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Simulation of finite-size fibers in turbulent channel flows
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The dynamical behavior of almost neutrally buoyant finite-size rigid fibers or rods in turbulent channel flow is
studied by direct numerical simulations. The time evolution of the fiber orientation and translational and rotational
motions in a statistically steady channel flow is obtained for three different fiber lengths. The turbulent flow is
modeled by an entropy lattice Boltzmann method, and the interaction between fibers and carrier fluid is modeled
through an external boundary force method. Direct contact and lubrication force models for fiber-fiber interactions
and fiber-wall interaction are taken into account to allow for a full four-way interaction. The density ratio is chosen
to mimic cellulose fibers in water. It is shown that the finite size leads to fiber-turbulence interactions that are
significantly different from earlier reported results for pointlike particles (e.g., elongated ellipsoids smaller than
the Kolmogorov scale). An effect that becomes increasingly accentuated with fiber length is an accumulation in
high-speed regions near the wall, resulting in a mean fiber velocity that is higher than the mean fluid velocity.
The simulation results indicate that the finite-size fibers tend to stay in the high-speed streaks due to collisions
with the wall. In the central region of the channel, long fibers tend to align in the spanwise direction. Closer to
the wall the long fibers instead tend to toward to a rotation in the shear plane, while very close to the wall they
become predominantly aligned in the streamwise direction.
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I. INTRODUCTION

Fiber suspension flows are found in many scientific and
engineering applications, prime examples being the pulp and
paper industry. Even though paper making is an ancient process
and has much evolved over the centuries, it is still resource and
energy intensive with clear potential for improvements [1]. The
flow physics of cellulose fiber suspensions has an important
impact on many steps of the paper-making process while the
distribution and orientation of the fibers, which depend on
the interaction between the fibers and the flow and fiber-fiber
interactions, determine the properties of the final paper.

The motion of nonspherical particles, e.g., ellipsoids, in
simple nonturbulent shear flows has been studied intensively
[2] derived analytic expressions for the rotation of inertialess
ellipsoids in Stokes shear flow, while in recent studies the
effects of fluid and/or particle inertia on the motion of
nonspherical particles in shear flows were considered [3–5].
Depending on the particle shape and the inertia of fluid and
particle, different motions are possible, for example, tumbling
(periodic rotations in the shear plane with a nonconstant
speed), wagging (oscillations with the fiber approximately
aligned with the flow), kayaking (motions about the vorticity
axis resembling paddling), log-rolling (rolling of a fiber
aligned with the vorticity axis), and even chaotic motions
with no discernible pattern [5]. Here and hereafter we use
the same naming convention for fiber motions as in Ref. [6].
Krochak et al. [7] modeled the distribution and orientation of a
semidilute fiber suspension in laminar channel flow taking into
account the fiber-fiber and the fiber-wall interactions and found
good agreement with experimental observations. At low con-
centrations, the fibers are mostly parallel to the flow near the
wall, and the fiber concentration has its maximum at the chan-
nel center since the fibers tend to migrate away from the wall.
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Fiber suspensions in turbulent flows have also been investi-
gated. Zhang et al. [8] studied the transport and deposition of
ellipsoids in turbulent channel flow through direct numerical
simulations (DNS). More recently, Mortensen et al. [9] and
Marchioli et al. [10] carried out DNS of fully developed
turbulent channel flow at Reτ = uτh/ν = 180 and 150, respec-
tively, with spherical to very elongated prolate ellipsoids with
different inertia. Here uτ is the friction velocity, h the channel
half-gap, and ν the kinematic viscosity of the fluid phase. In
those studies, the particles were assumed to be smaller than the
Kolmogorov length scale, and gravity, fiber-fiber interactions,
and the fiber influence on the flow were ignored. Under these
circumstances, the particles could be treated as point particles
with the same equations of motion as that of an ellipsoid in
creeping flow. Furthermore, the particles were assumed to keep
their streamwise linear and angular momentum when having
elastic collisions with the wall.

Mortensen et al. observed that both spheres and ellipsoids
are preferentially concentrated in the near-wall low-speed
streaks. As a consequence, lighter particles were slower than
the mean fluid velocity near the wall while the velocity of
the heavier particles exceeded the mean fluid velocity in the
viscous sublayer, but was lower than the mean fluid velocity in
the buffer layer. Marchioli et al. found that the preferential
concentration of the ellipsoids in the low-speed streaks is
predominantly determined by their inertia. The aspect ratio of
the particles had only a minor influence. In addition, particles
showed a strong accumulation near the wall due to their inertia.
For this aspect, the aspect ratio had some influence. Like
Mortensen et al., Marchioli et al. also studied the orientation
of the ellipsoids or fibers and observed that the fibers tend to
align with the mean flow near the wall while near the channel
center their orientation is approximately isotropic.

Other investigations addressed the effect of small fibers
and ellipsoids on turbulent wall-bounded flows and found
that fibers can induce significant drag reduction [11–14] and
typically enhance the streamwise component of the velocity
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fluctuations while damping the spanwise and wall-normal
components.

Although our knowledge of fiber suspensions in turbulent
flows is considerable, there are clear gaps. For instance, the
effect of fiber size in turbulent flows is not well understood
since most of the numerical studies so far considered only
fibers (much) smaller than the Kolmogorov length scale.
However, finite-size effects might have an important impact
on the physics of fiber suspensions, since the dynamics of
the interaction between fibers and turbulence should become
significantly different when the length of the fibers becomes
comparable to the size of the turbulent eddies. For instance,
Kvick et al. [15] found in their experiments that the fiber
length has a significant effect on the fiber orientation. Modern
numerical methodologies make it possible to investigate
flows with finite-size particles that are not necessarily small
compared to the turbulence scales and to take full account of
particle-flow interactions. Ten Cate et al. [16] used the body
force term method to simulate finite-size spheres in isotropic
turbulence, and [17] and Villalba et al. [18] simulated vertical
turbulent channel flow with finite-size rigid particles using the
immersed boundary method. The lattice Boltzmann method
(LBM) is another, promising approach to simulate multiphase
flows with finite-size particles [19,20].

The objective of this work is to examine the largely
unknown influence of fiber size on the transport, distribution,
and orientation of a dilute suspension of rigid fibers in fully
developed turbulent channel flow. We will use LBM to simulate
the fiber suspension flow. The largest fibers have a significant
length compared to the near-wall turbulence structures, and
their properties are similar to that of cellulose fibers in water.
Fiber-flow interactions are accurately resolved, and fiber-fiber
as well as fiber-wall interactions are taken into account in our
study since the forces acting on the fibers when they have
contact with the wall (or each other) can change the linear and
angular momentum of the fibers and affect their distribution,
orientation, and transport.

