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Understanding flow properties and phase behavior of water confined to nanometer-sized pores and slits is central
to a wide range of problems in science, such as percolation in geology, lubrication of future nano-machines,
self-assembly and interactions of biomolecules, and transport through porous media in filtration processes.
Experiments with different techniques in the past have reported that viscosity of nanoconfined water increases,
decreases, or remains close to bulk water. Here we show that water confined to less than 20-nm-thick films
exhibits both viscoelasticity and shear thinning. Typically viscoelasticity and shear thinning appear due to
shearing of complex non-Newtonian mixtures possessing a slowly relaxing microstructure. The shear response
of nanoconfined water in a range of shear frequencies (5 to 25 KHz) reveals that relaxation time diverges with
reducing film thickness. It suggests that slow relaxation under confinement possibly arises due to existence of a
critical point with respect to slit width. This criticality is similar to the capillary condensation in porous media.
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I. INTRODUCTION

Is room temperature water “solid” or “liquid” under
nanoconfinement? The question gains significance because
water confined to nanoscale hydrophobic and hydrophilic
pores and slits is biologically [1–6] and technologically [7–9]
important. Force measurement techniques such as the surface
force apparatus (SFA) [10–15] and atomic force microscopy
(AFM) [16–21] have measured changes in both shear and
normal mechanical response of water under molecular level
confinement. The conclusions from many of these measure-
ments differ from each other. Here we report measurement of
shear response of nanoconfined water at unprecedented shear
rates (104 to 105) s−1 with a novel method recently developed
by us [22]. Such high shear rates reveal non-Newtonian
behavior resulting from slow relaxation of water in the range
of 10−4 to 10−6 s.

We discuss the enabling features of present experiments,
which allow viscosity measurements at higher frequencies
and shear rates. This experimental scheme has two advantages
over the past shear viscosity measurements of water films
having thickness of few nm. (1) The spring measuring the
viscous drag has high stiffness of 55 000 N/m and yet has
a force sensitivity of a few nN [22]. The high stiffness
reduces thermal noise in force measurement. (2) The force-
measuring spring is out of the liquid and hence has a high
resonance frequency (32 kHz) and quality factor (800) [22].
This allows off-resonance measurements with high frequency
shear (5 to 25 kHz) and shear rates (104 to 105 s−1). In
previous measurement using AFM, frequencies are restricted
to below resonance (≈0.1–2 KHz) of a weak lever and with
a low-quality factor (≈5) [18,19]. The ability of measuring
shear forces with nN force sensitivity at significantly higher
shear frequencies and shear rates has yielded the viscosity
measurements of nanoconfined water in a parameter space
that so far has not been probed.
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II. EXPERIMENTAL

A thin water film of a few nm thickness is confined between
an atomically smooth freshly cleaved mica and fiber tip.
The tips were prepared by pulling a single-mode fiber in a
laser-based fiber puller (Sutter Instrument Co. P2000). They
are imaged under ascanning electron microscope (SEM) before
use. Figure 1(a) shows an SEM image of a typical tip. The mica
is freshly cleaved before the measurement, and the liquid cell
is immediately filled with millipore water. Figure 1(b) shows
schematic of water confinement. The fiber tip is fixed on one
prong of the tuning fork, and the other prong is oscillated
off-resonance using a piezo. The current through the electrodes
due to asymmetry in prong oscillations is used to measure
drag force on the fiber tip [22,23]. A quantitative analysis to
determine tip amplitude in bulk (A0) is given in Appendix B.
The tip is oscillated with amplitudes less than 0.5 nm rms in
bulk, and separation between tip and sample is varied at a rate
of ≈10 nm/s. The shear amplitude is the ratio of oscillation
amplitude and separation between tip and sample (A0/d). We
compute the fraction change in drag force offered by confined
water (δF/F ) with respect to bulk drag force experienced by
the fiber tip: δF/F = k(A0 − A)/kA0 = 1 − A/A0. A finite
phase lag between the piezo drive and oscillations of the tuning
fork prong bearing the fiber tip indicates a non-Newtonian vis-
coelastic response where viscosity is complex, η∗ = η′ − iη′′.
Maxwell’s relaxation time is given by τ = (η′′/η′) 1

ω
[22]. The

relaxation time of confined water is computed using phase data.
The details of this methodology are described in Appendix A.

