when individual vortex strengths are held fixed. (While energy
formally scales as N2, the N2 terms were assumed to cancel
out [60] for the neutral case and thus energy may scale as
N . However, this need not be the case when the positive
and negative vortices separate). Frohlich and Ruelle studied
the limit N → ∞ with the average energy per particle E/N

and the number density N/A (A is the area of the domain)
held fixed without any scaling of γ . They showed that in
such a formulation there are no negative temperatures in the
thermodynamic limit. Eyink and Spohn [7] showed that for
obtaining negative temperatures energies that scale as N2 must
be considered. Eyink and Sreenivasan [8] present a review and
discussion on the above issues, and state that a nontrivial limit
with energy of O(1) can be obtained only if γ ∼ O(1/N ).
This limit has often been adopted, including in some recent
studies [11]. Note that in all of the above mentioned studies,
ρ is kept fixed.

In the free shear layer problem all the vortices are of the
same sign, and hence there is a well defined total circulation
prescribed by the fluid dynamics. Hence, the natural limit is
N → ∞,γ → 0, with Nγ = L�U fixed, as it recovers the
continuous vorticity distribution of a temporal shear layer in a
given domain L and with a prescribed velocity difference �U .
Thus, both L and �U , fixed by the underlying fluid-dynamical
problem, are independent of N .

If we also adopt the conventional fluid-dynamic definition
of energy given by E = ρlH , where ρl is the density of
the fluid (which is independent of the properties of the
vortex gas), the energy scales as (L�U )2 and hence is

FIG. 18. (Color online) Sector-averaged radial (core-centered)
distribution function in Regime III. Each sectorwise distribution
function is similar to a Lundgren-Pointin equilibrium type but of
different “temperature.” R0 is the initial value of the second moment.
Note that the sectors are chosen only for illustration and numerical
convenience and that the “temperature” is expected to continuously
vary with tan−1[x/y].

N independent and nonextensive (in N ). This leads to the
temperature scaling as ρlNγ 2 = ρl(L�U )2/N , which is N

dependent and goes to zero in the thermodynamic limit. This
is an expected consequence of a nonextensive energy but an
extensive entropy. Adopting the fluid dynamically relevant
limits therefore leads to “strange thermodynamics.”

However, we must note that just as the temperature of the
vortex-gas system (which could be negative) is not related
to the temperature of the fluid (which is strictly positive),
the energy of the vortex-gas system is not directly related
to the energy of the fluid. This also implies that the density
in the expressions for energy and temperature need not be
related to the density of the fluid. Therefore, one is free to
determine an appropriate “density” for the vortex gas. To do
this, we revisit Hamilton’s equations [Eq. (5)] and recast them
in a form in which the respective quantities have the usual
dimensions of position, momentum, and energy,

dXi

dt
= ∂E

∂Yi

,
dYi

dt
= − ∂E

∂Xi

, (16)

with positions Xi = xi , momenta Yi = Ayi , and energy E =
H, where A is a constant factor that provides Yi the units of
momentum and has units of density, so that E has the units
of energy. Any rescaling of xi and yi by γ -dependent factors
implies that such a scaling would be sensitive to the particular
limits chosen, and a clear discussion is not straightforward.
For the Biot-Savart equations (1) and (2) to be recovered, A
should be set to γρ. Since A is a constant factor, ρ ∼ 1/γ .
This density does not have a direct physical interpretation (as
it is related to neither the number density of the vortices nor
the density of the fluid) and only ensures that the transformed
quantities in Hamilton’s equations for the vortex-gas system
have conventional dimensions.

However, if we adopt the above definition of density in
the expressions for energy and temperature, we find that
in the fluid-dynamically relevant limit γ ∼ 1/N , we have
E = ρH ∼ (1/γ )(N2γ 2) ∼ N . This is an extensive energy
function, consistent with standard thermodynamics. Temper-
ature scales as ρNγ 2 ∼ Nγ , which is a finite nonvanishing
N -independent fixed quantity L�U even in the limit N → ∞.
With this definition of density, the fluid-dynamically relevant
limits are also consistent with standard thermodynamics, and
under these limits our simulation results when combined with
the Joyce-Montgomery relation also point to the temperature
having a linear dependence on L�U .

