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Equation of state of an ideal gas with nonergodic behavior in two connected vessels
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We consider a two-dimensional collisionless ideal gas in the two vessels connected through a small hole. One
of them is a well-behaved chaotic billiard, another one is known to be nonergodic. A significant part of the second
vessel’s phase space is occupied by an island of stability. In the works of Zaslavsky and coauthors, distribution
of Poincaré recurrence times in similar systems was considered. We study the gas pressure in the vessels; it
is uniform in the first vessel and not uniform in second one. An equation of the gas state in the first vessel is
obtained. Despite the very different phase-space structure, behavior of the second vessel is found to be very close
to the behavior of a good ergodic billiard but of different volume. The equation of state differs from the ordinary
equation of ideal gas state by an amendment to the vessel’s volume. Correlation of this amendment with a share
of the phase space under remaining intact islands of stability is shown.
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I. INTRODUCTION

The model of collisionless ideal gas is one of the most
frequently used in physics. Many different physical phenom-
ena are reduced to the behavior of ideal gas. In this model,
gas molecules considered to be noninteracting collide with the
vessel’s boundary considered to be absolutely elastic. It is clear
that the behavior of such gas is determined by the properties
of a single trajectory on sufficiently long observation times. It
allows us to reduce the study of ideal gas to the movement of
a single particle in billiards.

Mathematical billiard [1,2] is a model system where a
particle moves inside a closed billiard boundary straightly
and reflects strictly following the mirror law. Billiards are
standard objects of study in the chaos theory. Well known are
the billiards with strong chaos, such as Sinai billiard, where
the good ergodic properties are met. However, also well known
are weakly chaotic billiards with islands of stability in the
phase space, which makes them a priori nonergodic. Two
billiards with different types of chaos, connected through a
small hole, have been studied in the works of Zaslavsky (see,
e.g., Ref. [3]). The question of thermodynamic equilibrium in
such systems was raised. The first billiard in the work [3] was
the Sinai billiard. The second was a similar billiard with the
central scatter in the form of Cassini’s oval and with islands of
stability in the phase space. A hole between billiards, through
which the trajectory can both enter and leave, makes these
billiards open.

For a small enough hole the consideration of such a
system is generally reduced to the consideration of properties
of separate open billiards and equilibrium between them.
If properties of one of the billiards are well known, it is
the way to understand and study the second, open billiard,
through its influence on the first one. Open billiards have
been recently intensively studied because of a large number
of applications in acoustics, hydrodynamics, climatology,
cosmology, optics, plasma physics, and so on [4–7]. And close
associations with a large number of theoretical issues, such
as justification of statistical physics or relationship between
classical and quantum descriptions of a system [8–11]. Details
about the relationship between open billiards and these topics
can be found, for example, in Ref. [12]. Considering open

billiards, attention is usually given to the distribution of particle
residence times inside an open billiard. In general, for the
chaotic behavior the exponential law of decay is typical,
and for the regular dynamics this law is sedate (see, e.g.,
Ref. [13]). In the chaotic billiard’s algebraic tail, in addition
to the main, exponential decay is often observed. It is a
trace of weaker chaotic system properties, like intermittent,
quasiregular behavior [14]. As shown in Ref. [15], the same
system with no islands of stability in the phase space may
have or may not have an algebraic tail, depending on the
system parameters. The presence of the tail also depends on
the initial distribution of particles in the billiard. For example,
for the Bunimovich stadium, with uniformly distributed initial
trajectories in the phase space, the presence of such a tail is
shown in Ref. [16]. But for the trajectories entering the same
billiard through a hole, in Ref. [17] it was shown that for some
hole positions an algebraic tail is absent.

Dealing with the ideal gas, usually the hypothesis of
ergodicity of gas behavior and justice of the Gibb’s distribution
are accepted. However, in the theory of mathematical billiards
the motion of a particle in some billiards is known to be
nonergodic. Besides, for the Sinai and Bunimovich billiards
it was shown theoretically [18] and experimentally [19] that
replacement of the physically impossible case of a perfectly
rigid border by a smooth potential leads to the emergence of
islands of stability in the phase space, i.e., loss of ergodicity.
Movement in a rectangular billiard is also nonergodic. For
example, the pressure that trajectory produces on the walls
of rectangular billiard is uneven and depends strongly on
the choice of trajectory. Detailed discussion of possibility
of transition to the thermodynamic limit in this case can be
found in Ref. [20]. Also well known are systems [21,22], with
sizes less than 10 nm in particular, for which the deviation
from ergodic behavior has been found experimentally. For this
reason, the effects of nonergodic behavior are important for
many systems.

