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Numerical analysis of a red blood cell flowing through a thin micropore
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Red blood cell (RBC) deformability plays a key role in microcirculation, especially in vessels that have
diameters even smaller than the nominal cell size. In this study, we numerically investigate the dynamics of an
RBC in a thin micropore. The RBC is modeled as a capsule with a thin hyperelastic membrane. In a numerical
simulation, we employ a boundary element method for fluid mechanics and a finite element method for membrane
mechanics. The resulting RBC deformation towards the flow direction is suppressed considerably by increased
cytoplasm viscosity, whereas the gap between the cell membrane and solid wall becomes smaller with higher
cytoplasm viscosity. We also measure the transit time of the RBC and find that nondimensional transit time
increases nonlinearly with respect to the viscosity ratio, whereas it is invariant to the capillary number. In
conclusion, cytoplasmic viscosity plays a key role in the dynamics of an RBC in a thin pore. The results of this
study will be useful for designing a microfluidic device to measure cytoplasmic viscosity.
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I. INTRODUCTION

Red blood cells (RBCs) have no nucleus and consist of
a nearly Newtonian hemoglobin solution in the membrane.
The cell membrane is constructed by a lipid bilayer and a
supportive cytoskeleton of proteins, which allow for the large
elastic deformation of the membrane. Because of membrane
deformability RBCs can pass through narrow capillaries.
Flowing RBCs strongly affect the rheology and mass transport
of blood, and the properties of RBCs have been investigated
by many researchers over the past 50 years.

Because the oxygen exchange between the blood and
tissues occurs mainly in microcirculation, RBC motion in
a narrow capillary has been investigated analytically [1],
numerically [2,3], and experimentally [4,5]. Secomb et al.
[1] investigated the flow of an RBC analytically in a narrow
cylindrical tube with an inside diameter of up to 8 μm. The cell
shape was assumed to be axisymmetric and lubrication theory
was used to describe the gap flow between the cells and the
vessel wall. A full three-dimensional numerical simulation
of RBC motion in a narrow tube was also conducted by
Pozrikidis [3]. He reported distributions of membrane tension
and the results were compared to initially spherical and oblate
ellipsoidal capsules.

A capillary flow not only has physiological relevance, but it
can also be used to measure the mechanical properties of cell
membranes. In a long capillary, the motion of an RBC reaches
a steady state when the flow is sufficiently developed, and the
cell shape is determined only by the flow rate and membrane
elastic modulus. Hu et al. [6], for example, investigated
capsule motion in a narrow capillary numerically. They
evaluated the membrane elastic modulus by measuring the
capsule shape and translational velocity, and the values were
in good agreement with experimental data.

Although capillary flow can be used for measuring mem-
brane mechanical properties, it is not applicable to measure the
viscosity of the cytoplasm because the cell is just translated
and any inner viscous effect must disappear. The viscosity
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of the inner cytoplasm plays a key role in the dynamics of
RBCs. Thus, other flow systems should be considered in
evaluating the viscosity of the cytoplasm. One method for
such an evaluation of viscosity is a micropore flow.

Thin pore flow has been investigated [7–10] because narrow
geometry occurs in the human spleen. The spleen plays a role
in the removal of aged RBCs [7,8] and increased cytoplasm
viscosity has been suggested to be the dominant age-related
mechanical change [10]. Freund [7] investigated the flow of
RBCs numerically in a spleen-like thin slit. He found that RBC
infolding occurs within the slit at high cytoplasm viscosity, and
such infolding was suggested as a mechanism of jamming in
the slit. The significance of cytoplasmic viscosity in a thin slit
has been suggested, but it is unclear how the inner viscosity
affects the flow field and how RBC motion changes with
cytoplasmic viscosity. To fully understand the dynamics of
RBCs in a micropore our theoretical understanding of pore
flow should be enhanced.