We now make a few brief remarks on the issue of recurrence.
While the Poincaré theorem suggests reversibility, it is well
known in statistical mechanics that the recurrence times often
increase exponentially with N and can be astronomical for
large-N systems [61]. Hence, such a recurrence is not expected
to be observed in any realistic-time calculation involving a
reasonable value of N . However, since Birkhoff and Fisher [48]
suggested that a vortex sheet (discretized using point vortices)
will eventually unroll following the Poincaré theorem, we
briefly explore this issue even though it is not entirely clear
whether the theorem applies to this problem. Further, it is
unlikely that any numerical scheme could return a system of
point vortices to a close vicinity of the initial state even if the
Poincare theorem holds, due to nonzero numerical noise (as
discussed in Sec. II D). So we explore this issue using a weak
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criterion of recurrence, defined by the rms value of y positions
of the vortices being within a 20% neighborhood of the initial
value. Simulations performed with four to seven vortices show
that such a weak recurrence does occur (for single realizations)
over very long time scales. For N = 6, average recurrence time
trec ∼ 25 000L/�U , and is found to increase exponentially
with N . On extrapolation, trec � 1064L/�U for N � 102,
which is 60 orders of magnitude longer than the maximum time
of integration in the simulations. Further, instability ensures
that such an unrolling is immediately followed by rolling.
While we cannot be certain that the final state reached in
the present simulations is representative of pure Hamiltonian
dynamics, the above findings are not inconsistent with the
remarks of Birkhoff and Fisher. Thus, the present observation
of the average equilibrium thickness being much larger than the
initial thickness does not necessarily contradict the argument
that rolling has to be followed by unrolling at some point in
time. Instead, it only suggests that the time spent in the unrolled
states is only a very small fraction of the total time and hence
is not reflected in the statistics involving long-time averages.

VII. RELEVANCE TO NAVIER-STOKES MIXING LAYERS

So far, we have considered the vortex-gas shear layer
as a prototypical problem in nonequilibrium statistical me-
chanics in its own right. It is, however, known that under
certain conditions discrete point-vortex simulations can tend
to smooth solutions of the Euler equations [62,63]. Also, as
discussed in the Introduction, the effect of viscosity becomes
vanishingly small at high Reynolds numbers in turbulent free
shear flows. Furthermore, experiments show that plane mixing
layers are dominated by the largely inviscid interaction of
quasi-2D coherent structures and that growth occurs through
amalgamation of such coherent structures [15,28]. Vortex-
gas simulations show the same mechanisms in operation.
Therefore, it is of interest to analyze briefly connections with
2D and (“real”) 3D Navier-Stokes mixing layers.

A. Regimes I and II: Comparison with laboratory experiments

As the analog of Regime III has never been reported in
any experimental study of mixing layers, Regimes I and II
are most relevant for comparison with available experimental
data. Further, the explosively relaxing Regime II is analogous
to the “self-preserving” state [53] in a turbulent shear flow.
From dimensional analysis, the growth rate of a canonical 3D
Navier-Stokes temporal mixing layer is given by

dδ̂

d(t�U )
= F [Re,{initial conditions}] . (17)

Two major assumptions are introduced at this stage: (i) Any tur-
bulent flow (subject to constant boundary conditions) evolves
asymptotically to a state independent of the detailed initial
conditions excepting for any integral invariants demanded by
mass, momentum, and/or energy conservation, and (ii) “if the
equations and boundary conditions admit a self-preserving
solution the flow asymptotically tends to that solution.” Both
hypotheses, while being controversial, are extensively used in
turbulent shear flow analyses (see “working rules” (2) and (3)
in Ref. [64]).

Such rules imply that, eventually, the initial conditions are
“forgotten” as t → ∞ and the effect of Reynolds number
becomes vanishingly small at sufficiently large Reynolds
numbers. Equation (17) then reduces to

dδ̂

d(t�U )
= C2. (18)

The question of whether the constant C1 is universal in the
vortex-gas shear layer is analogous to the controversy on the
possible dependence of the self-preservation state of turbulent
shear flows on initial conditions [16,54,64–66], i.e., whether
C2 is a universal constant.