In the next part, an outline of the numerical methodology
is given and the method is validated. Thereafter, the results of
the simulations of fiber suspensions in turbulent channel flow
are presented and analyzed and conclusions are drawn.

II. NUMERICAL METHOD

In this paper an entropic lattice-Boltzmann method for
turbulent flow [21] (see Appendix C and D for details) is used
along with the fluid-solid interaction (FSI) method [22,23]. A
detailed description of the LBM-EBF method and validations
for rigid fibers, flexible fibers and deformable objects was
recently presented in Refs. [22,23]. The full derivation of the
LBM-EBF method is presented in Appendices A–D.

The EBF method employs an external force term in the
lattice Boltzmann equation to impose a no-slip boundary
condition at the fluid-solid interface while conserving mass
and momentum. To transfer the velocity and the force
values between Eulerian grid positions and particle-related
Lagrangian positions, we use the regularized delta function
approach found in Ref. [24]; see Appendix A for more details.

In our model each fiber or rod is mapped onto a superim-
posed Lagrangian frame moving continuously throughout the

(a)

(b)

FIG. 1. (Color online) (a) The coordinate systems: a Cartesian
coordinate system x-y-z for spatial parametrization (corresponding
to streamwise, wall normal, and spanwise directions in channel flow)
and a body-fixed coordinate system X-Y -Z for the fiber rotation. (b)
The fiber is modeled as a chain of rods (yellow cylinders), which is
connected via a hinge (red sphere), in this paper taken as rigid. The
silver spheres are the Lagrangian grid points on the surface of the
fiber. The aspect ratio of the Lagrangian grid used in this figure is for
visualization only.

fluid domain. This means that when a fiber is transported out of
the fluid domain, it will enter the domain at the opposite side.
The orientation of each fiber can be described in Eulerian co-
ordinates using a unit vector z along the fiber axis, as depicted
in Fig. 1(a). The angles ϕ, θ , and ψ define z for each fiber. The
motion and orientation of the fiber is determined by solving
Newton’s equations for linear and angular momentum with
fluid-solid interaction forces determined by the EBF method;
see Appendix A for details. Contact and lubrication force
models for fiber-fiber interactions and fiber-wall interaction
have also been implemented in our model; see Appendix B.
As can be seen from Eq. (B1) in Appendix B, the lubrication
force is a function of the fluid viscosity (μ) and of the relative
velocity between the surfaces (Vapp) and the average normal
vector of those surfaces (navg). Therefore the direction and the
magnitude of the interaction force will depend on the fluid
viscosity, the orientation of the fiber, and its velocity. This
model is a kind of an in-elastic collision model. If the fiber
keeps moving closer to the wall and if the distance to the wall
is less than σc we switch to use a repulsive force (Fcon) to
prevent fibers from penetrating each other and penetrating the
wall. The collision model is then assumed to be elastic.

The fiber model used in this paper is similar to the one
proposed [25] for flexible fibers and expanded [26] to include
particle inertia, hydrodynamic fiber-fiber interactions, and
two-way coupling between fiber and fluid. Recently this model
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has been used [22] in the framework of an external boundary
force method. The fiber is modeled as a chain of rods and
hinges; see Fig. 1(b). Each hinge uses Nn nodes on the
circumference to calculate the solid-liquid interaction force.
It is also possible to include bending, twisting, and elastic
forces at each boundary node, but in this paper, these forces
are not considered because the fiber is considered to be rigid.
The dynamic motion of the fiber will be computed based on
the total force acting on the hinges.

A. Validation of the model for nonspherical particle

To validate our numerical method, we first analyze the
motion of a rigid rod in a simple shear flow at a low Reynolds
number and compare it with the analytical expression de-
rived [2] of a solid ellipsoid in a simple shear flow at zero
Reynolds number.

Previous work [2] has showed that a single, neutrally
buoyant, non-Brownian, inertialess ellipsoid in a simple shear
flow rotates around the vorticity axis [z axis in Fig. 1(a)] with
a periodic motion. The orbit is such that the quantity

C = tan θ

ar

√
a2

r cos2 ϕ + sin2 ϕ (1)

remains constant. Here ar is the ratio of the two principal axes
of the ellipsoid. For a circular cylinder of length L and radius
r , ar can be chosen as the semiempirical relation [27]

ar = 1.24ap

√
ln ap, (2)

where ap is the aspect ratio ap = L/2r . The orbit parameter C

ranges from 0 to ∞, with C = 0 corresponding to θ = 0, i.e.,

perfect alignment of the fiber with the z axis, and θ = π/2 and
C = ∞, corresponding to rotation in the xy plane. This range
is transformed to [0,1] by introducing the orbit constant

Cb = C

C + 1
. (3)

The analytic solution [2] for a ellipsoid in a shear flow is

φ = tan−1

(
ap tan

apGt

1 + a2
p

+ Cφ

)
, (4)

θ = tan−1

⎛
⎝ apCθ√

a2
p cos2 φ + sin2 φ

⎞
⎠ , (5)

where G is the shear rate and t is time. The constants Cφ

and Cθ are determined from the initial position of the object,
Cφ = φ0 and Cθ = tan(θ0).

Figure 2 shows the analytical and numerical solutions of
the LBM of the motion of a rodlike object, with length l,
aspect ratio ap = 3, at four different resolutions. The spatial
resolution of fluid flow is given by 
 = δx/ l = 1/2.4, 1/6,
1/9, and 1/12 (corresponding to case No. 1A, No. 2A,
No. 3A, and No. 4A in Table I). Here δx is the step of spatial
discretization. Note that the fiber length in lattice units (L)
is related to the resolution as 
 = 1/L. The discretization of
the fibers is measured by 
s = 2πr/Nn
, where Nn is the
number of nodes on a hinge and r is the radius of the fiber. We
set 
s = 1.2
 in order to avoid the possibility that there are
two Lagrangian nodes in a lattice cell. This implies that Nn

increases if the resolution increases and 
 become smaller. The

(a) (c)

(b) (d)

FIG. 2. (Color online) (a–b) Comparison of LBM-EBF simulation results (symbol) for the angle φ (a) and θ (b) with Jeffery’s analytic
solution for an ellipsoid given by Eq. (4) and Eq. (5) (dashed line). The particle Reynolds numbers and the aspect ratio of the fibers in LBM-EBF
simulation are fixed, Rep = 0.005 and ap = 3. The aspect ration used on Jeffery’s analytic solution is ar = 3.89. (c–d) Convergence test for
the simulation of a rodlike fiber, aspect ratio ap = 3, Rep = 5, θ0 = π/6, and φ0 = −π/2.
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TABLE I. Simulation parameters for the test cases. r is the radius
of the rod (lattice unit), Nh is the number of hinges on a rod, Nn is
the number of nodes on a hinge, Rep is the fiber Reynolds number,
T is orbit period, and T J

err and T 4
err are the differ orbit period with the

Jeffery’s period and with the period of case 4B, respectively.