We remark here that the prong amplitude is always larger
in air compared to when the tip is in liquid. As discussed
in Ref. [22], the amplitude of the free prong is more than
the prong attached to the piezo drive. The current through
electrodes is due to this asymmetry in bending. This difference
in amplitudes of the two prongs is referred to as differential
amplitude �A = A1 − A2, where A1 is the amplitude of the
prong bearing the tip and A2 is the amplitude of the prong
attached to the piezo drive. The current through electrodes
is proportional to �A. After immersing the tip in liquid,
it experiences a viscous drag force. The amplitude of this
prong now decreases slightly and current through the electrode
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FIG. 1. (a) Scanning electron microscope image of a representative tip used for confinement of water. (b) Schematic of the tuning fork
force sensor used to measure shear viscosity of nanoconfined water. A fiber tip is mounted on one prong of a tuning fork, and the other prong
is driven with a piezo to provide shear; both prongs of the tuning fork are kept outside water. The current through electrodes is passed through
a preamplifier with a gain of 107 V/A. A lock-in amplifier measures amplitude and phase of the prong with respect to shear drive provided by
piezo. The tip oscillations are less than 0.5 nm rms in bulk.

decreases. This reduction in current is an indicator of drag force
offered by the bulk liquid. When the tip further approaches
towards the mica surface, the water molecules at the end of the
tip become confined and offer a different drag force compared
to when the tip was entirely in bulk. The changes in current
from its bulk value are a measure of variation in viscosity of
nanoconfined water with respect to bulk. We roughly estimate
the change in differential prong amplitude using a coupling
constant that relates charge accumulation and differential
bending of prongs. The actual prong amplitude in bulk is

estimated using an independent interferometry measurement.
This is described in Appendix A. The change in �A when
the tip is within a few tens of nm from the mica surface is
recorded and used to calculate relative change in drag force
due to nanoconfiement

III. RESULTS AND DISCUSSIONS

Figure 2(a)–2(d) shows differential amplitude �A, fraction
change in drag force (δF/F ), and phase and relaxation

FIG. 2. (Color online) Measurements at 22 kHz shear frequency and approximately 0.2 to 0.3 nm rms amplitude. (a) Differential amplitude
�A = A1 − A2 and (b) phase versus separation. The change in �A is inferred from current through electrodes. The change in amplitude is
measured using change in current as the tip is approached towards the surface. (c) The fraction change in drag force relative to bulk (δF/F )
computed from data in (a). The prong amplitude when tip is away from the surface is estimated from independent interferometer measurements.
The details are provided in Appendix B. Three regions of pure viscoelasticity (ωτ > 1 > γ̇ τ ), combined viscoelasticity and shear thinning
(ωτ > γ̇ τ > 1), and shear thinning dominating viscoelasticity (γ̇ τ > ωτ > 1), are shown in gray (region marked by 1), green (region marked
by 2), and red (region marked by 3), respectively. The dotted line represents the bulk drag force. (d) Relaxation versus separation computed in
the region of pure viscoelasticity (ωτ > 1 but γ̇ τ < 1).
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time as the water film is progressively confined between the
fiber tip and mica surface. The measurements are performed
at 22 KHz frequency and approximately 0.2–0.3 nm tip
oscillation amplitude.

In Fig. 2(c) a finite phase lag at a separation where drag
force starts to increase indicates that viscosity is complex under
confinement [22]. The mechanical response of the system is
now well described by Maxwell’s relaxation time. Viscoelas-
ticity appears when a system is sheared with frequency higher
than inverse of its relaxation time, ωτ > 1 [24,25]. In Fig. 2,
viscoelasticity starts to appear around a separation of 7.5 nm
for shear frequency of 22 kHz. At this separation, ωτ = 1,
which implies τ = 8 × 10−6 s at 7.5 nm. The shear amplitude
γ is ratio of oscillation amplitude and separation. A0 is shear
amplitude and d is separation(see Fig. 1). Typically shear
thinning follows viscoelasticity at higher shear rates, and the
condition for shear thinning is γ̇ τ > 1 [25]. At a separation
of 7.5 nm and an oscillation amplitude of 0.2 nm, shear
amplitude is γ = (A0/d) = 0.026. This is purely viscoelastic
region in the limit of zero shear amplitude and finite shear
frequency. As the separation is reduced shear amplitude as well
as relaxation time increase making γ̇ τ > 1. In Fig. 2(c) this
happens around a separation of 2.16 nm and (δF/F ) starts to
decrease, indicating a reduction in drag force. This is the onset
of shear thinning behavior. Around this region the condition of
ωτ > γ̇ τ > 1 for combined shear thinning and viscoelasticity
is satisfied. As tip is approached further towards surface, we see
a region where shear thinning dominates viscoelasticity and
the net drag force is less than bulk drag force, γ̇ τ > ωτ > 1.
This is expected at smaller separations where the shear rate
becomes very large for a given frequency.