In this study, we investigate the dynamics of an RBC
in a thin micropore numerically, with various flow rates
and viscosity ratios. In Sec. II, we describe the governing
equations of fluid mechanics and membrane mechanics. For
numerical simulations, we use a boundary element method for
fluid mechanics and a finite element method for membrane
mechanics. The numerical procedure is explained in Sec. III
and the results are shown in Sec. IV. Finally, we conclude this
study in Sec. V.

II. GOVERNING EQUATIONS

In this section, we describe the governing equations of fluid
mechanics and membrane mechanics of RBCs in a pore flow.
Because the basic equations of a capsule in a pore flow can be
found in [3,6], we provide only a brief outline here.

A. Fluid mechanics

Consider an RBC passing through a thin micropore. We set
a Cartesian frame (x,y,z) with the origin at the pore center
(see Fig. 1). The flow direction is set along the x axis; thus,
the micropore is set in the (y,z) plane. We define the inlet
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FIG. 1. Schematic illustration of an RBC in a thin micropore.
W represents the wall boundary and S1 and S2 are inlet and outlet
boundaries, respectively. a0 is the radius of a spherical capsule, which
has the same volume of an RBC.

and outlet boundaries as S1 and S2, respectively, and the
boundary conditions, including wall boundary W , are given
by the following.

(1) No flow disturbance on S1 and S2 since they far are
enough from an RBC

v(x) = v∞(x), x ∈ S1 ∪ S2, (1)

where v∞ is the undisturbed background flow.
(2) The pressures at S1 and S2 are given by

p(x,t) = 0, x ∈ S1, (2)

p(x,t) = �p∞ + �p, x ∈ S2, (3)

where �p∞ is the pressure drop between S1 and S2 in the
absence of an RBC and �p is the additional pressure drop due
to the RBC motion and deformation.

(3) No slip on the wall boundary W , i.e., v(x) = 0; x ∈ W .
The Reynolds number, based on the characteristic length of

cell dimensions, 8 [μm], a fast flow speed of 1 [mm/s], and
plasma viscosity 1 [mPa s] is estimated as Re < 10−2. We thus
assume the flow is governed by the Stokes flow equation and
the flow field is given by a boundary integral formulation [3,6]

1 + λ

2
v(x) = v∞(x) − 1

8πμ

[ ∫
A

J(x, y) · q( y)dS( y)

+
∫

W

J(x, y) · f ( y)dS( y)

−�p

∫
S2

J(x, y) · n( y)dS( y)

]

+ 1 − λ

8π

∫ PV

A

v( y) · K (x, y) · n( y)dS( y),

(4)

where μ is the viscosity of the surrounding liquid, q is the
membrane load, f is the wall friction, n is a unit outward

normal vector, and J and K are single- and double-layer
potentials of the Green’s function, respectively [3]. Subscript
A in the integral equation indicates the membrane surface of
an RBC and the viscosity of the cytoplasm is described by
λμ. PV denotes the principal value, defined as the value
of the improper double-layer integral when the point x is
right on A. The additional pressure drop �p is given by
applying the reciprocal theorem to the flow without RBC
(v∞,σ∞) and to the flow with an RBC (v,σ ) in the domain
bounded by S1 ∪ S2 ∪ W ∪ A [6], where σ and σ∞ are the
stress tensor with and without RBC, respectively. Assume that
the flow rate Q does not change regardless of the RBC; the
additional pressure drop can be determined by the following
equation [3]:

�p = 1

Q

[∫
A

v∞ · qdS + (λ − 1)
∫

A

v · σ∞ · ndS

]
. (5)

B. Membrane mechanics

Next, we derive the membrane mechanics of an RBC.
An RBC is modeled as a capsule with a hyperelastic thin
membrane, which has a surface shear elastic modulus Gs and
area-dilation modulus Ks . Because the membrane thickness
is very small compared to the characteristic cell size and its
typical radius of curvature, we consider only the deformation in
the median surface, devoid of bending resistance. In this case,
the stress can be integrated towards the thickness direction
and be replaced by tension (force per unit arch length).
We use the Skalak constitutive law [9] for the membrane,
which can independently express the large elastic deformation
and strong area-dilation resistance of the membrane. The
two-dimensional principal tensions of the Skalak law, τ1 and
τ2, are given by