1A 2A 3A 4A 1B 2B 3B 4B

2r 0.8 2 3 4 0.8 2 3 4

 1/2.4 1/6 1/9 1/12 1/2.4 1/6 1/9 1/12
Nn 3 5 7 9 3 5 7 9
Nh 3 5 7 9 3 5 7 9
Rep 0.005 0.005 0.005 0.005 5 5 5 5
T 12.78 12.91 13.14 12.89 12.83 12.46 12.42 12.40
T J

err 1.24% 0.24% 1.54% 0.39%
T 4

err 3.4% 0.5% 0.15% 0%

initial position of the rod object is φ0 = −π/2 and θ0 = π/6
for all cases. The fluid flow is initialized as a simple shear flow
with shear rate G at t = 0. The particle Reynolds number is
kept constant at Rep = Gl2/ν = 0.005 for all cases; i.e., the
cases No. 1A–4A describe the same problem with increasing
resolution of both fluid and solid spaces.

In Fig. 2, the computational results of a rodlike object
with aspect ratio ap = 3 and Jeffery’s analytical solution with
aspect ratio ar = 3.89 obtained from Eq. (2) show a good
agreement for both the rotation angles φ and θ . There is a
maximum difference of 1.5% between the simulated orbit
period and the analytical orbit period (T J

err) for all four cases.
There are no analytical predictions for validation in case

of finite Rep. Therefore, we have performed an additional
convergence test for four different spatial resolutions like
before for a representative single fiber in a shear flow, i.e.,
cases No. 1B–4B in Table I. The particle Reynolds number
and the aspect ratio are kept constant at Rep = 5 and ap = 3
representative for the turbulent flow that is of interest here.
The initial position of the fiber is φ0 = −π/2 and θ0 = π/6.
Figure 2(c)–(d) shows the numerical results for four different
grid resolutions of the fiber. The results obtained with different
grid resolutions agree well with each other. Especially, the
solutions of cases No. 2B–3B are nearly the same as for the
highest resolution case No. 4B. The orbit period error when
compared with case No. 4, T 4

err, is less than 0.5% for those
cases and about 3.4% for the coarsest resolution, case No. 1B.
Therefore, we believe that even with the coarsest resolution
the fiber-flow interactions are sufficiently well resolved, in
particular for the problem addressed hereafter, and set the fiber
resolution in our next simulations to 0.8δx for the diameter of
the fiber.

To demonstrate that the resolution of the fiber flow is
sufficient for the cases we are studying, we analyze the fluid
flow around fibers by extracting velocity values at the eight
corners of a box as shown in Fig. 3. The fluid flow used
for this analysis is obtained from the turbulent channel flow
simulation presented later in the paper, case No. 1 in Table II.
The difference between the fiber velocity, Us , and the averaged
fluid velocity from those eight corners, Uf , is computed and
projected onto a plane normal to the “axis vector” of the
fiber (plane P ). The PDF of the projected normal velocity

U

Flow fi
eld

Axis vector

U s

Uf

P

s −Uf

FIG. 3. (Color online) Sketch of the calculation for the fiber
projected normal velocity.

|Us − Uf |P is shown in Fig. 4(a). The shear rate over the
fiber length and the fiber diameter is computed as G = ud/h,
where ud is the difference in velocity between a pair of nodes
in the sample box that cross through the fiber (see Fig. 3) in
the cross-fiber or axis direction and h is the sample box size.
The PDF of the particle Reynolds number, Rep = Gl2/ν is
computed and shown in Fig. 4(b).

As shown in Fig. 4, the projected normal velocity around
a fiber is small. |Us − Uf |+P < 1 for the fluid at a distance
to the fiber of 1 to 2 fiber diameters. Since the diameter is
d+ = 2, the corresponding Reynolds number is obtained by
multiplying the values in Fig. 4 by 2. This means that the flow
around the fiber lacks a complex wake, and for all cases looked
at here the particle Reynolds number based on the cross-fiber
velocity is of order unity. Meanwhile, the flow around the fiber
has a projected normal velocity less than one for the fluid at
a distance to the fiber of a fiber length. The maximum in the
PDF of the particle Reynolds number appears at Re = 3, for
which it has been shown in the validation test case above that
the selected fiber grid resolution is sufficient.

B. Single-phase flow simulation

In this section a DNS with the lattice Boltzmann model
of a single-phase, fully developed, plane turbulent channel

TABLE II. Fiber parameters for the LBM simulations.

Case Np ap L+ vf [%] α = npL3 rρ St St+

No. 1 4752 15 24 0.11 0.325 1.2 0.245 2.33
No. 2 11 800 6 9.6 0.11 0.052 1.2 0.181 1.72
No. 3 35 640 2 3.2 0.11 0.006 1.2 0.110 1.04
No. 4 44 642 6 9.6 0.43 0.195 1.2 0.181 1.72
No. 5 35 640 2 3.2 0.11 0.006 1.0 0.091 0.87
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FIG. 4. (Color online) The PDF of the projected normal velocity
(a) and particle Reynolds number (b) of fibers in the turbulent channel
flow.

flow is compared to a DNS performed with a conventional
spectral method. The friction Reynolds number of the flow,
which is based on the friction velocity uτ and the channel
half-width δ, in both simulations is Reτ = 180. The spectral
DNS code uses Fourier expansions with periodic boundary
conditions in both streamwise and spanwise directions and
Chebyshev polynomials in the wall-normal direction and has
been extensively validated [28].