Sinusoidally perturbed mixing layers (referred to as “pe-
riodically forced” mixing layers in the fluid-dynamical lit-
erature) provide excellent test cases for comparison with
experiments as the dominant initial perturbation is accurately
known. Experiments show that sinusoidal perturbations greatly
alter the development of the mixing layer, and this has led
to strong doubts about universality [16,67]. The perturbation
can be imposed in many ways: oscillating the free streams
[68], acoustic excitation by loud speakers [69], or periodic
deflection of a flapper at the end of the splitter plate [16,70,71].
The last method basically imposes a periodic deflection on a
vorticity layer at its origin x = 0 [see Fig. 1(c)]. The analog
for the temporal vortex-gas shear layer is to have an initial
y displacement of vortices that varies sinusoidally with x, as
with cases P1 and P2 discussed in Sec. IV.

On this basis, we compare experimental results of the
spatial mixing layer reported by Oster and Wygnanski [16]
with the present temporal vortex-gas simulations using the
Galilean transformation x = Umt . Two such cases are shown
in Fig. 19. We compare the evolution of thickness with
time, both nondimensionalized using the wavelength of the
perturbation as the length scale. The simulations are chosen to
have approximately the same value of amplitude to wavelength
ratio of the initial perturbation as in the experiment. This
implies initializing vortex locations in the simulations as xi =
N (i/L); yi = aw sin[2πxi/
] + anYi , where Yi is a random
number uniformly distributed between −1 and 1, and aw/
 =
af f/Um, where af and f are amplitude and frequency of
flapper motion in the experiment. We have added a random
disturbance an to the periodic vortex deflection imposed at
t = 0 to allow for the presence of tunnel free-stream turbulence
and other facility-specific random disturbance sources on the
flow. This may also be a proxy for effects due to spatial
feedback or three dimensionality.

Figure 19(a) shows the evolution of momentum thickness
for aw/
 = 0.0074 for two different values of an/aw. We find
from both the simulations that the spreading rate is first en-
hanced (higher than the Regime II value) and then suppressed,
but finally appears to approach the universal spreading rate in
Regime II. The vortex-gas simulation with an/aw = 1.5 agrees
quantitatively with the Oster-Wygnanksi experiment [16] with
af f/Um = 0.0074 all the way. If an/aw is drastically reduced
to 10−3, the simulation still agrees qualitatively with the ob-
served behavior of the mixing layer, but the temporal extent of
suppression is longer. Interestingly, addition of the disturbance
an hardly affects the early evolution of the layer (t�U/
 < 2)
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FIG. 19. (Color online) Comparison of temporal evolution of
momentum thickness in the present vortex-gas computations with
sinusoidal (in x) initial conditions (t = 0) with the spatial evolution
of momentum thickness in experiments (Oster and Wygnanski, 1982)
with sinusoidal (in t) perturbation at x = 0.

or the Regime II spreading rate (reached beyond t�U/
 ∼ 8).
The agreement seen in Fig. 19(a) is therefore encouraging.

In Fig. 19(b) we compare the results of case P1 with
the experiment with approximately the same amplitude to
wavelength ratio. Here the experiments do not go beyond the
initial growth-enhancement phase (t�U/
 < 2). However,
the simulation shows excellent agreement with experiment,
but continues into the two later phases, respectively of
suppressed growth and recovery towards universality, shown
in Fig. 19.

The good agreement of the vortex-gas simulations with the
experiment over the range of data available suggests that the
attribution of data like those in Fig. 19(a) or 19(b) to lack of
universality may not be justified. The obvious interpretation
of the experimental data is that introducing strong long-wave
periodic perturbations just makes Regime I much longer.
Extrapolating from the simulation results of Fig. 19(b) on
the time taken to reach Regime II, the distance necessary to
reach the equivalent state would be six times as long as the
spatial range available in the experimental facility used: the
wind-tunnel test section length would have to be increased
from 1.5 to about 9.0 m. Further comparisons made with
similar experiments reported recently by Naka et al. (2010)
show agreement almost as good (not shown here). In these
studies also, as in Fig. 19(b), the entire experimental region
lies in Regime I.

The Regime II universal growth rate found here is within
the range quoted across different experiments (0.012 to 0.022)
(see [24] and [20]) and Direct Numerical Simulations (DNS) /
Large Eddy Simulations (LES) studies of 3D Navier-Stokes
temporal mixing layers (0.012 to 0.018). These observations
indicate that the conclusions on Regime II drawn from the
present vortex-gas study are relevant to real mixing layers. A
more detailed analysis of the scatter in the quoted spreading
rates will be presented elsewhere.

