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Tunable Fermi acceleration in a nondissipative driven magnetic billiard
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We study the effect of a constant magnetic field on the dynamics of a system that may present Fermi acceleration
(FA). The model in consideration is the nondissipative annular billiard with breathing boundaries. There is a
field threshold, from which the mechanism of FA can be deactivated. The presence of the magnetic field curves
the particle trajectories and for some combinations of the parameters FA is totally, and nontrivially, suppressed
without considering any kind of dissipation.
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I. INTRODUCTION

In recent years, several studies have been developed in
order to show dynamical properties which could contribute
for inducing or suppressing Fermi acceleration (FA), which
can be named as indefinite energy growth [1–18]. The
Loskutov-Ryabov-Akinshin conjecture says that a chaotic
regime observed in static billiards is a sufficient condition to
find FA when a periodic time-dependent perturbation is added
on the billiard boundaries [1]. This conjecture has been verified
in many works and also expanded when there is a separatrix
in the static case instead of a chaotic dynamics [7]. On the
other hand, other works have presented studies on how robust
FA is under the action of dissipation at the collisions with the
boundaries or through some kind of viscosity [5,8]. Contrarily
to these approaches, in this present work we report the
suppression of FA without introducing any kind of dissipation,
but by applying a constant magnetic field.

In general, billiards consist of appropriated models to study
physical phenomena or properties of more complex systems.
In the particular focus of this work, the mechanism of FA
has been noticed in the stadiumlike billiard [2,9,11,12], in
the annular billiard [3,4,10], in the one-dimensional stochastic
Fermi-Ulam billiard [5,6], in the elliptical billiard [7,8], in
the Sinai’s billiard [9,11], and in the Lorentz gas–like billiard
[16]. Recent results on FA associated with the interaction of
charge particles with magnetic islands or mirrors have also
been reported [14,15,17,18].

The pulsating annular billiard (PAB) is the model we are
going to consider to develop our study. It is a two-dimensional
system limited by two breathing circular boundaries of radius
R(t) and r(t) (R > r) [3,4]. The distance between both centers
is the eccentricity δ, which plays the role of perturbation
parameter. A particle can move freely of potential between
the two collision zones, defined by [R0 + eR, R0 − eR] and
[r0 + er , r0 − er ] in which R0 and r0 are the static radii of
the circles and eR and er are the amplitude of oscillations of
the boundaries. The dependence on time makes the energy
no longer constant. If in addition, in the PAB, the circles are
concentric, the angular momentum of the particle is a constant
of motion and the phase space presents some regular structures,
but if the circles are eccentric it is possible to observe the
mechanism of FA. It is worth pointing out that the applied
realization of the static annular billiard is reported theoretically

[13] and experimentally [19]. The paper is organized as
follows: In Sec. II we present the main concepts of the magnetic
pulsating annular billiard, in Sec. III we present and discuss
the results as well as the conclusions, and closing the work the
Appendix shows the steps between Eqs. (1) and (2).

II. THE MAGNETIC BILLIARD

This study is a natural sequence of previous papers
[3,4,20–23], but in the present work, we now consider a
charged particle, which beyond being subject to the dynamic
conditions of the PAB, is also subjected to the action of a
constant magnetic field perpendicularly orientated in relation
to the plane of the billiard. This system will be called as
magnetic pulsating annular billiard (MPAB). A schematic
view of the billiard is shown in Fig. 1.

Contrarily to the usual, we do not consider a discrete map
to describe the dynamics, but a continuous flux governed by
the following Hamiltonian function:

H(�r,�p) = 1

2m

[
�p − q

c
�A(�r)

]2
, (1)

where �A is the magnetic potential vector, m is the particle mass,
�p is the total momentum of the particle, q is the electric charge,
and c is the speed of light. Using cylindrical polar coordinates
(ρ,θ ), �p = pθ θ̂ + pρρ̂, and choosing an antisymmetric gauge,
Aθ = 1

2Bρ, we get the constant magnetic field �B = B ẑ. After
some algebraic manipulation, we write the Hamiltonian for the
system (see Appendix),

H = 1

2m

[
p2

ρ + 1

ρ2

(
pθ − qBρ2

2c

)2
]

. (2)

This Hamiltonian represents the total energy E of the particle,
which is stroboscopically constant and between two successive
collisions with the boundaries the total velocity of the particle

is υ =
√

2E
m

, which is also constant. On the other hand, when a
collision occurs with any boundary there will be corrections in
the radial velocity and in the particle energy. The corrections
in the radial particle velocity are