In this paper, we consider two-dimensional vessels or
billiards, which are the same things. However, the results
obtained may be, for example, directly applied to the case of
three-dimensional particle motion in a right prism with a base
in the form of considered billiard. The hole between vessels
will be small enough to allow typical ergodic distributions in
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the first vessel, so that macroscopic gas parameters can be
introduced in the ordinary way. Pressure, for example, should
be uniform there. We tried different first billiard choices, with
positive and zero Lyapunov exponents, to make sure it does not
affect the results. What we will study is how the nonergodicity
of the second vessel affects the properties of gas in the first
vessel.

II. CONSIDERED BILLIARDS AND THEIR CONNECTION

To describe the motion of a particle in the billiard in
this case, it is convenient to use the Lagrange approach to
billiards description. Birkhoff coordinates for billiards are
more familiar, but this is an equal approach, good for analysis
of the phase portrait of composite billiards. In this approach
the phase portraits of subbilliards appear to be most separated.
Boundary of the billiard in this formalism is described by
the parameter s ∈ S1. The main element determining the state
of a billiards particle is a separate rectilinear segment of the
trajectory. Each segment is uniquely determined by start and
end points of the straight segment (s1,s2); these points belong
to the border of the billiard. Each directed segment uniquely
identifies the next segment of trajectory; this is enough for
(s1,s2) to be phase variables. In general, not every rectilinear
segment that begins and ends at the border of a billiard is a part
of some valid trajectory. Therefore, a phase space of a billiard
is a torus with holes. Detailed description of this approach can
be found in Ref. [23]. In this paper we will use this approach
to describe billiard trajectories.

The choice of both vessels is to a certain extent arbitrary.
The first vessel can take any form that provides strong
enough chaos. We tried billiards of different forms, including
analogous to Sinai billiard, to make sure it does not affect
the received results. In this paper, as a first vessel with
required properties let us take a triangular billiard with angles
incommensurable with π . Triangular billiards are not yet
enough studied and the fact they suit our purposes is of some
additional interest. Our results provide additional indirect
numerical confirmation of the presence of mixing property in
such billiards. Any trajectory of this billiard, not periodic and
not falling in a vertex, completely fills all available phase space.
Chaotic properties of such a billiard was studied numerically in
Refs. [24,25]. It should be noted that this billiard implements
weak chaos with zero Lyapunov exponent, unlike the scattering
Sinai billiard in Ref. [3].

The second vessel must be of the form providing the
existence of islands of stability in the phase space to guarantee
the vessel’s nonergodicity. We will choose as this vessel the
billiard in the form of a curvilinear triangle, two curved sides
of which are defined by the equation

y = ± x

2a
(2a − x) x ∈ [0,b]. (1)

The third side is flat (see Fig. 1). Billiards of such form
belong to the one-parameter family with parameter σ = b

a
;

they can also be called parabolic triangular billiards.
Phase portraits of this billiard differ qualitatively for

different values of σ . A share of the phase space volume
under the chaotic component varies widely depending on the
parameter σ . For many values of the parameter, the phase
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FIG. 1. General view of a curvilinear triangular billiard and
parametrization of connected triangular and curvilinear triangular
billiards. Coordinate of collision of the particle with a wall s is
measured from the center of the hole between the billiards, first
clockwise along the border of the triangular billiard, then along the
border of the curvilinear triangular billiard.

space is mostly occupied by islands of stability, with the
chaotic component between them. But for σ = 1 the chaotic
component of the phase space disappears completely.

Let us now consider the connection of the curvilinear and
usual triangular billiards described above. Their integrated bor-
der again may be parametrized by a single natural parameter s.
The chosen parametrization of the resulting billiard is shown
in Fig. 1. The hole between billiards lies on the common
section of the border, in the center of the parabolic billiard’s
flat side. Through this hole a trajectory can get from one billiard
into another. While this hole is closed, billiards are separated
from each other and their typical phase portraits in chosen
parametrization are shown at the top in Fig. 2.