The computational domain of the LBM simulation and
spectral DNS is the same and is 8δ × 2.2δ × 2δ in the stream-
wise, spanwise, and wall-normal directions, respectively. This
is sufficient to sustain a turbulent flow and obtain accurate
turbulent statistics [29]. The grid size in wall units in the
spectral DNS varies from 0.1 at the wall to 5.84 at the
center line of the channel, and 
x+ = 12 and 
z+ = 6.2,
where + denotes normalization by ν/uτ . The grid resolution
in the LBM simulation is kept constant at 
+ = 2 in each

direction. This leads to 120 × 97 × 64 collocation points in
the spectral DNS and 710 × 180 × 198 grid points in the LBM
simulation, respectively, giving a total of about 26 million
lattice cells. A constant body force is applied in the streamwise
direction to drive the fluid flow with a small Mach number
Ma = |u|/cs = 0.03, to ensure incompressible flow conditions
in the LBM. Periodic boundary conditions are used in the
streamwise and spanwise directions, and a no-slip boundary
condition is applied on the channel walls. The turbulent
statistics were collected during a total of 35 characteristic
times (t∗ = δ/uτ ), after the simulation reached a statistically
stationary state. The averaging is performed both spatially and
temporally.

Figure 5(a) shows a comparison of the mean velocity profile
of LBM simulations (with two different grid resolutions,

+ = 2 and 
+ = 1.5) with spectral DNS results. Both LBM
simulations show a good agreement with the DNS results.
Only 1% difference is found between LBM and DNS results
for the mean velocity profile. The root-mean-square of the
streamwise, wall-normal, and spanwise velocity fluctuations
(normalized by uτ ) u+

rms, v+
rms, and w+

rms are plotted in
Fig. 5(b). The agreement between the two LBM results and the
spectral DNS is again very good. Figure 5(c) and 5(d) shows
profiles of the Reynolds shear stress and pressure fluctuations,
respectively. In general, the results from the LBM simulation
match the spectral DNS results very well, and only small
differences (less than 0.7%) are found in the buffer region,
y+ < 40, for the Reynolds stresses while the differences in
pressure fluctuations are within 0.2% to 1% near the wall and
within 2.5% near the location of the peak pressure variance
around y+ = 35. These comparisons show that the LBM
simulation correctly describes fully turbulent channel flow in
terms of first and higher order single-point statistics.

III. TWO-PHASE FLOW SIMULATION:
RESULTS AND DISCUSSION

This section presents numerical results of LBM simulations
of turbulent channel flow with rigid, finite size fibers or
rods at Reτ = 180. The fibers are introduced into the fully
developed turbulent single-phase flow at time t0 with an initial
translational velocity and angular velocity equal to the fluid
velocities found at the location of each fiber. Statistics were
collected after the flow and suspension had reached a statically
steady state. All cases were run in the same computational
domain (8δ × 2.2δ × 2δ in the streamwise, spanwise, and
wall-normal directions, respectively) and same resolution

+ = 2. The number of fibers and the summary of input
parameters are given in Table II. Here Np, ap, L, and vf are the
number of fibers, their aspect ratio, fiber length, and volume
fraction, respectively. The concentration parameter α is related
to the fiber number density np and fiber length L by α = npL3.
Different fiber lengths (L+ = 24,9.6 and 3.2, cases No. 1, No.
2, and No. 3 in Table II) have been used for comparison.
The volume fraction of fibers is vf = 0.11% up to 0.44%, and
density ratio between fiber (ρf ) and fluid (ρl) is rρ = 1.0 or 1.2.
The density ratio rρ = 1.2 is chosen to mimic cellulose fibers
in water. In our model the gravity is not included. Therefore,
the density ratio influences only inertial dynamics and not
fiber settling. The driving force (pressure gradient) used in
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FIG. 5. (Color online) Turbulent statistics of channel flow at Reτ = 180. Symbols present the spectral DNS results, the solid line is the
LBM result with 
+ = 2, and the dashed line is the LBM result with 
+ = 1.5. (a) Mean velocity profiles; (b) streamwise, spanwise, and
wall-normal velocity fluctuations; (c) Reynolds shear stress; (d) root-mean-square of pressure fluctuations.

these cases is kept the same as the driving force used in the
single-phase flow case. The fibers were modeled by six nodes
on a hinge, and the number of hinges was selected to ensure
that the distance between two hinges is not larger than a lattice
unit.

For a rigid cylindrical fiber, the volume is Vp = πR2L.
Therefore, the volume fraction can be derived from

vf = VpNp

V�

= npVp = π
npL3

4a2
p

, (6)

where V� is the total volume of fluid and np = Np/V� is the
fiber number density.

We define a fiber Stokes number based on the fiber response
time, τp [14], and the bulk flow time scale τf = 1/γ̇ , where
γ̇ is a shear rate of the bulk flow (γ̇ = |u|/δ). We also
formulate a near-wall Stokes number using the near-wall time

scale τ+ = ν/u2
τ :

τp = 2ρf

9ρlν

L2

ap

ln
(
ap +

√
a2

p − 1
)

√
a2

p − 1
, (7)

St = τp

τf

, St+ = τp

τ+ . (8)

Table II lists the fiber parameter values for the simulations
performed. Note that the bulk Stokes number St is of the
order of 0.1, while the near-wall Stokes number is always less
than 3.

In order to analyze the motion of the fibers, we have
recorded the fiber statistics at every five time steps. Statis-
tical quantities such as mean velocity, fluctuation intensities,
Reynolds shear stress, etc., were then computed based on one

013006-6



SIMULATION OF FINITE-SIZE FIBERS IN TURBULENT . . . PHYSICAL REVIEW E 89, 013006 (2014)

million samples, equivalent to the recording time t = 30t∗, to
make sure that the fiber distribution achieved a statistically
steady state. To analyze the carrier phase, the fluid quantities
were stored every 10 time steps. Here the averaging was
performed over the entire composite flow field, i.e., containing
the regions of fluid and immersed fibers together, since the
statistical difference between the composite fluid and the fluid
is very small [17,18].

A. Turbulent flow of a fiber suspension

The streamwise mean velocity profiles of fibers 〈uf 〉 and
fluid 〈ul〉 for cases No. 1, No. 2, No. 3, and No. 5, referring to
the cases listed in Table II, are shown in Fig. 6 as function of
wall-normal position. The velocities of the fibers are computed
at the center of mass. The volume fraction is constant at 0.11%
in all cases, while the concentration parameter α varies; see
Table II. The α values seen in Table II indicate that fiber-fiber
interactions have a small influence in these cases [7].

