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Chaotic dynamics in a two-dimensional optical lattice
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The classical nonlinear dynamics of a dilute gas of rubidium atoms in an optical lattice is studied for a range
of polarizations of the laser beams forming the lattice. The dynamics ranges from integrable to chaotic, and
mechanisms leading to the onset of chaos in the lattice are described.
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I. INTRODUCTION

Optical lattices are formed by superposing multiple pairs
of counterpropagating lasers. When atoms are loaded into an
optical lattice, the system can be used to explore quantum-
classical correspondence or the dynamics of condensed matter
systems [1,2].

We begin, in Sec. II, with a description of the Hamiltonian
and the dynamics of atoms confined to the optical lattice. In
Sec. III, we show that one major source of chaos is a bifurcation
that occurs at relatively low energy. In Sec. IV, we show that
a second, more dominant, source of chaos is due to the saddle
points that occur throughout the lattice. Finally, in Sec. V we
make some concluding remarks.

II. OPTICAL LATTICE HAMILTONIAN

Optical lattices have been realized in the laboratory by sev-
eral experimental groups [3–5]. In the Greiner experiment [4],
laser radiation (spot size of 75 μm, wavelength λ ≈ 840 nm)
was focused on a rubidium condensate. The Hamiltonian for
the rubidium atoms, in dimensionless units, is

H = p2
x + p2

y + U [cos2(x) + cos2(y)

+ 2αcos(x)cos(y)] = E, (1)

where (px,py) and (x,y) are the x and y components of
momentum and displacement, respectively, E is the total
energy, U is the depth of the potential (proportional to laser
intensity), and α = ε̂1ε̂2cos(φ). The strength of the coupling α

is determined by ε̂1 and ε̂2 (the polarization directions of the
two laser beams) and φ, the relative phase of the laser beams.

The Hamiltonian in Eq. (1) accounts for the atom-radiation
interaction but neglects interactions between atoms. The
relation between the dimensionless variables in Eq. (1) and
dimensioned variables (H ′,p′

x,p
′
y,x

′,y ′,U ′,E′) is H ′ = HEL,
p′

x = �kLpx , p′
y = �kLpy , x = kLx ′, y = kLy ′, U ′ = UEL,

and E′ = EEL, where � is Planck’s constant, kL = 2π
λ

is the

wave vector of the radiation, EL = �
2k2

L

2mRb
= 2.156×10−30J is

the recoil energy of rubidium, and mRb = 86.909u is the mass
of 87Rb. We analyze the dynamics for the interval 0 � α � 1.0
and with U = 20, a value attainable in current experiments [6].

In Fig. 1, we show contour plots of the potential
energy surface for one unit cell of the lattice for α =
0.1, α = 0.5, and α = 1.0 (four unit cells for α = 0).
The lattice has discrete symmetries. The Hamiltonian
Eq. (1) is invariant under reflections (x→ − x,y→ − y),
under rotations (x→±y,y→±x), and under translations

(x→x±2π,y→y±2π ) and (x,y)→(x±π,y±π ). The unit cell
can therefore be divided into 16 identical fundamental triangles
(FTs), each containing full information about the classical
dynamics of the lattice. Two of the FTs are shown in the top
right quadrant of Fig. 1(c). For 0 < α < 1, each FT has one
potential energy absolute maximum, one absolute minimum,
one potential energy saddle point, and a line of local potential
energy minima (a “trench”) running from the saddle point
to the potential energy minimum. The equation locating the
trenches is yT (x) = cos−1[±α cos(x)] (the sign varies with
saddle point).

Figure 1 shows a unit cell (for α > 0). When α = 0 there
are nine potential energy maxima. As α increases, five maxima
grow in height, and four shrink and disappear at α = 1.0. There
are four potential energy absolute minima unchanged for all
values of α, and there are 12 saddle points. As α increases, the
saddles move toward the four low maxima and finally, at α =
1.0, they merge with low maxima and disappear. At α = 1.0,
there are five potential energy maxima Vmax(1.0) = 4U and
four lines of zero potential energy between (x,y) = (0,±π )
and (x,y) = (±π,0).