After the opening of the hole, these billiards turn to one
single closed billiard with obstacles inside. Phase portrait
of this billiard is shown in Fig. 2. In addition to trajectory
segments lying entirely inside one of billiards, there will appear
segments passing through the hole, so that a start of segment is
in one billiard and the end is in another. These segments form
the “mustache” in the 2nd and 4th quarters of the phase portrait.
Each point in the 2nd quarter corresponds to a transition of
particle from the triangular billiard into the parabolic one, and
vice versa for the 4th quarter.

Important is the fact that trajectories of the chaotic sea
and some islands of stability in parabolic triangular billiard
now cease to be separated. A particle located on a trajectory
from chaotic sea can now move to the triangular billiard and
return on the trajectory that belongs to the island of stability
in the closed parabolic triangular billiard. Those islands of
stability, whose trajectories were partly on the removed site of
the border, are destroyed. As a result, the greater part of the
phase space is available for the trajectory of one particle; it
fills previously inaccessible places of the phase space and the
result looks like a single chaotic sea.

However, the properties of trajectories still substantially
depend on the characteristics of “destroyed” islands of stabil-
ity. Before the connection of billiards there were two main
types of trajectories: purely chaotic and regular. This situation
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FIG. 2. On the top are the phase portraits of trajectories of
triangular and curvilinear triangular billiards with a closed hole
between them. Bottom left: the typical trajectory of triangular billiard
with angles α = 0.63 and β = 1.91. Top right: phase portrait of the
curvilinear triangular billiard with parameter σ = 0.8. The forbidden
zones arise due to the inability of a trajectory to move between
billiards and impossibility of two successive collisions with the same
flat side of border. On the bottom is the phase portrait of the trajectory
in connected billiards with the same parameters. Points in the 2nd
and 4th quarters correspond to the transitions of trajectory from one
billiard to another. It is obvious that the islands of stability of the
curved triangular billiard are mostly destroyed, but they are still areas
of regular motion.

changes significantly after billiards connection. That islands
of stability, whose trajectories never reach the hole, remain
unchanged. All the other trajectories cease to be purely regular
or chaotic and acquire universal intermittent behavior. Indeed,
former regular trajectory goes into the triangular billiard once
it reaches the hole and becomes chaotic. After some time,
this trajectory leaves the triangular billiard and can get to
either the area of chaotic motion or another trajectory from the

ex-island of stability of the parabolic billiard. In the first case,
the chaotic behavior changes its type, in the second case the
chaotic behavior is replaced by the laminar motion phase. It
should be emphasized that the quasiperiod of motion in this
part of trajectory coincides exactly with the quasiperiod of
the appropriate trajectory in closed billiard. Regular motion
phase may be quite durable depending on the hole size
and characteristics of the island. Thus, all former chaotic
trajectories and most of the regular ones after connection of
billiards acquire universal intermittent behavior.

III. ESTABLISHMENT OF A STATIONARY STATE

Let us consider the establishment of equilibrium in the
gas of not colliding particles in the union of two billiards. In
order to do this, we must deal with a single long trajectory of
a particle. Any particle switches the billiard of its residence
strictly in consecutive order. A number of transitions from one
billiard to another may differ from a number of returns by no
more than one time, so for times much greater than the time
of Poincaré recurrence to the hole, average fluxes of particles
through the hole in both directions necessarily become equal.
As the magnitude of the particle’s velocity is constant, this also
applies to a flow of energy and, assuming identical distributions
of movement directions, to a flow of momentum through the
hole. In other words, establishment of equilibrium means that
for the average number of particles in each of the billiards,
their total momentum and energy are constant and all flows
through the hole in both directions are equal. However, a flow
of momentum through a hole is not the same thing as the
pressure on a real wall, which is a momentum passed to the
wall per unit of time per unit of area.