Away from the wall, in the outer region, the differences in
mean fluid and particle velocity are very small. The fluid mean
velocity profiles collapse onto a single curve in the near-wall
region, as one should expect, since the volume fraction of
fibers is small in all cases. In the near-wall region the fiber
mean velocity shows an excess over the fluid velocity, that
increases with increasing fiber length. We show later that
up to a distance 2L+ from the wall, the excess velocity is
caused by a preferential accumulation of the fibers in high-
speed near-wall turbulent streaks. This result contrasts with
earlier results by Mortensen et al. [9], where inertial effects
dominated. In their simulation, the mean velocity of point-like,
fast response prolate ellipsoidal particles (St+ = 5) is lower
than the corresponding mean fluid velocity in the near-wall
region due to a preferential accumulation in low-speed streaks.
Particles with larger inertia, e.g., St+ = 30, have a mean
velocity greater than the corresponding mean fluid velocity
only in the viscous sublayer in their simulation, while further
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FIG. 6. (Color online) Streamwise mean velocity profiles of fiber
〈uf 〉 and fluid 〈ul〉 for the cases listed in table II, No. 1, No. 2, No. 3
(rρ = 1.2), and No. 5 (rρ = 1.0).

away from the wall the particles are slower than the fluid. In
our case, however, the inertial effect is small since the fibers
are almost neutrally buoyant (cases No. 1–3) or completely
neutrally buoyant (case No. 5) and the corresponding Stokes
numbers are small (St+ < 3). Consequently, the streamwise
mean fiber velocity of case No. 3 and case No. 5 are almost the
same. The long fibers have the highest velocity in the near-wall
region outside the viscous sublayer. Close to the wall the long
fibers lose momentum due to interactions with the walls, and
therefore they are slower than the short fibers. At the innermost
points the probability of observing a fiber is very low; i.e., no
fibers with L+ = 24 could be found below y+ ≈ 4 during the
whole simulation time, due to interactions with the wall.

Figure 7 exhibits profiles of the turbulence intensities of
the fluid (a) and fiber phase (b) for cases No. 1, No. 2,
and No. 3 in Table II. As seen from Fig. 7(a), the peak
in the streamwise fluid velocity fluctuations (urms) around
y+ ≈ 15 is attenuated by the effect of the fibers, whereas the
spanwise and wall-normal components are hardly affected.
The number of fibers in case No. 1 is much smaller than in
case No. 3 but the reduction of streamwise fluid fluctuations is
similar, suggesting that fibers can effectively damp turbulence
if their length becomes comparable to the size of the near wall
turbulence structures. In Fig. 7(b), it is seen that the intensity of
streamwise fluctuations of the fibers is substantially lower than
that of the fluid in the buffer layer, especially for the longest
fibers. Fiber fluctuations are thus reduced if the fiber length
becomes similar to the turbulent length scales even when the
Stokes number is small and fiber dynamics is not dominated
by inertia. Only very close to the wall, up to y = 1/2L,
fiber fluctuations are larger than the fluid fluctuations due
to interactions with the wall. These results are different to
earlier findings for pointlike particles [9], where it was found
that heavy fibers have a higher fluctuation intensity than light
fibers, but in their simulations particle inertia was the dominant
factor. The effects of the fibers on the Reynolds stresses are
nevertheless moderate in the present simulations, but stronger
effects are observed in ongoing simulations at higher values
of α.

Figure 8 illustrates turbulent vortices in the flow field by
means of isosurfaces of the second invariant, Q, of the velocity
gradient tensor (∇u),

Q = 1
2 (‖�‖2 − ‖S‖2), (9)

where ‖S‖ = [tr(SST )]1/2, ‖�‖ = [tr(��T )]1/2, and S and
� are the symmetric and antisymmetric parts of ∇u. In the
suspension flow [Fig. 8(b)] the large-scale vortices appear
similar to those in the single phase flow [Fig. 8(a)], but the
fibers generate a lot of small-scale vorticity. This vorticity
is due to the fiber-flow and the fiber-wall interaction, which
generates an angular motion of the fiber and influences the
fluid around it.

One-dimensional streamwise energy spectra of the stream-
wise velocity at y+ = 19 are shown in Fig. 9. In the case
with fibers the energy at high wave numbers is higher than
in the case without fibers, which confirms the observation in
Fig. 8 that fibers induce small-scale fluid motions. Note that
the energy spectrum for the case without fibers shows very
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FIG. 7. (Color online) Root-mean-square values of the streamwise, wall-normal, and spanwise fluctuating fluid velocity components (a)
and fiber velocity components (b) normalized by uτ for different fiber lengths.

good agreement with the one [30] plotted in Fig. 9, giving
further evidence that the turbulence is well resolved.

Figure 10 shows a three-dimensional view of the instan-
taneous fluid velocity and fiber distribution for fibers with a

10
0

+
10

0
+

(a)

(b)

FIG. 8. (Color online) The isosurface of the second invariant
Q = 0.45 of ∇u for (a) the case without fibers and (b) case No.
1. The dimensions of the wall surface (gray color) are 1420 and 396
wall units in x and z directions.

distance to the wall less than 1.5L for case No. 4. The color
field at the bottom of Fig. 10 is the magnitude of flow velocity
at the slice y+ = 14.4, and reveals the high- and low-speed
streaks as red and blue bands extending in the streamwise
direction, which also correspond to the ridges in the isovelocity
surfaces. We can observe that fibers are predominantly found
in high-speed streaks, implying that when finite-size fibers
move towards the wall by sweeplike motions into high-speed
streaks, they tend to stay there.

In order to quantify the accumulation of the fibers in high-
speed streaks we divide the near-wall region y+ � 16 into
six slabs and compute the streamwise velocity of the fiber at
its center of mass identified in one of these slabs. We then
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FIG. 9. (Color online) Comparison between the streamwise one-
dimensional spectra of the streamwise velocity fluctuation of single-
phase flow (dashed line) and suspension flow (solid line, case No.
1) at location y+ = 19; ◦ DNS data [30] for Reτ = 180. The wave
number is here scaled by the streamwise box size.
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|u |=7

|u |=6

|u |=5

FIG. 10. (Color online) Three-dimensional view of case No. 4,
fiber length L+ = 9.6, vf = 0.43%. The fibers shown here are fibers
with a distance to the wall less than 1.5L. The dimensions of the
outlined box are 1420, 64, and 396 wall units in the x, y, and z

direction, respectively, and the three closely spaced isosurfaces mark
surfaces where the fluid velocity |u+| = 5, 6, 7.

subtract the mean streamwise fluid velocity in that slab to
obtain the velocity fluctuation of the fiber u′

f with respect
to the mean flow velocity. Since the fiber velocity and local
fluid velocity at the fiber position are nearly the same we can
regard u′

f as the fluid velocity fluctuation at the position of
the fiber. The probability density function (PDF) of u′

f of all
fibers in the specified near-wall region for cases No. 1–3 are
shown in Fig. 11(a). All PDFs and most strongly the ones of
the longer fibers are biased towards positive u′

f implying that
fibers indeed tend to accumulate in regions with a higher than
average fluid velocity, i.e., high-speed streaks, as indicated
by Fig. 10. This accumulation of fibers in high-speed streaks
explains why fibers move faster than the mean fluid velocity
near the wall.