Figure 2(d) shows relaxation time versus separation com-
puted using phase data. Our methodology to compute relax-
ation time from phase data is valid only in the viscoelastic
region [22]. See Appendix B. For separations below 2.16 nm,
the combined viscoelasticity and shear thinning do not allow
us to compute relaxation from phase data. At larger separations
where (A0/d) � 1 and γ̇ τ < 1, we are in a purely viscoelastic
region in the limit of zero shear amplitude. A purely shear
thinning regime in the limit of zero frequency where ωτ � 1
but γ̇ τ > 1 is not possible in our experiments. Such measure-
ments have been reported for dodecane films sheared at strain
amplitude of 15 and shear frequencies of few Hz [26].

It is worthwhile comparing our off-resonance shear mea-
surements with previous shear AFM and SFA experiments.
Li et al. measured the viscoelastic response of nanoconfined
water with shear amplitude in the range of 0.1 to 6 and shear
frequency around 1 kHz. The shear rate or frequency in these
measurement were not high enough to reveal the nonlinear
response at separations above 1 nm. In our measurements the
frequency and shear rate are in the range of 5 to 25 kHz
and 104 to 106 s−1 respectively. This enables measurement of
build-up of elastic response at separations larger than 1 nm.
Sakuma et al. used a modified SFA to include resonance shear
measurements [15]. The resonnant response of a part-bearing
upper mica sheet is used to infer the viscous and elastic
nature of water confined between the two mica surfaces [15].
They have noticed elastic build-up in the shear response of
nanoconfined water between silica surfaces from separations
as far as 8 nm [27]. This range of separation having a nonlinear

response is similar to our measurements. It is important to note
that both our measurements and prior shear measurements
using AFM employ relatively small strain amplitudes (0.1 to
5) [19] compared to the SFA measurements (10 to 500) [26,27].
The AFM experiments use high frequencies (500 Hz to 2 kHz)
whereas shear SFA works with low frequencies (1 to 100 Hz).
In particular, our experiments were performed in relatively
high strain rates with very small strain amplitudes.

In molecular dynamics (MD) simulations performed by
Leng and Cummings [28], the hydrated thin films of water
undergo shear thinning at sufficiently high shear rates. They
report that films with thickness 1.22 and 0.61 nm are shear
thinned whereas thicker films have viscosity close to bulk
water. Our experiments show that relaxation time strongly
depends on separation, and thinner films can exhibit both
viscoelasticity and shear thinning. The shear thinning appears
in simulations due to slower rotational dynamics (≈10−9 s)
of water molecules under confinement. Although we are
measuring shear response of pure water and our shear rates are
orders of magnitude less than these simulations, the parallels
between experiments and MD simulations are remarkable. It
is noteworthy that water films do exhibit shear thinning in
MD simulations, a phenomenon associated with complex non-
Newtonian liquids. The physics of combined viscoelasticity
and shear thinning is still emerging [29].

The experiment discussed above clearly demonstrates that
drag force offered by confined water relative to bulk can in-
crease or decrease depending on shear rate. This underlines the
importance of measuring variation in relaxation time of water
with slit width (tip-sample separation). Shear thinning and
viscoelasticity are more commonplace in complex liquids with
a slowly relaxing microstructure. Mixtures such as whipped
cream, polymer melts, and colloidal suspensions, typically
referred to as soft matter, have a complex viscosity or modulus
of rigidity. What is the origin of complex viscosity of pure
water under confinement and subsequent viscoelasticity and
shear thinning behavior? Here we suggest an analogy between
confined liquids and systems close to their critical points. Near
a vapor-liquid transition, xenon under microgravity exhibits
viscoelasticity and shear thinning [25]. The relaxation rates
diverge near this critical point.