FIG. 1. Contour plots of a unit cell of the potential energy
V (x,y) for (a) α = 0 (four unit cells), (b) α = 0.1, (c) α = 0.5, and
(d) α = 1.0. In Fig. 1(c), 2 of the 16 fundamental triangles in the unit
cell are indicated by dashed lines. All quantities are in dimensionless
units.
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FIG. 2. PSS of px/
√

E vs x plotted each time y = π/2 for py > 0. (a) α = 0.1, E = 1
10 Vmax. (b) α = 0.1, E = 3

8 Vmax. (c) α = 0.1,
E = 5

8 Vmax. (d) α = 0.5, E = 1
10 Vmax. (e) α = 0.5, E = 3

8 Vmax. (f) α = 0.5, E = 5
8 Vmax. (g) α = 1.0, E = 1

10 Vmax. (h) α = 1.0, E = 3
8 Vmax.

(i) α = 1.0, E = 5
8 Vmax. All quantities are in dimensionless units.

In Fig. 2, we show the Poincaré surface of section (PSS)
px√
E

versus x, plotted each time y = π/2 for py > 0. Figure 2
contains nine plots: three plots with α = 0.1, α = 0.5, and α =
1.0 for each of the energies E = 1

10Vmax(α), E = 3
8Vmax(α),

and E = 5
8Vmax(α), where Vmax(α) is the potential energy

maximum for a given value of α [Vmax(0.1) = 44, Vmax(0.5) =
60, and Vmax(1.0) = 80].

For α = 0.1 and energies E < 5
8Vmax(0.1) [Figs. 2(a)

and 2(b)], the phase space dynamics is dominated by
Kolmogorov-Arnold-Moser (KAM) tori. At about E = 6.86,
there is a bifurcation of one of the stable periodic orbits. At
the bifurcation, an unstable periodic orbit emerges and is the
primary source of chaos at low energies.

When E becomes greater than the saddle point energy,
the unstable fixed point at the saddle points provide a second
source of chaos. The broad chaotic sea in Fig. 2(c) is generated
by the bifurcation and the saddle point. For α = 0.5, the
bifurcation occurs at higher energy, and the saddle point has
lower energy. Figures 2(d)–2(f) show the evolution of the
phase space dynamics for α = 0.5 for increasing energies. In
Fig. 2(d) (E = 6.0), the system is well below the bifurcation
energy. In Fig. 2(e) (E = 22.5), both the bifurcation and the
saddle point contribute to the chaos. In Fig. 2(f) (E = 37.5),
the dynamics is chaotic. For α = 1.0, the PSSs in Figs. 2(g)–
2(i) show that the phase space dynamics is chaotic for all
energies below Vmax(1.0).

We can estimate the number of quantum states in a unit
cell of the lattice at a given energy E from the phase space
volume occupied by the classical orbits. For a given energy E,
we have 1

2π

∮
pxdx ≈ nx and 1

2π

∮
pydy ≈ ny , so the number

of quantum states is nxny . In Fig. 2(f), the area of the chaotic
region is approximately (�px)(�x)

√
E ≈ 33, and the number

of quantum states is nx = 33
2π

≈ 5.3.

III. WALKER-FORD BIFURCATION

For small α, we can use Walker and Ford analysis [7] to
describe the bifurcation. When α = 0, the dynamics consists of
two uncoupled pendulums with total Hamiltonian H = Hx +
Hy = E, where Hx = p2

x + Ucos2(x) = Ex and Hy = p2
y +

Ucos2(y) = Ey . For energy E < 20, the motion is librational,
and the action variable, for dynamics Hx = Ex , is

Jx = 1

2π

∮
dxpx = 2

π

√
U

[
E(κx) − (

1 − κx
2
)
K(κx)

]
, (2)

where the modulus κx
2 = Ex/U and K(κ) and E(κ) are com-

plete elliptic integrals of the first and second kind, respectively.
The canonical transformation (px,x)→(Jx,θx) [8] is given
by x = π

2 + sin−1 [κxsn (fx,κx)] and px = √
Uκxcn (fx,κx),

where sn (fx,κx) and cn (fx,κx) are Jacobi sn and cn functions,
respectively, and fx = 2

π
K(κx)θx . An identical analysis applies

to Hy .
In terms of the action-angle variables, the Hamiltonian in

Eq. (1) can be written

H = Ex + Ey + 2Uκxκyαsn(fx,κx)sn(fy,κy)

= Ex + Ey + αU
π2

K(κx)K(κy)

∞∑
nx=0

∞∑
ny=0

∑
β=±1

Cnx
(κx)