To understand the difference between them, let us recall
one well-known “paradox” [26] from the probability theory,
which is typically formulated as follows: if busses pass a bus
stop once in 20 minutes on average, the average time of waiting
at the bus stop could be one year and more, from 10 minutes
to infinitely long. It depends not only on how many buses
per unit of time are passing the bus stop, but also on how
regular they go. Figure 3 qualitatively shows possible options:
(a) in clusters, (b) uniformly. All buses contribute equally in
the average number of passing buses, but the buses that follow
the first one in a cluster almost does not reduce the time of
waiting at the bus stop.

t

t

(a)

(b)

FIG. 3. The possible variants of events arrangement is qualita-
tively shown: clusters on the top, uniform distribution on the bottom.
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Similar is the considered situation. We can imagine that
the hole is closed by some virtual wall and count, how much
momentum will be received from reflected particles in the
case of the wall reflecting them. But it is a momentum flow,
not a real pressure; we will further call it “virtual pressure.”
The difference between real and “virtual” pressures can be
easily seen. Suppose that collisions of particles with the real
wall occur in clusters; i.e., the transfer of momentum to the
wall by individual collisions is similar to the one shown in
Fig. 3(a). This picture takes place for the exponential form of
the corresponding distribution of recurrence times. However,
for the virtual wall this order of collisions is impossible in
principle, because after the first “collision” a particle leaves the
billiard and starts moving in another one, where the flight time
to the nearest wall can be arbitrarily large. Therefore, only the
first collision from the cluster will contribute to the “virtual
pressure,” while to the real pressure—all cluster collisions.
Depending on the average number of collisions in clusters,
same “virtual pressure” in the hole can match different real
pressures on the real nearby walls.

Therefore, in equilibrium only “virtual pressures” on the
hole are for sure equal, and whether real pressures on the
nearby walls are equal or not also depends on the correlation
functions of collisions with walls. If the collisions in both
billiards are equally correlated, the pressures will be the same.
It is the case of macroscopic vessels, where the gas has the
same Maxwell’s distributions of velocities, etc. But for the
considered billiards it is not true. The triangular billiard has
a typical exponential distribution of residence times, i.e., a
lot of small times and rarely large clusters. In the parabolic
billiard, the distribution function is substantially different. In
particular, this distribution has clearly defined characteristic
times between collisions, there are series of collisions with
a regular interval between them. That is connected with
destroyed islands of stability. As the result, virtual pressures
are the same, but due to different correlation functions, the
real pressures are different even in the vicinity of the hole. It
is interesting to note that according to the well-known Pascal
law, equal local pressures should be expected there. However,
in our case of nonergodic gas behavior the Pascal law fails.

The arguments above have been verified by numerical
calculations. Individual trajectories with a start in a triangular
billiard have been considered, long enough to have all the
distributions established. Reflecting from the border of the
billiard, particle provides it some momentum, thus creating
pressure. This pressure was calculated as

P = lim
�t→∞

1

l

∑
i �pi

�t
, (2)

where �pi is the momentum transferred to the wall by the
ith collision, l is the length of the part of the border under
consideration, and �t is the observation time. Reflections
strictly follow the mirror law, so overall local pressure and
all of �pi individually are obviously normal to the border of
billiard.

As a result of numerical simulation the distributions of pres-
sure along the borders of triangular and curvilinear triangular
billiards were calculated. Established after sufficiently long
time distribution of pressure depends only on the choice of
billiards parameters and does not change with time or depend
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FIG. 4. On the top is the pressure on the common flat wall of
billiards with parameters σ = 0.8, α = 0.63, and β = 1.91, generated
by one trajectory that reaches N = 2.5 × 109 collisions with the
walls of triangular billiard. Mean pressure value, equal for all taken
separately sides of parabolic billiard, is shown by horizontal dotted
line. Top gray: pressure on the common wall from the side of
triangular billiard; below it, on the same wall from the side of
parabolic one. In the hole between billiards, allocated by dotted lines,
the value of “virtual pressure” is shown. The bottom graph shows the
received separately distribution of pressure in the vicinity of the hole.

on the initial data of trajectory. The resulting pressure on
the common part of boundary is shown in Fig. 4, where top
gray is the pressure on the common wall from the side of
normal triangle, and below it, on the same wall from the side
of parabolic billiard. It is visible that in the regular triangle
the pressure on the walls is almost uniform and its value is
greater than the maximum for the curvilinear triangle. Shown
in the area of the hole, “virtual pressures” on both sides of the
hole are equal and considerably different from the pressure
on the walls. It is also visible that the pressure on the site
of the border directly adjacent to the hole in the triangular
billiard is higher than pressure in the parabolic billiard. For
the parameters above, the difference is 1.2%, which is much
greater than the calculations inaccuracy. Thus, the numerical
simulation confirms our arguments.