In order to probe reasons behind complex viscosity in our
experiments, we measured the dependence of relaxation time
on slit width. Experiments were performed in a range of shear
frequencies (5 to 25 KHz), which allowed us to measure
relaxation time of water films with varying slit widths. We
used two methodologies to generate a relaxation time verses
separation curve: (1) In a purely viscoelastic regime with
nearly zero shear amplitudes, we could compute relaxation
time from phase data as described in Ref. [22]. This is shown
in Fig. 2(d). (2) We know the onset of viscoelastic region
from phase and amplitude versus separation data. This onset
happens at ωτ = 1. We can calculate the relaxation time at
a separation where onset occurs by taking inverse of shear
frequency. The measurement is repeated and the onset for
each frequency is noted.

Figure 3 shows a master curve of measurements performed
at various frequencies. The relaxation time is computed by
the above-mentioned two methods and is plotted versus
separation in one single curve. The points computed using
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FIG. 3. (Color online) Relaxation versus separation master
curve. Two methodologies are used to compute relaxation time as
described in the text. Black circles without error bars are points
calculated using ωτ = 1; blue circles with error bars are points
calculated using method in Ref. [21]. The line is a fit with equation
τ/τbulk = (d/dbulk)−α , α = 1.77 ± 0.5, and dbulk is 5 μm assuming
τbulk to be 62 ps. Errors in estimating relaxation using method 1
originate from poor determination of spring constant k2.

methods 1 and 2 are plotted in different colors. We fit a
power law to this data τ/τbulk = (d/dbulk)−α . Here τbulk is
bulk relaxation time corresponding to separation dbulk. The fit
yields exponent α = 1.77 ± 0.5, and dbulk takes value of 5 μm
for τbulk = 62 ps. The divergence of relaxation time with film
thickness is striking. The divergence and critical exponents
characterizing a universality class are typical to a second order
phase transition [30]. It implies that by reducing film thickness
we are pushing the system towards a critical point. Although a
shift in transition temperature under confinement is very well
known [31], it is unlikely that vapor-water critical point comes
close to room temperature. Indeed, the freezing and melting
point shifts for water in porous silica are reported to be only by
few K [32]. Evans and co-workers have predicted criticalities
related to capillary condensation in the case of liquids under
nanoconfinement [33,34]. They have argued that under con-
finement the liquid-wall interaction becomes stronger relative
to liquid-liquid interaction, increasing effective chemical
potential. At a critical separation the coexistence of two liquid
states having different density profiles vanishes [33]. Despite
the lack of detailed calculations for water, it can be argued
that slow relaxation under confinement occurs due to critical
slowdown near a second order phase transition from a low
density bulk-like phase to a very high density “dynamically
solidified phase” described in Ref. [18]. This argument needs
further experimental investigation and theoretical support.
Critically slowed confined water also explains shear response
at separations as large as 20 nm in our experiments at high
shear frequencies.

Water (polar and associative liquid) is thought to behave
differently under confinement compared to other organic

liquids (nonpolar, nonassociative) [13]. Evidence for shear
thinning in case of water suggests a similarity in behavior for
water and dodecane [26]. This similarity also exists in normal
mechanical response of water and octamethylcyclotetrasilox-
ane [18,35]. Further, measurement of relaxation together with
optical measurements that may enable monitoring of critical
scattering will shed light on the nature of critical phenomena
associated with nanoconfined liquids.

In summary, we have measured rheological response of
nanoconfined water with unprecedented shear rates. The
measurements reveal viscoelasticity and shear thinning at
confining separations as large as few nm. The divergence
of relaxation with reducing separation hints at a possible
criticality in nanoconfined water.

ACKNOWLEDGMENTS

The work is funded by a Department of Science and Tech-
nology nanomission grant (SR/NM/NS- 84/2009). The authors
would like to thank Arijit Bhattacharyay for useful discussions.

APPENDIX A: ESTIMATION OF SHEAR AMPLITUDE

Shear amplitude is given by A0/d, where A0 is amplitude of
tip oscillation and d is separation between tip and the surface.
To estimate shear amplitude we need to obtain zero of the
separation in our measurement and amplitude of the tuning
fork prong when it is far from the surface. In the following
we discuss methods of estimating these and possible errors
involved.