The obvious question is, why are almost neutrally buoyant
fibers accumulating in high-speed streaks? Visualizations
suggest that when the finite-size fibers move towards the wall
by a turbulent sweep into a high-speed streak a part of them
collide with the wall and are pushed back or at least prohibited
from following the fluid sidewards into a low-speed streak. To
find evidence for this process we also show in Fig. 11(a) the
PDF of the streamwise velocity fluctuation u′

f (solid line)
of the fibers for case No. 1 (L+ = 24) but now only for
the fibers that have contact with the wall. Since the PDF is
biased towards positive u′

f we can conclude that especially
fibers in high-speed streaks touch the wall, in support of
the previous observation. Figure 11(b) shows the PDFs of
the angular fiber velocity �z about the spanwise axis for
both fibers having contact and not having contact with the
wall in the region y+ � 16. The mean wall distance of the
center of mass for the two fiber classes is similar. The figure
reveals that these wall collisions have a significant effect
on fiber motions; fibers with wall contact have generally a
much higher �z and have a similar angular velocity as the
mean flow near the wall when they touch the wall and flip
over. As mentioned before, this interaction with the wall is
inelastic if the fiber moves mostly parallel to the wall, but
the collisions are approximately elastic when the fibers have a
high velocity towards the wall leading to significant repulsive
forces and changes in angular fiber velocity. We can anticipate

(a)

(b)

FIG. 11. (Color online) (a) PDFs of u′
f of all fibers in the region

y+ � 16 for cases No. 1–3 (lines with symbols) and PDF of u′
f of

fibers that have contact with the wall in case No. 1 (solid line). (b)
PDFs of �z for fibers with (symbols) and without (solid line) contact
with the wall in case No. 1. Only fibers in the region y+ � 16 are
considered and �z has been scaled with ν/u2

τ .

that in cases with more inelastic collisions with the wall and
weaker repulsive forces the accumulation of the fibers in the
high-speed streaks is less strong and hence the difference
between fluid and fiber mean velocity is smaller. This could
be a topic of future research. All these results support the idea
that when finite-size fibers move towards the wall in turbulent
sweeps contact forces with the wall hinder the fibers from
passively following the fluid towards low-speed flow regions
and tend to keep them in high-speed flow regions. Other effects
like fiber-fiber interactions and the feedback of the fibers on
the flow play likely a minor role in causing the difference
between the mean fluid and fiber velocity near the wall since
the concentration parameter α is small in the simulations. This
is confirmed by comparing case No. 2 and No. 4 with the same
fiber size. The same fiber mean velocity is observed near the
wall (Fig. 6) although α and the fiber volume fraction and thus
the fiber-fiber interactions and fiber feedback are different in
these two cases.

It should be noted that these results are different from earlier
ones [9,10], where the authors studied very small fibers treated
as one-way coupled point particles, in a parameter range
where fiber inertia was important. Under those conditions
it was found that fibers accumulate in low-speed instead of
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FIG. 12. (Color online) The fiber concentration profile across the
half channel for different fiber lengths.

high-speed streaks. Marchioli et al. concluded that for the
cases they studied, the segregation was mainly caused by the
fiber inertia while the fiber aspect ratio had little influence. We
note that the segregation of fibers is fundamentally different in
our and their study, and that the present results shed new light
on the effects of a finite fiber length.

B. Near-wall fiber accumulation

In order to analyze the distribution of the fibers across
the channel, we divided the channel into 540 slices in the
wall normal direction. The fiber concentration is computed
from the total number of fibers present in each slice during a
time t = 30t∗. Figure 12 shows the fiber concentration profile
across the channel normalized with the mean concentration
at the channel center. In all cases we observe that the fibers
accumulate near the wall at a distance of the order of the
fiber length from the wall. The neutrally buoyant case and
the case with rp = 1.2 have a maximum accumulation at
the same distance, 2.2L, from the wall, but the heavier fiber
shows a stronger accumulation indicating that there is some
turbophoresis effect. However, finite size effects also play
a role since we observe accumulation for rp = 1.0 as well.
Results presented below indicate that finite size fibers moving
towards the wall region spend a relatively long time there
due to the difficulties of escaping the near wall high-speed
regions. The excess concentration for the cases studied here
is moderate, of the order of 25%, which is much smaller
than, e.g., the turbophoresis effect for heavy particles in gas
flow [10].

Collisions with the wall seem to explain the accumulation
in high-speed streaks. To study this effect, details of the
movement of one individual fiber of length L+ = 24 near
the wall are plotted in Fig. 13. During most of the time the
fiber moves at roughly constant speed and angular velocity,
but it sometimes abruptly changes its direction of motion and
rotation. Four of these instants are marked as vertical dashed
lines.
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FIG. 13. (Color online) Time history of a fiber moving in the
vicinity of the wall. Fiber length L+ = 24. The top two panels show
the position y+ and z+ of the fiber center in the y-z plane, and the
three below show the orientation of the fiber (φ and θ angles and orbit
constant Cb). The bottom three show the angular velocity � around
each of the three axes.

At the first instant (at time ≈25), the fiber does not touch the
wall, but we still observe a large change of the rotation speed
�z about the z-axis because the fiber enters a strongly vortical
flow region (note the rotation angles φ and θ in this figure),
whereas the trajectory of the fiber remains almost unchanged.
Between t = 40 and 200 the fiber follows a kayaking motion
since the angle θ is around 50 degrees. At the second instant at
t ≈ 50, the center of the fiber is at y+ = 7 and one side of the
fiber has made contact with the wall. The high shear rate in the
viscous sublayer and the collision force acting on one side of
the fiber generates a large torque and changes the angular speed
and pushes the fiber upward. However, the upward motion
ends soon because the fiber is still in a high-speed streak
where the fluid is moving toward the wall. This process is
repeated several times, at t ≈ 90 and t ≈ 180, until the fiber
escapes into an ejection-like outflow region and moves far
away from the wall. The probability of seeing fibers in the
near-wall region is thus higher than in the core region because
the fibers apparently cannot easily escape the near wall region
via turbulent ejections when they are trapped in the high-speed
regions due to wall interactions.