For both billiards, the distributions of directions from which
the trajectory approaches to the hole and to the adjacent
site of the border were also built (Fig. 5). It is visible that
the distributions for the hole are absolutely identical, while
distributions for the border are somewhat different. In the
parabolic billiard, particles do not approach the border from
some directions.
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FIG. 5. The distribution of directions, from which the trajectories
approach to the hole between billiards and to the adjacent site of the
border. Billiards parameters are σ = 0.8, α = 0.63, and β = 1.91;
the trajectory was built until it reaches N = 2.5 × 109 collisions with
the walls of triangular billiard (2.5 × 107 returns). On the charts (a)
and (c) are distributions in the triangular billiard; (b) and (d) are the
same in the curvilinear one. It is visible that in the curvilinear billiard
there are some directions, from which a particle never comes to the
border.

IV. THE EQUATION OF STATE

Since the discussed above distributions in the triangular
billiard in general do not differ from the distributions typical
for strongly chaotic behavior, it is possible to implement the
macroscopic gas parameters in the ordinary way. Pressure,
for example, will be constant and isotropic anywhere in
the triangular billiard, unlike the curvilinear billiard. Now,
changing the parameters and scaling of the triangular billiard
and, accordingly, its volume, we obtain the dependence
of pressure on a total volume of triangular and parabolic
triangular billiards. This dependence was built for the fixed
volume of the curvilinear billiard; all the change in volume
was achieved due to the triangular billiard. The trajectory also
begun in the triangular billiard; i.e., the question was what
would the pressure be after the opening of a hole between
billiards if at first all the gas was in the triangular billiard. In
this case, the trajectory never gets on the remaining islands of
stability and pressure is proportional to the number of particles
in the gas. For initial conditions that allow particles to be in
the islands of stability, some particles may never get into the
triangular billiard and do not contribute to the pressure in it.

Thus, obtained dependence of reverse pressure on a volume
is shown in Fig. 6. In general, this dependence was found
to be almost linear, although there are deviations from the
linear law beyond the error of calculation. As the curvilinear
billiard approaches to the regular dynamics (σ → 1), these
deviations are growing to a significant level. In addition, the
line of linear approximation misses the coordinate’s origin.
Such dependence, assuming it to be linear, would have an ideal
gas in the not considered nonergodic case, but usual ergodic
billiards of smaller volume:

p = kT
N

V − �V
. (3)

In other words, from the viewpoint of the triangular
billiard, considered curvilinear billiard effectively behaves like
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FIG. 6. Dependence of reverse pressure in the triangular billiard
on the volume of both billiards is shown. It is almost linear, but has
some local deviations. Example is shown in the insert. Volume of
the curvilinear triangular billiard with parameter σ = 0.8 has been
fixed, only the volume of triangular billiard has been changed. The
pressure was created by a single trajectory, evaluated till N = 5 × 108

collisions with the walls of triangular billiard. The “mustache” shows
standard deviation from a mean pressure value. Values on both axes
in conventional units.

a normal ergodic billiard, but with volume smaller than the real
one, 20% smaller for σ = 0.8.

The dependencies of pressure in triangular billiard on a
volume were constructed numerically for different values
of curvilinear billiard parameter σ . For all parameters, this
dependence was close to a similar dependencies for two
ergodic billiards. Significant difference was only that the
volume of curvilinear billiard in the equation of state does
not coincide with its actual volume. The received amendment
to the real billiard’s volume is shown in Fig. 7; for σ < 0.5
this amendment was indistinguishable from zero.

