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Absence of exponential sensitivity to small perturbations in nonintegrable systems of spins 1/2
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We show that macroscopic nonintegrable lattices of spins 1/2, which are often considered to be chaotic, do not
exhibit the basic property of classical chaotic systems, namely, exponential sensitivity to small perturbations. We
compare chaotic lattices of classical spins and nonintegrable lattices of spins 1/2 in terms of their magnetization
responses to an imperfect reversal of spin dynamics known as Loschmidt echo. In the classical case, magnetization
is exponentially sensitive to small perturbations with a characteristic exponent equal to twice the value of the
largest Lyapunov exponent of the system. In the case of spins 1/2, magnetization is only power-law sensitive to
small perturbations.
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I. INTRODUCTION

Despite the successes of statistical physics, the notion of
chaos in many-particle quantum systems is still not fully
understood. A classical system is called chaotic if its phase
space trajectories exhibit exponential growth of initially small
deviations between them. This growth is characterized by
Lyapunov exponents [1]. Chaos requires nonlinear dynamics.
In contrast, quantum dynamics is fundamentally linear with re-
spect to small perturbations of quantum amplitudes. Yet, many
researchers know from experience that the notion of dynamical
randomness has merit for quantum systems with sufficiently
dense energy spectra. Hence the term chaos is frequently
invoked in the foundations of quantum statistical physics [2,3].

Quantum chaos is often defined through a chaotic classical
limit [4]. This definition, however, is problematic for many-
particle systems, such as systems of many spins 1/2. Individual
spins 1/2 are as far from the classical limit as an object can only
be, but nonintegrable systems of many spins 1/2 exhibit [5,6]
the Wigner-Dyson statistics [7] of spacings between adjacent
energy levels, which is known to be a generic characteristic of
quantum systems that do have chaotic classical limit [8].

It is commonly assumed that, in many-particle systems,
the linearity of quantum dynamics is compensated by the
exponentially large number of quantum eigenstates, so that,
on experimentally observable time scales, appropriate super-
positions of quantum eigenstates can mimic chaotic classical
behavior of macroscopic variables. In this paper, however,
we show that the above connection cannot be established
for macroscopic systems of spins 1/2 precisely in the situ-
ation when the classical macroscopic response exhibits the
quantitative signature of Lyapunov instability. We arrive to
the above conclusion by analyzing the behavior of the total
magnetization under an imperfect time reversal known as the
Loschmidt echo.

The idea that chaos affects Loschmidt echo responses
of macroscopic systems was first proposed in Ref. [9] in
the context of nuclear magnetic resonance (NMR) echo
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experiments on a spin 1/2 system. The authors of Ref. [9]
reported that, despite their best effort, they were not able to
improve the echo response beyond a certain level. Similar
observations were also reported earlier in Ref. [10]. Reference
[9] suggested that chaos inhibits one’s ability to implement
perfect time reversal. This proposition motivated a significant
body of research on Loschmidt echoes [11–19]. However,
to the best of our knowledge, no quantitative connection
between chaos characteristics of many-spin systems and their
observable Loschmidt echo responses has yet been proposed.

In this paper, we first demonstrate that, for macroscopic
systems of classical spins, one can extract the fundamental
indicator of chaos, namely, the largest Lyapunov exponent,
from the behavior of the total magnetization recovered by
the Loschmidt echo. If real spins were classical, the above
result would resolve one of the outstanding issues of statistical
physics, namely, how to obtain experimental evidence of
microscopic chaos in a many-particle system [20–23]. How-
ever, we also show that nonintegrable macroscopic systems of
quantum spins 1/2 do not exhibit the above signature of chaos.

II. FORMULATION OF THE PROBLEM

We consider lattices of Ns classical spins or Ns quantum
spins 1/2 at high temperatures governed by the nearest-
neighbor (NN) Hamiltonian

H0 =
NN∑

i<j

JxSixSjx + JySiySjy + JzSizSjz, (1)

where Jx , Jy , Jz are the nearest-neighbor coupling constants,
and (Six,Siy,Siz) ≡ Si either represent three projections of
the classical spin on the ith lattice site normalized by
condition S2

i = 1, or denote operators of spins 1/2. Different
lattice dimensions are considered—all with periodic boundary
conditions.