C. Fiber orientation

The PDF of the orbit constant, Cb, at different wall-normal
positions and for different fiber lengths is plotted in Fig. 14.
PDF profiles were computed by subdividing the channel in 100
equal slabs in the wall-normal direction and calculating the
histogram of Cb of all fibers in each slab during a time period
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FIG. 14. (Color online) Probability density function of the orbit constant (contour lines) for fiber length L+ = 3.2, case No. 3 (a); L+ = 9.6,
case No. 2 (b), and L+ = 24, case No. 1 (c). The dashed line is the average orbit constant.

t = 30t∗. The calculated histogram is normalized by the total
number of fibers located in each slab, and the dashed line in the
figure is the average orbit constant, 〈Cb〉. At the center of the
channel 〈Cb〉 = 0.45, 0.42 and 0.40 for fiber length L+ = 3,2,
L+ = 9.6, and L+ = 24, respectively, which is quite close
to 〈Cb〉 = 0.5, corresponding to a fully random orientation.
The PDFs of Cb have a wide distribution, signifying that all
orientations are possible.

For short fibers (L+ = 3.2) we see in Fig. 14(a) that the
PDF is almost independent of the distance from the wall. High

shear near the wall has an effect, but the orientation does not
deviate much from a fully random isotropic distribution in
the rest of the channel. This is further illustrated in Fig. 15,
showing the absolute value of the mean direction cosines,
where γx , γy , and γz are the angles between fiber and axes of
the coordinate system xyz. The trend in the profiles generally
agrees with those shown by others [9,10,31]. When the fiber
length increases in comparison to the turbulence scales we
note a tendency in the outer flow region that the PDF becomes
more skewed with a high probability for low values of Cb.
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FIG. 15. (Color online) Mean values of direction cosines for three different fiber lengths, cases No. 3, No. 2, and No. 1 in Table II.

The maximum probability is found at Cb ≈ 0.3,0.1 and 0.05
for L+ = 3.2, 9.6, and 24, respectively. Hence, away from the
walls we observe an increasing preference with increasing L+
for a log-rolling type of motion. This alignment occurs despite
the turbulent environment. However, the fiber orientation in our
simulation agrees well with recent results of Rosén et al. [32]
who showed that short and long fibers tend to have a tumbling
and log-rolling motion, respectively. The transition between
these two regimes is determined by a competition between
fiber and flow inertia.

For the long fibers studied here we also see in Fig. 15(a)
a clear trend of increasing values of | cos(γx)| in the near
wall region, which implies a change from a log-rolling or
kayaking type of motion to rotation in the shear plane as a
wagging or flow-aligning motion. This a natural consequence
of the increased shear near the wall and high streamwise
fluid velocity fluctuations, and agrees well with previous
work [9,10,31]. When the distance of the fiber to the wall
is less than half of its length, it cannot rotate freely in the shear
plane and cos(γy) decreases to zero, which is characteristic of
a fiber oriented along and rotating around the streamwise axis
in a flow-aligning motion. Hence, finite size fibers tend to be

restrained to the x-z-plane [see Fig. 15(b)] and with increasing
length to predominantly become aligned in the x direction [see
Fig. 15(a), 15(c)].

IV. CONCLUSION

In this paper, we have conducted a DNS study of sus-
pensions of rigid fibers in turbulent channel flow with the
lattice Boltzmann model (LBM). The fibers or rods are of
finite-size with a length from 3.2 to 24 in terms of viscous
wall units. The fiber’s interface is fully resolved with contact
and lubrication force models for fiber-fluid, fiber-fiber, and
fiber-wall interactions. Turbulence is accurately represented
by the LBM simulation, as shown by good agreement with
spectral DNS results for single-phase turbulent channel flow.

We found that the finite size of the fiber has a clear influence
on the dynamics of the suspension. The statistical dynamics
of the simulations show that the fibers accumulate in high-
speed streaks near the wall, resulting in a mean fiber velocity
that is higher than the mean fluid velocity. This preferential
concentration is mainly caused by the interaction of the fibers
with the wall and not by the inertial effects because the fibers
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are almost or exactly neutrally buoyant and the Stokes number
is small. The fluctuation intensities and orientation of the fiber
are strongly influenced by the finite size, but the turbulence
intensities of the fluid are only moderately influenced because
of the low volume fraction and the small fiber Stokes number
used in this simulation.

In the central region of the channel there is a strong tendency
for fibers to have a kayaking type of motion, while close the
wall they tend to rotate in the shear plane. Very close to the wall
they become restrained to the wall-parallel plane and become
predominantly aligned in the streamwise direction. This latter
effect can be ascribed to the dominance of streamwise fluid
velocity fluctuations and high shear rate in that region.
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APPENDIX A: EXTERNAL BOUNDARY
FORCED METHOD

In this appendix, we explain the EBF method in more
detail. Let �s and �f represent the continuum domain for
a fiber and the surrounding fluid. In Fig. 16 �s and �f are
indicated by a set of circle and square symbols. � represents
the fluid-solid boundary, and �s and �f are subsets for the solid
and fluid boundary nodes (set of solid circles and solid squares,
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FIG. 16. (Color online) A schematic to illustrate the forces in
EBF methods. Different symbols are employed to indicate the node
types: circles: solid nodes; squares: fluid nodes; solid symbols:
boundary nodes; and open symbols: interior nodes.

respectively in Fig. 16). To impose the no-slip boundary
condition at the fiber surface we use the forces Ff si(x,t)
and g(x,t) acting, respectively, on the fiber and fluid at the
boundary nodes x ∈ � at time t . According to Newton’s third
law, Ff si(x,t) = −g(x,t) for x ∈ �. The motion of the fluid
governed by the Navier-Stokes and continuity equations with
the inclusion of the external boundary force is written as

{
ρ ∂u

∂t
+ ρu · ∇u = −∇p + μ∇2u + g(x,t)

∇ · u = 0
(A1)

where g(x,t) =
{−Ff si(x,t) if x ∈ �

0 if x /∈ �
. (A2)

The solid-fluid interaction force per unit volume acting on
the solid boundary node is given by

Ff si(xs ,t) = ρf [Vf (xs ,t) − Vs(xs ,t − 
tLBM)]


tLBM
, xs ∈ �s,

(A3)

where the LBM time step 
tLBM = 1, Vs(xs ,t − 
tLBM) is
the particle velocity at solid boundary node xs at the previous
time step, and Vf (xs ,t) is the fluid velocity at solid boundary
node xs at time t :

Vf (xs ,t) =
∫

�f

u(xf ,t)D(xf − xs) dxf , xs ∈ �s, xf ∈ �f ,

(A4)

where D(xf − xs) is a discrete Dirac delta function [24]. The
feedback force on the fluid boundary nodes (�f ) is given by

g(xf ,t) = −
∫

�s

Ff si(xs ,t)D(xf − xs) dxs,

(A5)
xs ∈ �s, xf ∈ �f .