1. Determination of zero of the separation d

Mechanical response of confined liquids is measured
using two techniques: a surface force apparatus (SFA) and
atomic force microscopy (AFM). SFA measures separation
of atomically smooth confining walls using interferometry.
These measurements typically estimate separation between
surfaces with 0.4 nm accuracy (≈ thickness of a water mono-
layer) [12,13]. In the case of AFM, there is no such independent
measurement of separation, and zero of the separation is
usually inferred from a sudden change in a cantilever’s normal
static deflection upon touching the surface [17,18]. However,
it is not clear if the first surface-bound layer of water moves
out of the approaching tip and surface. In our measurements
vertical stiffness is nearly infinite, and we cannot measure
vertical deflections. We assume that the first layer of water
is bound to the surface and is not squeezed out in approach.
It has the same shear response under varying loads [12]. We
can assign zero of the separation to a point where amplitude
stops varying any further. It is seen in experiments that after
the initial decrease and increase, the amplitude stays constant
upon further approach. We treat this as zero of separation in
our measurement, and it has an accuracy of 0.4 nm. However,
the step size in our separation measurement is 0.7 nm. There
will be an error of 0.7 nm in determining the point at which
the amplitude remains constant. Our step size is limited by
measurement bandwidth required to pick up signal from noise
using lock-in amplifiers. This can be improved further with
better signal-to-noise ratio in preamplifier.
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FIG. 4. Equivalent electrical circuit for tuning fork.

2. Measurement of free tip oscillation amplitude A0

Accurate measurement of shear amplitude is important in
rheology for identifying different regions of liquid’s complex
behavior. In present experiments the current through prongs
is used to measure differential amplitude. The actual tip
amplitude is not possible to determine; instead we measure
off-resonance prong amplitude using an interferometer and
relate this to current through coupling constant. This gives us
a rough idea of the amplitude of tuning fork prong when it
is immersed in liquid. The change in amplitude is estimated
using change in current as the tip approaches the mica surface.
The tuning fork equivalent electrical circuit is shown in
Fig. 4. Here Cp represents stray parasitic capacitance due to
electrical contacts made to the electrodes. In our experiments
we put a 10μF capacitance in series to null this capacitance,
but it never compensates stray capacitance completely. The
current through electrodes has two contributions: (1) current
due to asymmetric bending of prongs, which depends on
amount of bending and the coupling constant ε, the charge
accumulated per unit bending, and (2) the current through the
uncompensated parasitic capacitance Cp:

i = εω(A1 − A2) + ωCp, (A1)

where ε is a coupling constant, ω is frequency of operation,
and (A1 − A2) is the difference in bending between two prongs
or differential amplitude. For on-resonance operation, the first
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FIG. 5. Schematic of interferometer to measure the free oscilla-
tion amplitude away from the surface.

FIG. 6. (Color online) Current through electrodes and the actual
amplitude of one prong of the tuning fork. Current follows Eq. (A1).
Most of the current is due to parasitic capacitance in off-resonance
condition. The variation in current due to asymmetric prong bending
is small but measurable while performing force measurements.

term is dominant, and tuning fork amplitude is measured using
current through electrodes [23].

For off-resonance operation, the piezo drive and both
prongs move in phase and by an equal amount. As mentioned
in Ref. [22] we found that there is a slight asymmetry
in bending at off-resonance, also supported by COMSOL
simulations. This causes a small amount of current to flow
through the electrodes; however, current due to parasitic ca-
pacitance overwhelms this value. Therefore, it is not possible to
determine free amplitude from current alone in off-resonance
operation. Although we perform our measurements in off-
resonance, one of the prongs experiences the drag force due
to immersion of the tip attached to it in liquid. The term
involving (A1 − A2) is a measure of drag force acting on
the fiber tip. The term involving Cp remains constant when
the tip is immersed in liquid or approaches the surface. We
therefore use change in current to measure change in drag
force, while amplitude in bulk is estimated from independent
interferometry measurements. The amplitude of the prong
bearing the tip is much larger when the tip is in air compared to
when the tip is immersed in liquids. The change in amplitude
when the tip approaches the surface is inferred from changes
in electrode currents. Figure 5 shows a schematic of this
interferometer measurement. Light from 1350 nm diode laser
is passed through a 2 × 2 coupler. Part of this split light goes

FIG. 7. The drive amplitude measured using an interferometer
with different drive voltages on the piezo. In all our experiments we
used a drive of 0.5 to 1 V.
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FIG. 8. The real and imaginary parts of damping coefficients with phase φ1. The value of phase φ1 for which the viscosity turns complex
depends on k2.

to the fiber having a half mirror coated on its other end. This
end of the fiber forms a Fabry-Perot etalon with the surface of
one prong of the tuning fork. The reflected light from the half
mirror and tuning fork surface interferes to produce a pattern
on the photodiode. The separation between fiber end and
tuning fork arm is fixed with a feedback control. Oscillation
amplitudes are determined from slope at this locked point on
interference pattern.