B. Regime III: Comparison with 2D Navier-Stokes simulations

Although Regime III has not been a subject of any exper-
imental studies, the long-time 2D Navier-Stokes simulations
due to Sommeria et al. [23] provide a useful benchmark in this
context, and a comparison of their results with the present work
proves illuminating. They consider a constant-vorticity layer
of finite thickness with a piecewise linear velocity profile. This
can be represented by a suitable array of point vortices in the
Euler limit. One way of defining the relevant vortex-gas initial
condition is to have an array of vortices equispaced in x with y

displacements from the x axis drawn from a uniform random
initial distribution with amplitude a set equal to the half width
of the uniform vorticity layer, with l/a � 1. The comparison
is meaningful because, as discussed in the Introduction, a 2D
Navier-Stokes solution may also be expected to tend towards
a 2D Euler solution at any finite time in the limit Re → ∞, as
does a discrete vortex gas in the limit N → ∞.

We first return to the evolution of the momentum thickness
for t�U/L < 30 in the present vortex-gas simulations shown
in Fig. 13. Sommeria et al. [23] present results for evolution
of momentum thickness for two different initial half widths,
namely 0.017L and 0.034L, at Reynolds numbers L�U/ν

ranging from 9425 to 25133 (750 to 2000 in a definition of
Re = 1/ν with L = 2π and �U = 2). Their results show
an initially rapid growth of momentum thickness, with slow
changes beyond t�U/L ∼ 4. Since they do not perform en-
semble averaging, statistically accurate estimation of spread-
ing rates in Regime II is not possible. However, the situation
is different in the slowly varying Regime III as short-time
averaging can be carried out to improve the statistics.

It can be seen from Inset (a1) of Fig. 13 and Fig. 20
that at a/L = 0.04, the difference in momentum thickness
(averaged over 14 to 16 L/�U ) across N = 400, 800, and
1600 is only 1.3%. This suggests that for N > 400, the
solution hardly depends on N in the vortex-gas simulations,
and θ/L is a function only of a/L. From Fig. 20 it is
seen that the momentum thickness in Regime III(b1) (to
be introduced below) in the present simulations is within
1% of the corresponding value in the 2D Navier-Stokes
simulations(case with higher Re of 2000, a/L = 0.034).

We next compare the vorticity-stream-function relation in
the same two simulations in Regime III(b) characterized by a
slowly wandering single structure (in the finite-N vortex-gas
simulations). For this purpose, we compute ensemble and
short-time averages in a frame of reference fixed with respect
to the center of the structure. Further, since ψ is defined up to
an additive constant, it is adjusted to 0 at y = ±L following
Sommeria et al. Figure 21 compares the ψ-ω relation in
the 2D NS with the present vortex-gas simulations. The two
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FIG. 20. (Color online) Comparison of momentum thickness in
Regime III(b1) (averaged over t�U/L = 14 to 16) of the present
vortex-gas simulations with a/L = 0.04 with 2D Navier-Stokes [23]
with a/L = 0.034. Error bars show 95% confidence limits and the
dashed line shows a possible asymptotic value of thickness.

agree quite closely, over the range 0.05 < 〈ω〉/ω0 < 0.5 at
t�U/L ∼ 20, before viscous dissipation becomes dominant
in the NS solution. This agreement indicates that at such times
both computations closely follow Euler dynamics.

This result must be considered of great significance,
for the close agreement between two such physically and
mathematically distinct approaches to the same problem
establishes the quantitative relevance of the vortex-gas results
to high-Reynolds Navier-Stokes solutions in free turbulent
shear flows.

Relation to Euler equilibrium. We now return to a discus-
sion of the equilibrium state. As discussed in Sec. VI, on
neglecting correlations (i.e., setting f ′

2 = 0) and taking the
limit t → ∞ before the limit N → ∞, the single-particle

FIG. 21. (Color online) Comparison of the vorticity-stream-
function relation between a present vortex-gas computation and 2D
Navier-Stokes solution of Sommeria et al. [23] at similar parameter
values. 〈ω〉 is the time-averaged vorticity and ω0 is the maximum
vorticity in the initial condition. In the vortex-gas simulations,
〈ω〉 ≡ f1�U/L is the ensemble-averaged (coarse grained) vorticity
and ω0 = �U/(2a).