We characterize Loschmidt echo response by the difference
between the values of the total magnetization for perfectly
and imperfectly reversed dynamics. The time reversal is
achieved by reversing the sign of the interaction Hamiltonian
as done, e.g., in NMR magic echo experiments [24–28]. We
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consider two kinds of perturbations to perfect time reversal:
(i) small instantaneous rotations of spins at the moment of time
reversal; and (ii) continuously present small perturbations to
the Hamiltonian of the time-reversed evolution.

In the quantum case, we are primarily interested in the
perturbations that are small at the level of individual spins, so
that the total magnetization remains nearly the same, but, at
the same time, sufficiently many spins are perturbed, so that
the overlap of the perturbed and unperturbed many-spin wave
functions is negligible. Although the macroscopic limit of this
setting has not yet been addressed in the literature, various
aspects of the results reported below were anticipated in Refs.
[12,29–34].

III. CLASSICAL SPINS

A. Lyapunov exponents

We parametrize the phase spaces of a classical spin lattice
by vector X̄ ≡ {S1x,S1y,S1z,S2x,S2y,S2z, . . . }. The difference
between two nearby phase-space trajectories is denoted by
vector D̄ ≡ {δS1x,δS1y,δS1z,δS2x,δS2y,δS2z, . . . }. It can also
be expressed as

D̄(t) ≡ X̄
(
t,X̄0 + D̄0

) − X̄
(
t,X̄0

)
, (2)

where X̄
(
t,X̄0

)
is a phase space trajectory as a function of

time t and initial position X̄0, and X̄
(
t,X̄0 + D̄0

)
is another

trajectory initially separated from the first one by infinitesimal
displacement D̄0 ≡ D̄(0).

A system of Ns classical spins is characterized by 2Ns Lya-
punov exponents. We denote the maximum positive Lyapunov
exponent as λmax and the corresponding Lyapunov vector as
d̄max(t). A many-particle system is technically defined to be
chaotic, when λmax > 0. In Refs. [35,36], we found that, for
lattices of classical spins with nearest neighbor interaction,
λmax is an intensive quantity, i.e., its value is size independent
for sufficiently large lattices. It can be roughly estimated as
λmax ≈ 0.25

√
Nnn(J 2

x + J 2
y + J 2

z ), where Nnn is the number
of nearest neighbors.

We exploit the idea of the standard numerical algorithm
for computing λmax [37]. Namely, we consider two phase-
space trajectories X̄

(
t,X̄0

)
and X̄

(
t,X̄0 + D̄0

)
, where D̄0 is a

very small vector pointing in a randomly selected direction.
This vector has random projections on each of the Lyapunov
vectors including d̄max(0). After sufficiently long time, the
growth of |D̄(t)| is entirely dominated by λmax, so that λmax

can be obtained as

λmax = 1

t
lim

t→∞;|D̄(0)|→0
ln

|D̄(t)|
|D̄(0)| . (3)

In order to register this exponential growth, |D̄0| should be
sufficiently small, so that the projections of D̄(t) satisfy the
inequality δSkμ � 1 for sufficiently long time.

In an ergodic system, the asymptotic exponential growth
of |D̄(t)| does not depend on the choice of X̄0 and D̄0

[38]. This means that, for an ensemble of X̄0 and/or D̄0, the
ensemble-average, denoted as 〈· · · 〉, also exhibits asymptotic
exponential growth 〈|D̄(t)|〉 ∼= eλmaxt . The time required to
establish this growth is, typically, of the order of 1/λmax (see
the Supplemental Material [39]).