Figure 6 shows measurement of tuning fork amplitude
using an interferometer and current through electrodes versus
frequency. As expected the amplitude signal measured using
the interferometer remains constant and is equal to amount
of drive provided. This drive is measured by positioning the
fiber of the interferometer on the piezo used for the drive.
The current due to parasitic capacitance linearly increases
with frequency. We used resonance conditions to determine
the coupling constant ε = 36 μC/m, since on-resonance the
contribution due to second term is not significant. We use ε

to estimate the expected current change due to asymmetric
bending in the tuning fork.

COMSOL simulations of a tuning fork used in our exper-
iments show that for higher frequencies the free prong of the
tuning fork has around 10% more amplitude compared to one
bound to the piezo driver. This is also taken into account while
determining free amplitude of the shear.

We measure drive amplitude of the piezo by placing
the interferometer fiber on a mirror mounted on the piezo.
Figure 7 shows calibration of piezos used for a shear drive.

APPENDIX B: CALCULATION OF RELAXATION
TIME FROM PHASE DATA

Typically a phase relationship between stress and strain
gives information about the type of mechanical response
the system offers under oscillatory shear. Hookean solids
have zero phase between stress and strain, Newtonian liquids
have 90◦ phase, and for a viscoelastic system the phase
lag is in between these two extremes. The stress-strain
relationship for viscoelastic materials is given by σ = G∗γ ,
where σ is stress, γ is strain, and G∗ = G′ + iG′′ is complex
modulus of rigidity. Similarly complex viscosity is defined
as η = η′ − iη′′. Maxwell’s relaxation time is given by τ =
(G′/G′′)1/ω = (η′′/η′)1/ω, where ω is shear frequency [24].
In our experiments we measure change in drag force relative
to bulk upon confinement. After solving equations of motion
for the coupled oscillator we plot solutions as described in
Ref. [22]. Using reasonable values of k1 and k2 in these
solutions, phase of tuning fork prong and the fiber tip is
plotted versus damping coefficient. The phase of tuning fork
prong φ1 with respect to the piezo driver converges to zero.
This is expected since both are outside liquid and driven off
resonance. For a fiber tip, which is immersed in liquid the
phase difference φ2 converges to 90◦. This is consistent with
conventional physical picture of Newtonian liquids. The plots
validate our model and solutions we obtained after solving
it (see Ref. [22]). The solution for phase φ1 of the tuning
fork prong is given below. Note that this is the phase we are
experimentally able to measure, and not fiber tip phase φ2:

φ1 = tan−1

( −k2
2γω

{(k1 + k2 − m1ω2)[γ 2ω2 − m2ω2(k2 − m2ω2)] + k2(k1 − m1ω2)(k2 − m2ω2)}
)

. (B1)
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The damping coefficient becomes complex at a certain
value of phase φ1 (see Fig. 8). This onset depends on k1,
k2, m1, and m2. Of these four parameters, k1, m1, and
m2 are accurately determined. The value of k2 is estimated
from tip length protruding from the tuning fork prong and
using COMSOL to determine its eigenfrequency. A complex
damping coefficient indicates complex viscosity. Relaxation
can now be determined by measuring φ1 as the tip approaches
the surface and determining real (γ ′) and imaginary (γ ′′) parts
of the damping coefficient, τ = (γ ′′/γ ′)1/ω = (η′′/η′)1/ω.

It should be noted here that error in estimating relaxation
is primarily due to error in k2. This error will be systematic
and will not change the power law behavior or the exponent
presented in Fig. 3. The absolute values of relaxation may
have errors. These errors are shown as error bars in Fig. 3.
The onset of viscoelastic behavior with respect to separation
is marked by a finite phase difference between the piezo
driver and tuning fork prong. As expected, weaker fiber tips
are more sensitive to both force as well as relaxation time
measurements.
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