FIG. 22. (Color online) Comparison of present simulations at
two times with Euler equilibrium of Robert and Sommeria [58],
and the “Boltzmann” distribution of Onsager/Chavanis. Note that
both theoretical curves are two-parameter fits, and the averaging in
the present simulation has been done relative to the center of the
structure.

distribution at statistical equilibrium for a point vortex gas [32]
(also see [55]) is shown to be characterized by the Boltzmann
distribution. It is obtained by maximization of −∫

f1 ln[f1],
subject to the constraint of Hamiltonian conservation, and is
given by f1 ∼ exp[−Bψ], where the Lagrange multiplier B

can be interpreted in terms of an inverse temperature.
On the other hand, it has been proposed by Robert and

Sommeria [58] that an “equilibrium state” for Euler flow is
obtained through maximization of the Kullback entropy,

−
∫

(f1 ln[f1] + (1 − f1) ln[1 − f1]).

Here f1 is scaled with its maximum value in the initial
condition, subject to constraints of kinetic energy and linear
and angular momentum of the Euler flow. This limit is expected
to be reached if the limit N → ∞ precedes the limit t → ∞
[11]. This theory was applied to determine the final state of a
temporal shear layer in an Euler fluid [23] and compared with
the 2D Navier-Stokes simulations described earlier.

The present results, shown in Fig. 22, suggest that the
vortex gas has a tendency to relax to the Robert-Sommeria
Euler equilibrium at “intermediate times” of O(10L/�U ),
and to the Boltzmann-type equilibrium at much longer times
of O(102 − 104L/�U ) for N = 400,a/L = 0.04. We may
label these two subregimes of relaxation as III(b1) and III(b2).
This is not inconsistent with theoretical results [11,72], which
suggest that relaxation to equilibrium in a vortex gas has two
stages, namely a “violent relaxation” that closely approximates
Euler dynamics and a “slow relaxation” driven by finite-N
effects that appear at time scales of O(N log N ), beyond
which the vortex gas will relax to the Boltzmann distribution.
However, the values of N < 103 used in these long-time
simulations are not large enough for a strict comparison
with the proposed Euler equilibrium which is valid only at
sufficiently large N , when the time at which finite-N effects
become important is much longer than that required for
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relaxation to Euler equilibrium. The same limitation applies
for a rigorous verification of the proposed N log N scaling.
(Note that for the case considered in Fig. 22, N ln N ∼ 2400
and (Na/L) ln[Na/L] ∼ 45.)

VIII. CONCLUDING REMARKS

We have here uncovered, through extensive simulations,
certain remarkable properties of the statistical evolution of a
vortex-gas shear layer from a prescribed initial condition to
a final asymptotic state. The present simulations reveal the
spontaneous emergence of large-scale order in the form of
coherent structures as in earlier studies, but also the existence
of three distinct regimes in the evolution and their respective
scaling laws. We find that evolution in Regime I depends
strongly on initial conditions, Regime II exhibits a universal
linear growth in layer thickness with time, and Regime III is
a domain-dependent evolution to a final state that involves a
single cluster of vortices after violent and slow relaxations
[with outer time scales of O(10) and O(104), respectively].
The ψ-ω relationship in the vortex gas agrees with that
found in the 2D Navier-Stokes calculations during the violent
relaxation phase, suggesting that the vortex gas and the 2D
Navier-Stokes solutions approach the 2D Euler shear layer
from different directions. This also confirms that the vortex-gas
model provides a weak solution of the 2D Euler equations
[63]. The distribution of vortices within the randomly moving
structure reached at the end of the slow relaxation can
be roughly described by a truncated, anisotropic variant of
the Lundgren-Pointin distribution, and the ψ-ω relationship
approaches the Boltzmann distribution for the vortex gas,
hence constituting a “relative” equilibrium in the sense defined
by Newton [5]: Namely, the distribution is time-invariant
relative to the center of a nonstationary structure.

A major finding in this work is the universality of the
spreading rate (0.0166 ± 0.0002 for the momentum thickness)
of the vortex-gas shear layer in the intermediate Regime II,
across a wide range of initial conditions and domain sizes.
We show that vortex-gas kinetic theories inspired by the
Boltzmann equation are not applicable in Regime II, as they
do not account for the strong correlations due to multiple,
interacting coherent structures of vortices. This regime lasts
for just t�U/L = O(1), an order of magnitude shorter and
more intense than the violent relaxation process that occurs in
the early stages of Regime III, and can therefore be justifiably
called an explosive phase. Regime II is the counterpart
of the self-preserving flow regime observed in laboratory
experiments of turbulent shear flows in the sense that both
mean velocity and Reynolds shear stress profiles exhibit
self-similarity with the same velocity and length scales (�U

and θ in the present case) in the regime. Flows with such
self-similarity are often said to be in a state of “equilibrium”
in the fluid-dynamical literature (following Clauser [73]). It
is ironic that what represents equilibrium in fluid dynamics
occurs in what is an early explosive phase of relaxation in
nonequilibrium statistical mechanics.