B. Noise

Let us now consider the case of equilibrium noise at
infinite temperature for the total x component of magnetization
Mx ≡ ∑

k Skx . We compare two magnetization time series:
Mx0(t), corresponding to the initial conditions X̄0, and Mx1(t),
corresponding to slightly perturbed initial conditions X̄0 + D̄0.
In the initial small-deviations regime, Mx1(t) − Mx0(t) is
determined by the projection of D̄(t) on the direction in the
phase space representing variable Mx and given by the vector
d̄Mx

≡ (1,0,0,1,0,0,1, . . .). If D̄0 is small enough, then there
is a time interval when the growth of D̄(t) is controlled by
λmax, while its orientation is controlled by d̄max(t). In this
regime, the projection of D̄(t) on d̄Mx

fluctuates in time
(and may change sign), but the amplitude of this fluctuating
projection should grow exponentially as eλmaxt . As shown in
Fig. 1, this is indeed what we observed numerically [38].
As also shown in the inset of Fig. 1, the fluctuations can be
suppressed by averaging over a large number of independent
noise realizations, which means that, in the asymptotic regime,
〈|Mx1(t) − Mx0(t)|〉 ∼= eλmaxt .

The above analysis can now be adapted to the imperfect time
reversal of magnetization noise, when one observes Mx(t), and
then, at time t = t0, changes the sign of the Hamiltonian and
simultaneously rotates each spin by a small randomly chosen
angle [40]. In this case, Mx(t0 − τ ) corresponds to Mx0(τ ) in
the previous example and represents a perfectly time reversed
signal, while Mx(t0 + τ ) corresponds to Mx1(τ ). Therefore,
for small enough random rotations, there is a range of
times τ where 〈|Mx(t0 − τ ) − Mx(t0 + τ )|〉 ∼ eλmaxτ , which,
in turn, implies that 〈[Mx(t0 − τ ) − Mx(t0 + τ )]2〉 ∼= e2λmaxτ .
The latter equation, together with the equilibrium relation
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FIG. 1. (Color online) Sensitivity of classical magnetization
noise to small perturbations for a cubic lattice of 16 × 16 × 16
classical spins with Jx = −0.41, Jy = −0.41, Jz = 0.82. Blue line:
magnetization noise |Mx0(t)| for randomly chosen initial conditions
X̄0. Green line: magnetization noise |Mx1(t)| for the initial conditions
X̄0 + D̄0, where D̄0 represents small rotations of each spin around a
random axis by an angle randomly selected from [−10−4π,10−4π ].
Red line: |�Mx(t)| ≡ |Mx1(t) − Mx0(t)|. Inset: ensemble average
〈|�Mx(t)|〉 over 1000 random realizations of X̄0 and D̄0. Black
dashed lines: constant × eλmaxt with λmax = 0.63 computed directly
[35,37,39].
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〈M2
x (t0 − τ )〉 = 〈M2

x (t0 + τ )〉 ≡ 〈M2
x 〉, leads to

〈Mx(t0 − τ )Mx(t0 + τ )〉〈
M2

x

〉 = 1 − Ce2λmaxτ , (4)

where C is a proportionality constant.

C. Relaxation

Equation (4) for equilibrium noise can now be converted
into the description of a Loschmidt echo for nonequilib-
rium relaxation in a setting similar to a NMR magic echo
[25]. Namely, at t = t0 − τ , the system starts in a slightly
x-polarized state with probability distribution ρ0

∼= e−βMx ,
where β is a very small constant. For t0 − τ < t < t0, the
magnetization relaxes under the action of Hamiltonian H0. At
t = t0, the Hamiltonian switches sign, and, simultaneously,
the spins are rotated by small random angles. Afterward,
the magnetization is measured at t = t0 + τ . We define the
normalized echo function as F (τ ) ≡ 〈Mx〉f /〈Mx〉0, where
〈Mx〉0 and 〈Mx〉f represent averages with respect to ρ0

and ρf = Û−H0 (τ ) ÛR ÛH0 (τ ) ρ0, respectively. Here, ρf is
the probability distribution at t = t0 + τ , while ÛH0 (τ ) and
Û−H0 (τ ) are the time evolution operators with Hamiltonians
H0 and −H0, respectively, and ÛR is the operator representing
the effect of the small spin rotations. In the limit β � 1, F (τ )
transforms into the left-hand side of Eq. (4). Therefore, its
asymptotic behavior is