τ1 = Gsλ1

λ2

(
λ2

1 − 1 + Cλ2
2

(
λ2

1λ
2
2 − 1

))
(likewise for τ2),

(6)

where λ1 and λ2 are the principal stretch ratios. The material
parameter C is defined as Ks = Gs(1 + 2C). To express an
incompressible property of a biological membrane, C must be
large enough. In our former study [11], we investigated the
effect of C and found that a value of C = 10 was high enough
to express the incompressibility of a biological membrane.
Thus, we used C = 10 in all simulations.

To couple the fluid mechanics and membrane mechanics,
we need to calculate the force equilibrium between the internal
elastic tension τ and the exerted fluid viscous traction force
q. Neglecting any inertia effect of the membrane motion, the
equilibrium equation of the membrane in the weak form is
given by [12]

∫
A

û · q dS =
∫

A

ε̂ : τ dS, (7)

where û and ε̂ are the virtual displacement and strain,
respectively.

We introduce an important nondimensional parameter,
the capillary number, which represents the ratio between
the fluid viscous traction force and the elastic resistance of

013008-2



NUMERICAL ANALYSIS OF A RED BLOOD CELL . . . PHYSICAL REVIEW E 89, 013008 (2014)

the membrane. The capillary number is defined as

Ca = μQ

a2
0Gs

, (8)

where a0 is the volume equivalent radius of an RBC, which is
estimated as a0 = 2.82 [μm] [13]. In capillary blood vessels,
the mean blood flow velocity ranges from 0.1 to 1 [mm/s]
[14]. If we assume Gs = 4 [μN/m] [7], the capillary number
would be 0.1 to 1. To cover the physiological range of the
capillary number in capillary blood vessels, Ca is set to 0.1 to
2 in this study.

III. NUMERICAL METHOD

In this section, we explain the numerical method. Because
the methodology of our numerical scheme has already been
reported by the authors of [11,15,16], we provide only a brief
outline here.

We track a Lagrangian material point of the RBC membrane
x(t); x ∈ A over time. Thus, we can readily compute local
membrane deformation by comparison to its reference state.
Using the membrane constitutive law, we can compute the
in-plane tension τ in each time step. We next solve the
equilibrium Eq. (7) with respect to membrane load q using
a finite element method [11,12]. Then, we calculate the
additional pressure drop �p by solving Eq. (5). Now that the
load q and the pressure drop �p are known, the wall friction
f can be computed by the application of Eq. (4) to x ∈ W as
follows:∫

W

J(x, y) · f ( y)dS( y)

= −
∫

A

J(x, y) · q( y)dS( y) + �p

∫
S2

J(x, y) · n( y)dS( y)

+ (1 − λ)μ
∫

A

v( y) · K (x, y) · n( y)dS( y). (9)

Because the boundary wall x ∈ W is independent of time, the
linear system (9) is solved by multiplying the right-hand side
by the inverse coefficient matrices of f , which is calculated
preliminarily. Velocity v is then updated by solving the
boundary integral Eq. (4). In nonuniform viscosity ratio cases,
the velocity v must be solved implicitly; i.e., Eqs. (4), (5),
and (9) must be solved as a system equation. We use a similar
numerical scheme to that of Foessel et al. [17]; the velocity v

is computed by a simple iteration scheme. Once the velocity v

is updated, the membrane material point x ∈ A is also updated
by means of the nonslip condition on the membrane wall
dx/dt = v, which is solved by a second-order Runge-Kutta
time-marching method. The above computational procedure is
then repeated until sufficient data are obtained.

To discretize the RBC membrane, we use a subdividing
method in the same manner as the authors of [12]. The
first mesh is constructed as an icosahedron with 20 regular
triangles. A new computational node is placed at the middle of
each edge; therefore, each triangle element is divided into four
new elements. The new nodes are projected onto the sphere
with a radius a0 and the procedure is repeated until the desired
number of elements is reached.