From a fluid-dynamics perspective, the close agreement
between the evolution of momentum thickness in the present
simulations for periodic initial conditions on the one hand and
the observed behavior of spatially developing mixing layers

in laboratory (Navier-Stokes) experiments with equivalent
periodic forcing on the other is highly significant. Further, the
Regime II growth rate of the vortex-gas shear layer is within
the scatter of the quoted “self-preservation” spreading rates,
across several mixing layer experiments as well as 3D Navier-
Stokes simulations. These results suggest that the momentum
dispersal in the (Navier-Stokes) turbulent mixing layer is
dominated by what may be called the Kelvin/Biot-Savart
mechanism at high Reynolds numbers (Kelvin’s theorem pro-
vides the dynamical justification for considering nondiffusive
point vortices whose strength remains the same, and the
evolution of the collection of such vortices can be understood
via the purely kinematic Biot-Savart relationship). This also
supports the argument that strictly 2D approximation of the
vortex-gas approach is not unduly restrictive for determining
layer growth, as the coherent structures in plane mixing layers
tend to be quasi-2D. Further, this is also consistent with
the conclusions of the nonlinear calculations of Corcos and
Sherman [74] and Corcos and Lin [75], who show that 3D
instabilities are inhibited by the growth of the 2D instabilities
and are slow growing relative to the 2D coherent-structure
amalgamations. These considerations suggest that the present
results may be relevant to the long-standing controversy
of universality or otherwise of the self-preservation (“fluid-
dynamical equilibrium”) spreading rates of turbulent shear
flows. Some experiments report that an effect of initial
conditions on the spreading rate is present over the whole
extent of the flow investigated [16,76–78]. However, one
cannot, on the basis of such experiments, conclude that the
effects will persist “forever.” In any case, there are also other
studies which have shown that a unique self-preservation state
is indeed reached after long transients. For example, we may
consider the single-stream shear layer experiments of Kleis and
Hussain [79] (figure reproduced in Ref. [64]), conducted in a
12-ft-long chamber. The authors found that the spreading rates
of two mixing layers, evolving, respectively, from a laminar or
a turbulent boundary layer at the trailing edge of a splitter plate,
continue to exhibit differences until approximately 5 ft, after
which they both attain the same spreading rate. The present
vortex-gas simulations are consistent with the above example
in emphasizing that the memory of initial conditions can be
extraordinarily long for some initial conditions, but is finite
in all the cases considered at least in the 2D problem. This is
entirely consistent with the conclusion based on 2D wake flows
by Narasimha and Prabhu [54]. Comparison of the present
simulations with the experiments of Oster and Wygnanski [16]
and Naka et al. [71] suggest that, in many of their experiments,
the entire flow in the apparatus may have never gone beyond
what we identify here as Regime I. This result provides a
part of the explanation for the scatter among the quoted
“self-preservation” spreading rates in the fluid-dynamics
literature. Other possible explanations of the scatter in the
quoted spreading rates, especially across DNS/LES studies
of temporal mixing layers, include insufficient averaging and
estimation of Regime II spreading rates by fits extending to
what is actually the domain-affected Regime III. A detailed
discussion of this issue will be presented elsewhere.

From a statistical-mechanics point of view, many of the
present results could be more generally valid for other multi-
scale nonlinear systems with long range interactions, such as
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those in plasma and stellar dynamics. The most interesting
statistical-mechanics finding here may be the universality
of the exponent (=1) as well as the coefficient (=0.0166)
in the growth of layer thickness θ = 0.0166(t�U )1 + const.
with time during a highly correlated explosive relaxation
that is far from statistical-mechanical equilibrium. While
the universality of exponents is well known in the theory
of critical phenomena, the universality of the multiplying
coefficient found in the present system over a vast range of
initial-condition classes is at least unusual. The present results
may therefore have a special significance in nonequilibrium
statistical physics.
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