The share of the phase space of curvilinear billiard, still
occupied by the islands of stability after the connection of
billiards, has also been calculated. To do this we divide the
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0.0
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ΔV___
V  

1.0
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FIG. 7. Squares show the associated with nonergodicity amend-
ment �V to the real volume of the curvilinear billiard, obtained
from the analysis of numerically calculated equations of state for
different parameters σ . Circles and crosses show the ratio of area
under remaining islands to the area of phase space associated
with the curvilinear billiard in Lagrange and Birkhoff coordinates,
respectively.
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FIG. 8. Phase portrait of connected billiards in Birkhoff coor-
dinates is shown. Billiard parameters are σ = 0.8, α = 0.63, and
β = 1.91, border parametrization by coordinate s is shown on Fig. 1,
θ is an angle of reflection, l is the perimeter of the triangular billiard.

phase space into cells and then diminish discretization until the
calculated volume is stabilized. In this way we receive the ap-
proximate value, which is actually a lower estimate of the
volume of islands. Volume of an island on phase portrait is
constant in any coordinates, unlike the volume of a phase
drop. Received ratio of area under islands to area of phase
space of lower billiard is shown in Fig. 7. Well visible is
that the amendment to the billiard volume correlates with this
share of a phase space. It is interesting to note that nevertheless
the trajectory fills available phase space highly uneven. Thus,
qualitatively an amendment to a volume in equation of state
can be obtained by a simple analysis of the phase portrait of
united billiards.

Received via pressure analysis amendment to the volume
in equation of state obviously does not depend on the choice
of coordinates. Unlike this, the share of the phase space under
islands of stability may depend on the choice of the phase
variables. However, if there are no islands in a phase space, they
will be absent with any choice of coordinates. Analogically,
if islands exist, they will always be. For this reason, if a
correlation is observed in one of the coordinates, we may
expect its traces to be observed in any other reasonable choice
of phase coordinates. Only independent on the choice of
coordinates results are physically reasonable. No islands, no
amendment; more islands, the greater the amendment is—this
should be universal.

To ensure that we also build and analyze the phase portraits
of considered system in standard Birkhoff coordinates. Typical
phase portrait in this coordinates is shown in Fig. 8. In Fig. 7,
the share of the phase space under islands of stability in these
coordinates is shown by crosses. It is visible that in these
coordinates a good correlation is also observed. Nevertheless,
excluded phase volume is not the only reason that defines

pressure in triangular billiard. Another important factor is
not even fulfilling of the phase space; for example, some
trajectories get caught in the Kolmogorov-Arnold-Moser
region around the islands and spend large times there. But the
discovered correlation with the volume of remaining islands
shows that excluded volume is one of the most important
factors defining the amendment to the volume in equation
of state.

V. CONCLUSIONS

In this paper a two-dimensional ideal gas of not colliding
particles in two connected vessels has been studied. It is
equivalent to a question of movement of one particle in two
connected open mathematical billiards. One of them has the
form of a triangle with all angles incommensurable with π .
In the closed form this billiard is weakly chaotic and has
no islands of stability in the phase space. The second was
the billiard in the form of a curvilinear triangle. Its form is
specially chosen so that a significant part of the phase space
is occupied by islands of stability. This billiard is obviously
not ergodic. After connection of these billiards, the islands
of stability were mainly destroyed. All trajectories acquire
regular or intermittent character. Trajectories belonging to
the chaotic sea in the closed form of the curvilinear billiard
can now leave to another billiard and return on a former
island of stability. Some of the islands, however, remain
undisturbed.

The gas of particles located in such billiards exerts some
pressure on the walls of billiards. In the triangular billiard the
pressure distributes uniformly along its border. This allows
the implementation of a single macroscopic gas pressure. In
the curvilinear billiard, provided that initially all the gas was
in the triangular billiard, pressure is highly uneven. Magnitude
of the local pressure is everywhere less than the pressure in
the triangular billiard. Even in the vicinity of the hole, “virtual
pressure” on which is equal from the both sides, the pressure
on the walls differs for about one percent.

Owing to the uniform pressure in the triangular billiard, the
question of equation of gas state in it, i.e., how this pressure
changes with volume, was considered. The dependence of
the reverse pressure on a total volume of both billiards was
calculated and found to be almost linear, but not passing
through the coordinate’s origin. Thus, while general billiard
is not ergodic, functionally its equation of state is similar
to a normal equation of ideal gas state. There are, however,
some deviations from linear law, especially significant near
the regular dynamics regime of the curvilinear billiard. In
other words, the obtained equation of state would have a
usual ideal gas in a normal vessel but of different volume.
Value of the amendment correlates with the share of the phase
space under undestroyed islands of stability. Thus, in terms
of equation of state, nonergodic curvilinear billiard effectively
behaves like a billiard with smaller volume and good ergodic
properties.
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