FIG. 2. Computational meshes of the wall boundary W and outlet
boundary S2. Mesh resolution of the wall boundary becomes larger
as it approaches the pore.

The biconcave disk shape, which is assumed as the
reference shape of the RBC, is given in the same manner
as found in [13]. The computational node x(X,Y,Z) is
initially generated on a spherical surface, then projected onto
the derived biconcave shape xrbc by using the following
transformation functions:

Xrbc = a

a0
X,

Y rbc = ±1

2
a(1 − r2)1/2(C0+C2r

2+C4r
4), (10)

Zrbc = a

a0
Z,

where r2 = (X2 + Z2)/a2
0 and a is the radius of the biconcave

disk. The plus sign in the second term is for Y > 0 (likewise
for the minus sign). C0, C2, and C4 are the shape parameters
to control the swelling ratio of the biconcave shape. To
coincide with the shape as in the physiological condition,
these parameters are set to C0 = 0.207, C2 = 2.003, and
C4 = −1.123, respectively [13]. For the volume conservation,
a0 and a need to satisfy the correlation a = 1.386a0.

The initial orientation of the RBC is described by θ , defined
as the angle between the x axis and the revolution axis of the
biconcave disk, as shown in Fig. 1. For simplicity, the initial
position of the cell is set to (xg/a0,yg/a0,zg/a0) = (−3.0,0,0)
in all cases, where xg is the mass center of the RBC.

The computational domain is shown in Figs. 1 and 2. To
eliminate the flow disturbance on the inlet and outlet bound-
aries, they must be set far enough from the micropore. In this
study, S1 and S2 are set at the position of 100a0 from the pore
center, as shown in Fig. 1. The pore radius R is set as R/a0 =
1.2 or R/a0 = 1.5. These values are equivalent to R/a ≈ 0.87
and R/a ≈ 1.08, respectively, where a is the half major axis
length of the biconcave disk. The computational meshes of W

and S2 are shown in Fig. 2. The mesh resolution of the wall
boundary becomes larger as it approaches the pore. The finest
mesh size is about (dSe)0.5 = 0.02a0, where dSe is the area of
the triangle element. For time convergence, the time step size
�t ranges from 1.0 × 10−5 to 1.0 × 10−3 in this study.

IV. RESULTS AND DISCUSSION

A. Motion and deformation of the RBC

Typical results of the RBC in the pore flow are shown in
Fig. 3. The capillary number Ca is set to 0.3 [Fig. 3(a)] and
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FIG. 3. Time sequence of the RBC passing through the micropore
with Ca = 0.3,1 and λ = 1,5. The pore size is R/a0 = 1.2(R/a ≈
0.87).

1.0 [Figs. 3(b) and 3(c)]. The pore radius R is R/a0 = 1.2 in
all three cases. As the RBC moves closer to the pore, the front
side of the cell membrane is gradually elongated in the flow
direction, whereas the rear side remains a dimple structure. To
pass the narrow pore, the RBC is forced to compress towards
the pore radius direction, and we observe membrane folding
around the side rim, while membrane folding does not occur
at the front edge of the cell. This tendency is similar to the
result of a capsule in a narrow tube [6]. After the passing,
the RBC shape gradually becomes a parachute shape, and
it reaches a steady state when xg � 1.5. Figure 4 shows the
two-dimensional (2D) cell profile of Figs. 3(b) and 3(c). We
see that the deformation towards the flow direction increases
as λ decreases, while the distance between the wall edge and
the membrane decreases as λ increases.