F (τ ) = 1 − C e2λmaxτ . (5)

We have tested Eq. (5) numerically. The results are
presented in Fig. 2(a). They clearly exhibit the expected e2λmaxτ

dependence for 1 − F (τ ).
Let us now consider time reversal disturbed by term∑
k hkSkz added to the reversed Hamiltonian. Here hk are small

random magnetic fields. Such a perturbation continuously
feeds the deviation of the imperfectly reversed trajectory
from the perfectly reversed one. This deviation initially grows
linearly in time, but then it is exponentially amplified by the
intrinsic chaotic dynamics of H0 as in the preceding case.
Therefore, the asymptotic behavior (5) is also expected here.
This is, indeed, what we observed numerically [see Fig. 2(b)].

IV. SPINS 1/2

Now we consider the Loschmidt echo for the relaxation of
Mx in spin-1/2 lattices perturbed by small random rotations
around the z axis at the moment of time reversal. The same
linear-response relation as in the classical case allows us
to express the echo function as an equilibrium correlation
function [39]

F (τ ) = Tr{eiH0τ R† e−iH0τ Mx eiH0τ R e−iH0τ Mx}
Tr

{
M2

x

} , (6)

where

R =
∏

k

e−iδθkSkz =
∏

k

[1 cos(δθk/2) − 2iSkz sin(δθk/2)] (7)

is the quantum operator rotating each spin around the z axis
by angles δθk randomly chosen in the interval [−δθmax,δθmax]
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FIG. 2. (Color online) Loschmidt echoes for the same lattice of
classical spins as in Fig. 1. (a) Echo disturbed by small random
rotations of spins around randomly chosen axes by angles selected
from the interval [−10−2π,10−2π ]. Inset: Relaxation and echo for
one value of τ . (b) Echo disturbed by the perturbation to the reversed
Hamiltonian of the form

∑
k hkSkz, where each hk is randomly

selected from the interval [−2 × 10−4,2 × 10−4]. Solid red lines:
averages over 2.8 × 105 and 1.7 × 105 independent time evolutions
in (a) and (b), respectively. The initial polarization is 10%. Gray areas
cover the values of 1 − F (τ ) below four root-mean-squared values of
the statistical noise for F (τ ). Dashed black lines: constant × e2λmax t

with λmax = 0.63.

with δθmax � 1. The discussion below deals with the evolution
of a typical nonequilibrium wave function representing the
above trace, thereby relying [39] on the typicality results of
Refs. [41,42].

Each operator 1 cos(δθk/2) − 2iSkz sin(δθk/2) in Eq. (7)
creates a superposition of the original many-spin wave function
with a small admixture of the wave function obtained from the
original one by flipping the x projection of the kth spin. The
probability of flipping any given spin by the action of operator
R is, therefore, small, but, if it happens, the value of Skx and
hence its contribution to Mx switches completely between 1/2
and −1/2. The overall effect of the operator R can be thought
of as turning the wave function just before the time reversal,

−, into a superposition of wave functions 
+ = ∑

ν cν
ν ,
where each 
ν is obtained from 
− by flipping a small fraction
of randomly selected spins of the order of < δθ2

k >, and cν are
the complex amplitudes [39].
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FIG. 3. (Color online) Loschmidt echoes for 5 × 5 square lattice
of spins 1/2 with Jx = −0.47, Jy = −0.47, Jz = 0.94 and 5%
initial polarization. Blue solid line: time reversal is disturbed by
rotations around the z axis with angles δθk randomly chosen from
[−π/100,π/100]. Green dashed line: time reversal is disturbed by
flipping one spin 1/2, Skx → −Skx (plot rescaled). Inset: evidence of
nonintegrability. Dots: distribution P (s) of level spacings s for one
irreducible block ofH0. Solid line: Wigner-Dyson fit for the Gaussian
orthogonal ensemble [7].