A total force F(xi
s ,t) acting on a node i of the solid object is

the combination of the fluid-solid interaction force Ff si(xs ,t) at
this node and the external force Fext(xs ,t) which could include
the gravitational force and interparticle contact forces. For a
particle with N boundary nodes, the total force F(t) and the
torquee T(t) at time t are given by

F(t) =
N∑

i=1

F(xi
s ,t), (A6)

and

T(t) =
N∑

i=1

(
xi

s − xc
s

) × F
(
xi

s ,t
)
, (A7)

respectively, where xc
s is the center of gravity of the particle.

Once the total force and torque are obtained for each
particle, the velocity and angular velocity of the suspending
particle can be computed numerically by the Newtonian
dynamics equations{

M dV
dt

= F(t)

I d�
dt

+ � × (I · �) = T(t)
(A8)

where M and I are the mass and the inertial tensor of the
particle, respectively.
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APPENDIX B: INTERPARTICLE MODEL

The applied lubrication force model between fiber-fiber and
fiber-wall is based on a distance h and a relative velocity Vapp

between the surfaces [19]

Flub =
{

− 3q̄μr

2σ 2
c

(
1
h2 − 1

σ 2
c

)
Vapp · navg, if h < σc

0, if h � σc

(B1)

navg = ni − nj

|ni − nj | , (B2)

Vapp = (Vi − Vj ) · navg, (B3)

where, q̄ is a weighting factor that depends on the lattice
structure, with q̄ = 0.6 for the D3Q19 lattice used in this paper.
r is the fiber radius, navg is the average surface normal vector
between two surfaces i and j , and Vi and Vj are the velocities
at the respective surface. To avoid the singular nature of h−2

term in the lubrication force model, we use a repulsive force
when h is smaller than a critical distance, σc. The repulsive
force increases exponentially with fiber surface overlap to
prevent fibers from penetrating each other,

Fcon = Ac exp

(
σc − h

σc

)
. (B4)

Here Ac is a contact scaling constant, and σc is a constant
determining the range of the contact force. In this paper σc =
0.03r is chosen. The contact scaling is related to a viscous
force as, Ac ∼ 6πμVs/r , where Vs = |Vapp| is the relative
velocity between the fibers.

APPENDIX C: LATTICE BOLTZMANN METHOD WITH
AN EXTERNAL FORCE

The governing equation for the single distribution function
f (x,ξ ,t) discretized in space x, in lattice velocity ξ , and in
time t , is the Boltzmann equation,

∂f

∂t
+ ξ · ∇xf + g · ∇ξ f = J (f ), (C1)

where g is an acceleration related to forces acting on the
particle; J (f ) is a collision operator. The original Boltzmann
collision operator is extremely complex and is generally
replaced by a simpler form. The simplest and most common
model for J (f ) is the BGK approximation [33,34]. It is a linear
relaxation-type model in which the current single particle
distribution f is relaxed toward its equilibrium distribution
f eq,

∂f

∂t
+ ξ · ∇xf + g · ∇ξ f = 1

τ
(f eq − f ), (C2)

where τ is the relaxation time. Under appropriate lattice
discretization of space x and velocity ξ , the simplest algorithm

to solve Eq. (C2) in discretized space is [35]

fα(x + eαδt ,t + δt ) − fα(x,t)

= −fα(x,t) − f
eq
α (x,t)

τ̂
+ δ2

t

τ̂ δx

g · (eα − u)

2c2
s

f -
α(x,t) (C3)

where τ̂ is the dimensionless relaxation time related to the
kinematic fluid viscosity,

ν = δt c
2
s

(
τ̂ − 1

2

)
, (C4)

where δx and δt are the step of spatial discretization and
step size in time, respectively, cs is the pseudospeed of
sound, and it is related to the temperature as cs = √

RT .
The distribution function f can be used to determine the
macroscopic hydrodynamics using the following relations:

ρ(x,t) =
Q∑

α=1

fα; ρu(x,t) =
Q∑

α=1

fαeα, (C5)

where ρ is the dimensionless density and u is the dimensionless
velocity of the fluid. The equilibrium distribution function at
x at time t reads

f eq
α = wαρ

{
1 + eα · u

c2
s

+ 1

2

(eα · u)2

c4
s

− 1

2

u · u
c2
s

}
+ O(u3),

(C6)

where wα is a set of directional weights normalized to unity.
For lattice type used in this paper (D3Q19), w0 = 2/9, wα =
1/9 for α = 1, . . . ,6 and wα = 1/72 for α = 7, . . . ,14 and
Q = 19.

APPENDIX D: ENTROPIC LATTICE
BOLTZMANN METHOD

The entropic lattice Boltzmann method (ELB) introduces a
self-adaptive stabilization by choosing automatically the over-
relaxation γ at each node, which guarantees the distribution
function fα to be positive-definite at all locations and all
discrete time steps. A form of the ELB approach is given by
Keating et al. [21] and Ansumali et al. [36], as a modification
of Eq. (C3),

fα(x + eα,t + 1) − fα(x,t)

= −γ (x,t)

2τ̂

{
fα(x,t) − f eq

α (x,t)
}
. (D1)

Here γ (x,t) is the maximal over-relaxation, which is the
positive root of the entropy condition

H [f] = H [f − γ (f − feq)]. (D2)

The discrete H function is derived upon applying Gauss-
Hermite quadratures on the standard continuum Boltzmann
H function, yielding

H [fα] =
Q∑

α=1

fα ln

(
fα

wα

)
. (D3)

The effective viscosity in the Navier-Stokes equation for the
ELB is

νeff(x,t) = δtc
2
s

[
2τ̂

γ (x,t)
− 1

2

]
. (D4)
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