×Cnx
(κx)cos[(2nx + 1)θx + β(2ny + 1)θy], (3)

where Cnx
(κx) = csch[(2nx + 1)π

2
K′(κx )
K(κx ) ] and K′(κx) =

K(
√

1 − κx
2), with Cny

(κy) and K′(κy) defined in a similar
manner. Each term in the summation in Eq. (3) induces a
“primary resonance” in the phase space. The resonances
accumulate at the separatrices of the pendulum and generate a
stochastic layer [8]. The largest resonance [(nx,ny) = (0,0)]
lies farthest from the separatrices.
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FIG. 3. Surfaces of section for the Walker-Ford Hamiltonian
for α = 0.1 and transformed to Cartesian coordinates. The PSS
shows ( px√

E
,x) (for y = π

2 and py > 0). (a) E = 5.0. (b) E = 10.
All quantities are in dimensionless units.

We now examine the effect of the largest primary resonance
on the phase space structure. Isolate the term in Eq. (3) with
(nx,ny) = (0,0) and β = −1 and write

H
(−)
0,0 = Ex + Ey + αU

π2

K(κx)K(κy)
C0(κx)C0(κy)

× cos[θx − θy] = E. (4)

Given H
(−)
0,0 , we solve Hamilton’s equations for (Jx,Jy,θx,θy)

and transform the solutions to Cartesian coordinates. In Fig. 3,
we plot a PSS of ( px√

E
,x) (for y = π

2 and py > 0) for α = 0.1.
Below E = 6.86, the phase space shows no unstable periodic
orbits (UPO), while for E > 6.86, the primary resonance
[Eq. (4)] emerges and is the source of the bifurcation [compare
Fig. 2(a) with Fig. 3(a) and Fig. 2(b) with Fig. 3(b)].

IV. SADDLE POINT CHAOS

Another source of chaos is the saddle points. Con-
sider the four saddle points at (xsp,ysp) = (0, cos−1(−α)),
(π, cos−1(+α)), ( cos−1(−α),0), and ( cos−1(+α),π ). The
linearized equations of motion in the neighborhood of
(0, cos−1(−α)), exhibits harmonic motion in the y direction

FIG. 4. PSS of stable and unstable manifolds for α = 0 and
energy E = Esp(α) + 1.0, along the trench with saddle (xsp,ysp) =
(0, π

2 ). (a) The separatrix of the UPO at (xsp,ysp) = (0, π

2 ). (b) The
FT in configuration space and the configuration space orbit of points
marked with open and solid circles in (a). Points τ come from the
separatrix between (xsp,ysp) = ( π

2 ,0) and ( π

2 ,π ). Points λ come from
the separatrix between (xsp,ysp) = ( π

2 ,0) and ( π

2 ,π ). All quantities
are in dimensionless units.

and unstable motion in the x direction with deviations from
the saddle fixed point given by �x = Ae−2

√
U (1−α2)t and

�px = −2A
√

U (1 − α2)e−2
√

U (1−α2)t . The unstable (stable)
manifold thus departs forward (backward) in time from the
saddle point (xsp,ysp) = (0, cos−1(−α)) in the x − px plane.

For α = 0, the unstable (stable) manifold of (xsp,ysp) =
(0, π

2 ) forms a separatrix on the y = π
2 PSS which connects

to the saddle point at (xsp,ysp) = (π,π
2 ). Stable and unstable

manifolds also connect saddle points (xsp,ysp) = (π
2 ,0) and

(xsp,ysp) = (π
2 ,π ). For all α, these manifolds are unique curves

with the same energy as the saddle unstable fixed point (UFP).
When 0 < α < 1, the separatrices from neighboring saddle
points form oscillatory area preserving curves (tendrils) that
transversally intersect the separatrices of neighboring saddles
and contain complete information about the chaotic region.

For α �= 0, there is no PSS of ( px√
E
,x) for fixed y that

contains the complete invariant manifold associated with the
saddles. However, we can construct a PSS along the trench
(using Birkhoff coordinates) that does contain the invariant

FIG. 5. PSSs of Birkhoff coordinates (ps,s) along the “trench”
between (xsp,ysp) = (0, π

2 ) and (xmin,ymin) = ( π

2 , π

2 ) for E =
Esp(α) + 1.0. (a) Chaotic region for α = 0.1. (b) Stable and unstable
manifolds for α = 0.1. (c) Chaotic region for α = 0.5. (d) Stable and
unstable manifolds for α = 0.5. All quantities are in dimensionless
units.
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manifolds. The PSS using Birkhoff coordinates maps the
component of momentum, ps , tangent to the trench versus
the position, s, along the trench as a trajectory passes through
the trench at position s. A PSS using Birkhoff coordinates is
area preserving.