To calculate RBC deformation more quantitatively, we
measure the axis length of the RBC. We define Lfr as the
length between the front-to-rear edge in the x axis (cf. Fig. 4).
We also define Lx as the maximum length in the (x,z) plane.
The length is measured when xg = 0 in all cases. We found that
Lx increases monotonically as Ca increases, while Lfr shows
almost plateau curves when Ca � 1 [cf. Fig. 5(a)]. We also
see that the curves of R/a0 = 1.2 are always higher than the
curves of R/a0 = 1.5. The effect of λ is also shown in Fig. 5(b).
Both Lfr and Lx decrease monotonically as λ decreases. By
comparing Figs. 5(a) and 5(b), we find that RBC deformations

FIG. 4. Profile of the RBC in the (x,z) plane when xg = 0. λ = 1
(bottom) and 5 (top), and Ca = 1 in both cases.

are changed considerably by λ, whereas they are moderately
affected by changing Ca. This suggests that RBC deformation
tends to be prevented by high λ.

We next measure the radial deformation of the RBC; the
results are shown in Fig. 6. As with Lx , the RBC shape in
the (y,z) plane is significantly changed by λ. In a small λ

condition, we observe strong membrane compression and large
wrinkles are observed at the side rim [cf. Fig. 6(a)]. We also
measure the gap between the wall edge and the cell membrane,
defined as

�r = min
t∈T

(R − rave), (11)

where T is the passage of time and rave is defined as

rave = 1

N

N∑
i

‖xi‖ with xi(xi = 0,yi,zi).

N is the number of nodes on the membrane with x = 0. The
results are shown in Fig. 6(b). �r decreases with λ but the value
does not reach zero, meaning the membrane does not touch the
wall edge. The small gap between the cell and the wall is likely
the cause of the large pressure drop; thus, a high λ condition
may yield strong flow resistance. For a more detailed analysis

FIG. 5. The axial length Lfr and the maximum length Lx with
various Ca and λ. In panel (a), the viscosity ratio λ is set to unity in
all cases, while Ca = 1 in panel (b).
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FIG. 6. RBC deformation in the (y,z) plane. (a) RBC profiles in the (x,z) and (y,z) planes when xg = 0 (Ca = 1, R/a0 = 1.2, and θ = 0).
(b) �r with R/a0 = 1.2 and R/a0 = 1.5.

of the flow field, we next investigate the additional pressure
drop �p with various Ca and λ conditions.

B. Pressure drop

In Fig. 7(a), the time change of �p with different Ca is
shown. Ca is set as Ca = 0.3, 0.5, 1.0, 1.5 and 2.0, and the
viscosity ratio λ is equal to 1. We see that �p increases rapidly
as the RBC approaches the pore. In the early stage of passage,
�p becomes the maximum. At the same time, Lx also reaches
a maximum value [cf. Fig. 7(b)]. In the case of λ = 1, �p

is determined only by the membrane load q [cf. Eq. (5)].
The load q is calculated by the cell deformation; thus, the
additional pressure drop is relevant to the cell deformation.
This tendency is clearly observed in high Ca conditions. Once
�p reaches the maximum, both �p and Lx decrease with time.
After the end of the passage, the RBC gradually recovers from
its compressed bullet shape to a free parachute shape. In this
recovery sequence, �p shows small oscillations. When the

FIG. 7. Additional pressure drop with various Ca conditions. Ca
is set as 0.3, 0.5, 1.0, 1.5, and 2.0. In all cases, the viscosity ratio is
set 1.0. The definition of the symbols appearing in the figure are as
follows. ♦: start or end time of the passage event; •: time at xg = 0;
and +: time at �p becomes the maximum. Nondimensional time t∗

is defined as t∗ = tQ/a3
0 .

cell is far enough from the pore, the shape reaches a steady
state and �p is asymptotic to zero.

We next investigate the effect of the initial orientation θ .
Figure 8 shows the shape profile and the additional pressure
drop with θ = π/4 and π/2. As with θ = 0 cases (i.e., Fig. 7),
the cell is compressed towards the radial direction to pass
through the pore [see Fig. 8(a)]. After passing, the RBC shape
changes gradually to a parachute shape, and reaches a steady
state when the cell is far enough away from the pore. The
time change in the pressure drop is shown in Fig. 8. The
maximum value of �p does not change much with the changes
in θ .