If a perfect time reversal were to be disturbed by flipping
only one spin, the disturbance induced by this single spin
would propagate to the neighbors as a perturbation bubble. The
number of perturbed spins in this bubble [quantum equivalent
of |D̄(t)|] would grow following a power law rather than
an exponential. This kind of growth is not supposed to be
exponential even in a chaotic classical system, because the
initial perturbation is not small. Spin-1/2 lattices accessible to
direct numerical simulations are not large enough to test the
above conjecture, but Loschmidt echoes disturbed by complete
flipping of only one spin can be simulated for large classical
spin lattices, which indeed exhibit the power-law growth of
1 − F (τ ) [39].

Let us now assume that 
+ is equal to one of 
ν , which
means that time reversal is disturbed by flipping a small
randomly selected fraction of all spins. In this case, the initial
power-law disturbance around each flipped spin should grow
as the above perturbation bubble. When different bubbles
start overlapping, the system enters the saturation regime
1 − F (τ ) ∼ 1 without 1 − F (τ ) ever exhibiting exponential
growth.

The fact that 
+ is a superposition of many 
ν does
not change the above conclusion. As we show in Ref. [39],
the interference between different 
ν averages to zero in
the expression for F (τ ), which implies that the absence
of the exponential growth of 1 − F (τ ) for a typical 
ν is
representative of the entire superposition 
+ = ∑

ν cν
ν .
The above conclusion can, to a limited extent, be confirmed

by direct quantum simulations [39,42] of a nonintegrable
5 × 5 cluster of spins 1/2 shown in Fig. 3. For this cluster,
the interesting range of rotations |δθk| � 1/

√
Ns required

to assure that 〈
−|
+〉 ≈ 0 does not leave any room for a
possible Lyapunov growth. Instead, we simulated the limit

|δθk| � 1/
√

Ns , which leads to 〈
−|
+〉 ≈ 1 and, therefore,
implies that F (τ ) remains close to 1 for any τ . Nevertheless,
if a Lyapunov exponent were definable, 1 − F (τ ) should have
exhibited at least the first signs of the exponential growth
e2λmaxτ before entering the saturation regime. However, as
shown in Fig. 3, the initial interval of quadratic growth turns
immediately into subexponential growth. In the same figure,
we also include nearly the same Loschmidt echo shape for the
case when time reversal is disturbed by flipping a single spin
1/2. In this case, the echo shape is, by definition, controlled
by the growth of a single perturbation bubble.

Finally, we turn to a quantum Loschmidt echo disturbed
by a small perturbation to the reversed Hamiltonian. This
perturbation can be viewed, by analogy with the earlier discus-
sion for classical spins, as feeding a seed deviation between
perfectly and imperfectly reversed time evolutions, which
is then amplified by the intrinsic dynamics of the perfectly
reversed Hamiltonian. Since, in the quantum case, this intrinsic
dynamics leads to a power-law amplification, the overall echo
response should exhibit a power-law sensitivity to small per-
turbations in the reversed Hamiltonian. The above conclusion
is consistent with our finite-size simulations [39], but it should
be properly tested in NMR magic echo experiments [39].

V. CONCLUSIONS

To summarize, we have found that stationary nonintegrable
systems of spins 1/2 do not exhibit exponential sensitivity
to small perturbations of Loschmidt echoes while chaotic
systems of classical spins do. This absence of exponential
sensitivity in spin 1/2 systems is likely applicable beyond
the Loschmidt echo setting, since it reflects the fact that
extreme quantization of the projections of spins 1/2 does
not leave room for the Lyapunov growth. Such a conclusion
certainly represents good news for the efforts to create quantum
simulators [43]. At the same time, our findings are not as
disturbing for the foundations of statistical physics as they
may appear at first sight. The notion of chaos defined as
exponential sensitivity to small perturbations is a sufficient
but not necessary condition for ergodicity, which is, in turn,
required to justify Gibbs equilibrium. Also, the long-time
exponential relaxation, which is known to be the same for
chaotic classical and nonintegrable quantum spin systems
[27,44–48], does not exclude the power-law sensitivity to small
perturbations [44]. We finally remark that a recent investigation
by one of us [49] indicated that classical and quantum spin
systems exhibit other qualitative differences as far as the
equilibration dynamics is concerned.
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