A PSS along a “trench” has unusual properties that we
illustrate for α = 0, when the trench coincides with y = π

2 .
We assume the FT has hard wall boundary conditions. In the
PSS in Fig. 4(a), we plot the stable and unstable manifolds
for the saddle fixed point at (xsp,ysp) = (0, π

2 ) for α = 0. The
saddle point energy is Esp(α), but the unstable fixed point at
the saddle also exists at higher energy [the “excess energy”
�E(α) = E − Esp(α)]. For α = 0, the stable and unstable
manifolds for the saddle fixed point at (xsp,ysp) = (0, π

2 ) form
a separatrix [see Fig. 4(a) for �E(0) = 1.0]. The unstable
manifold is computed from a line of initial conditions along
the positive eigencurve of the saddle fixed point. The evolution
of a single initial condition is shown in configuration space in
Fig. 4(b). The dashed curves (b1 and b2) are the boundaries of
the FT. The solid gray line is the trajectory, and the dots are
points where it crosses y = π

2 and is plotted in the PSS. The
FT PSS has contributions from unstable manifolds of all four
saddle UPOs. When the trajectory hits the wall of the FT, it
reflects and crosses the line y = π

2 vertically (the open dots)
and reflects again before it continues its path back to the saddle.
The vertical segments correspond to sections of the stable and
unstable manifolds of the saddles at (xsp,ysp) = (π

2 ,0) and
(π

2 ,π ) (marked τ ). The black dots mark sections of the stable
and unstable manifolds of the saddles at (xsp,ysp) = (0, π

2 ) and
(π,π

2 ) (marked λ).
In Fig. 5(a), we show the phase space structure of the FT

PSS for an excess energy of �E(α) = 1.0 and coupling α =
0.1. In Fig. 5(b), we show the stable and unstable manifolds
associated with the four saddle UFPs that contribute to this FT
PSS. The first 4 mappings are marked by the dark curve, and
the next 16 are shown in gray. Figure 5(c) shows the phase
space structure of the FT PSS for �E(α) = 1.0 and α = 0.5.
The chaotic region is now almost completely dominated by the
unstable manifold. In Fig. 5(d), we plot 20 iterations of a line
of initial conditions. The first 4 iterations are the dark curve,
and the next 16 are the gray curve.

In Fig. 6, we show the same chaotic region shown in
Fig. 5(a) but for different (carefully chosen) initial conditions.
There are two distinct chaotic regions, one [Fig. 6(a)] asso-
ciated with the saddle point unstable manifold and the other
[Fig. 6(b)] associated with the bifurcation.

When α → 1 [Figs. 2(g)–2(i)] the phase space dynamics
becomes chaotic for E < Vmax(1.0); however, it is not truly a

FIG. 6. Two distinct, significant chaotic regions for E < Vmax

and α = 0.1. (a) Saddle point chaos. (b) Bifurcation related chaos.
All quantities are in dimensionless units.

K flow (fully chaotic) and will have a mixed phase space at
small scales. For α = 1, the optical lattice dynamics for E <

Vmax(1.0) is locally similar to the quartic potential V (x,y) =
1
2x2y2 [9,10], whose dynamics was shown to be a K flow [11],
and it has some resemblance to a Lorentz gas, whose dynamics
is rigorously a K flow [12,13]. Since the quantum dynamics
only “sees” classical structures that are greater than �

2, atoms
in the chaotic regions of the optical lattice phase space will
behave as if the system is truly a K flow.

V. CONCLUDING REMARKS

We can use the same type of analysis to study the atomic
dynamics for E > Vmax(α). For α > 0, we find that a chaotic
sea drives the dynamics for energies just above Vmax(α). For
α = 1.0, large resonances continue to dominate the phase up
to very high energies [E = 10Vmax(α)]; however, chaos no
longer plays a significant role at those high energies.

The optical lattice considered here contains the entire range
of dynamical behaviors found in conservative systems. The
fact that the optical lattices dynamics is “tunable” makes them
extremely versatile systems for studying issues related to the
classical-quantum correspondence for two-dimensional and
three-dimensional systems and the dynamics of condensed
matter systems.
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