FIG. 8. �p with different initial orientation θ . λ = 1 and R/a0 =
1.2. Symbols in panel (b) are the same as in Fig. 7.
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FIG. 9. Time change of �p with various λ. The cell shape at
xg = 0 is inserted in panel (a). Symbols in the figure are the same as
in Figs. 7 and 8.

The time change of �p with various λ is also shown in
Fig. 9(a). This figure clearly shows that the time average and
the maximum �p become larger as λ increases. The maximum
�p appears when xg = 0, which is different from the previous
unity viscosity ratio cases. To investigate the λ effect in more
detail, Eq. (5) is divided into two components: �pq and �pλ.
�pq is the first term of Eq. (5), based on deformation effects,
because it is determined by the membrane load q. We also
define �pλ as the second term of Eq. (5). �pλ is determined
by λ and velocity v; thus, it can be seen as the viscous effect
on the pressure drop. We note �pλ disappears when λ = 1.
�pq and �pλ of λ = 5 are shown in Fig. 9(b). We see that �p

is dominated by �pλ, and �pλ is almost 30 times larger than
�pq at most. This indicates that �p is determined mainly by
�pλ, not by �pq , when λ = 5.

We also calculate the time average pressure drop. The time
average �p is calculated as

�p̄ = 1

Tout − Tin

∫ Tout

Tin

�pdt, (12)

where

Tin = t(max
x∈A

x = 0), Tout = t(min
x∈A

x = 0),

and the results are shown in Fig. 10(a). From this figure, we see
that time average pressure drop �p̄ increases almost linearly
with λ. Also, its slope increases as Ca increases. Accordingly,
�p̄ becomes higher in a high λ and Ca regime.

In Fig. 10(b), the maximum pressure drop during the
passage is shown. We see that the pressure drop increases
linearly with the capillary number. This result indicates that

FIG. 10. (a) Time average pressure drop. (b) Maximum pressure
drop. Lines with slope equal to 0.51 and 4.64 are drown for
comparison to those found in [18].

the additional pressure drop is proportional to the flow rate
Q since the capillary number is defined as Ca = μQ/Gsa

2
0 .

This tendency is the same as the previous experiments found in
[19,20]. We also compare our results to the results of channel
flow [18]. In the paper of Abkarian et al. [18], they used a
rectangular channel with 5 × 5 μm in the cross section. Using
the theory of capillary flow [21], they estimated the maximum
additional pressure drop as �pmax = 16μV/R, where V is the
mean velocity of the fluid flow. To compare our results to the
experimental results, we derive the relation between �pmax

and μV/R as follows.
In this study, �pmax is normalized by the membrane elastic

shear modulus Gs and the length of the cell a0: �p∗
max =

�pmaxa0/Gs . Thus the ratio between �p∗
max and Ca can be

written as

�p∗
max

Ca
= �pmaxa

3
0

μQ
. (13)

Using the relation of Q = πR2V , the above equation can be
rewritten as

�pmax = π

(
R

a0

)3
�p∗

max

Ca

μV

R
. (14)

As shown in Fig. 10(b), �p∗
max/Ca becomes about 0.51 when

λ = 1 and 4.64 when λ = 5. Substituting R/a0 = 1.2 and the
results of �p∗

max/Ca into Eq. (14), we have

2.77 � �pmaxR/μV � 25.2 with λ ∈ [1,5]. (15)

This is in agreement with the order of magnitude from the
results of Abkarian et al., though the geometries of the two
studies are completely different. These results suggest that
the effect of the pore length would be small or moderate
on the additional pressure drop, and the additional pressure
drop tends to be proportional to flow rate regardless of
the pore thickness.

C. Passage time

In this section, we discuss the transit time of the RBC
passing through the micropore. The passage time is defined as

T = Tout − Tin, (16)

and normalized by T ∗ = T Q/a3
0 . Nondimensional passage

time T ∗ as a function of Ca is shown in Fig. 11(a). The initial

FIG. 11. Nondimensional passage time with different Ca and λ.
The data obtained from various θ cases. Error bars in the figure
represent standard deviation.
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angle is set as θ = 0, π/6, π/3, and π/2, and the average
T ∗ is plotted in the figure. In Fig. 11(a), we see that T ∗ is
independent of Ca in both R/a0 = 1.2 and R/a0 = 1.5 cases,
suggesting that transit time T is proportional to Q−1. T ∗ as a
function of λ is also shown in Fig. 11(b), and we clearly see
that T ∗ increases nonlinearly with respect to λ. To investigate
the effect of λ in more detail, we conduct a simple scaling
analysis below.

When λ 	 1, the effect of cytoplasm viscosity can be
omitted and transit time is simply scaled by the characteristic
length a0 and velocity V : T ∼ a0/V = πR2a0/Q. When
λ � 1, the effect of cytoplasm viscosity becomes dominant
and the transit time should be determined by the rate of
strain T ∝ γ̇ −1. In high λ conditions, γ̇ may be estimated by
γ̇ ∼ τ/μin, where the driving stress is τ and the inner viscosity
μin. Assume that the driving stress is scaled by τ ∝ μoutQ/a3

0 ,
and we have γ̇ ∝ Q/(λa3

0). Using the inverse relationship
between transit time and strain rate, the transit time can be
described as

T ∝ γ̇ −1 = λa3
0

Q
.

Then, nondimensional transition time T Q/a3
0 may be propor-

tional to λ when λ � 1. In a λ ∼ 1 regime, the transition
regime from the small λ region to the high λ region can be
seen, and the transit time can change nonlinearly with respect
to λ, as shown in Fig. 11(b).

In conclusion, transit time and pressure drop are strongly
dependent on the viscosity ratio λ. This result could be used to
evaluate the viscosity of the inner liquid. To demonstrate how
the result can be used to evaluate the cytoplasmic viscosity,
we roughly compare transit time to the experimental data
from Cokelet [19]. Cokelet investigated RBC motion in a

micropore and measured the transit time by a simple mass
balance theory. Typical experimental data from the paper
can be written as R/a0 = 1.42, Q = 7.5 × 10−14[m3/s] and
T ∗ = 24.7. If we assume the membrane shear elastic modulus
Gs = 4.0 [μN/m] and the suspending medium viscosity
μ = 1 [mPa s] (phosphate buffered saline with 0.5% albumin
was used in the experiment), the capillary number in the
experiment can be evaluated as Ca ≈ 2.35. For comparison,
our numerical results of Ca = 2.0 and R/a0 = 1.4 are plotted
in Fig. 11(b). We assume that the transit time is proportional
to λ when λ � 5, and the slope is evaluated from a cubic
spline curve at λ = 5 [cf. Fig. 11(b)]. The fitting line can
be written as T ∗ = 2.67λ + 9.45, and T ∗ = 24.7, giving
us λ = 5.7. We again assume that the medium viscosity
is 1 [mPa s], the cytoplasm viscosity can be estimated as
5.7 [mPa s]. Because the cytoplasmic viscosity of a fresh
RBC is about 6 [mPa s] [7], the value of 5.7 [mPa s] seems
reasonable.

V. CONCLUSION

In this study, we investigate an RBC passage thorough a
thin micropore numerically. We found that RBC deformation
tends to be suppressed by high λ, and the additional pressure
drop �p rapidly increases with λ. As a result, the transit time
increases nonlinearly in the moderate λ regime, whereas it
is almost invariant with Ca. From these results, we conclude
the viscosity ratio between the inner and outer liquids plays a
significant role when RBCs pass through a micropore. Because
the inner viscosity of RBCs increases with cell age, these
λ effects might be helpful for filtering in the splenic sinus
in vivo. The results described here may be useful for designing
a microfluidic device to measure the cytoplasm viscosity of
RBCs, which is difficult to evaluate using capillary flow.
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