υR = −υ0
R − 2eRsin(φe), (3)

υr = −υ0
r − 2ωersin(φi), (4)
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FIG. 1. (Color online) Illustration of the magnetic pulsating an-
nular billiard with circular trajectories. The regions [R0 + eR,

R0 − eR] and [r0 + er , r0 − er ] are called collision zones, where
eR and er are the half amplitudes of oscillation and R0 and r0 are
the static radii of the external and internal boundaries, respectively.
The boundaries’ oscillations can furnish energy to the particle during
a collision, increasing its radial velocity.

where υ0
R and υR are the radial velocities of the particle with

respect to the center of the external circle immediately before
and after the collision, respectively, and υ0

r and υr the radial
velocities with respect to the center of the internal circle
immediately before and after the collision, respectively. φe

and φi are the phase of oscillation of external and internal
boundaries, respectively, at the moment of the collision and ω

is the ratio of the frequencies of oscillations of both boundaries.
For the computational purposes, all calculations have been

done through numeric integration of the Hamilton equations
obtained from the Hamiltonian (2) using the sixth order Runge-
Kutta integrator. A rather delicate detail here is how to find the
time in the instant when a collision occurs. When the magnetic
field is turned on, the particle develops a circular trajectory,
whose radius of curvature is ξ = mυ

qB
, and for each iteration, we

check if there occurs an intersection of this trajectory with the
time-dependent circular boundaries, within a preset precision.
At the instant that the intersection is with the outer circle we
store a collision and restart the time counter. We point out that
we have considered the complete model, this is, by the time
the particle goes into a collision zone it can suffer successive
collisions with the boundary, and we used R0 = 1 for all
numeric calculations.

For the static concentric geometry, δ = 0, with or without
magnetic field, the system is globally integrable because the
total energy and the angular momentum, pθ , are constants of
motion. In the concentric pulsating case the total energy is not
conserved anymore, but pθ is still a constant of motion since
θ is a cyclic variable. The corresponding Poincaré’s section in

FIG. 2. Poincaré’s section for δ = 0, r0 = 0.45, eR = er = 0.01,
ω = 1.0, φe − φi = 0, and B = 0. From the first invariant spanning
curve and above, the movement is regular; thus only a limited growth
of energy is possible for initial conditions starting inside the chaotic
region.

the coordinates (−υR,φe), for B = 0, shows chaos and regular
structures (Fig. 2). Thus, the growth of energy is limited to the
extension of the chaotic sea.

In Fig. 3, we present Poincaré’s sections for the concentric,
δ = 0, and breathing magnetic billiard for (a) B = 0.10; (b)
B = 0.20; (c) B = 0.40; (d) B = 0.50. We observe that as
stronger the field as smaller the chaotic region, turning the
dynamics more regular.

III. RESULTS, DISCUSSION, AND CONCLUSIONS

In the eccentric and pulsating scenario, as the total particle
energy E as pθ are no longer preserved and the mechanism
of indefinite energy growth (FA) has been already reported in
previous works [3,4]. Now we are going to study the effects of
the magnetic field on the phenomenon of FA. We took some
known values of the parameters of the eccentric geometry
without magnetic field, for which FA has been previously
observed—this means δ = 0.30, r0 = 0.45, eR = er = 0.01,
ω = 1.0, and φe − φi = 0—and we apply a magnetic field
for different magnitudes. Figure 4 shows the evolution of the
particle velocity, for an ensemble of 500 initial conditions, for
some values of magnetic field until 105 iterations (n).

We can observe that for weak field, B = 0.20, the growth of
the mean velocity is very similar to the case without magnetic
field, while for intermediate fields, B = 0.31 and B = 0.32,
only after �102 iterations we can also identify some similarity
in the slope of the curves with the null field case. Nevertheless,
for strong fields, B = 0.45 and B = 0.60, the behavior of the
curves is very different and FA is completely suppressed. For
a deeper study, Fig. 5 shows the mean particle velocity for the
same ensemble of initial conditions (IC) and the same set of
parameters of Fig. 4. We plot only the last iteration, i.e., the
105-th iteration, but now for 65 different values of magnetic
field.
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FIG. 3. Poincaré sections for δ = 0, r0 = 0.45, eR = er = 0.01, ω = 1.0, φe − φi = 0, and (a) B = 0.10, (b) B = 0.20, (c) B = 0.40,
(d) B = 0.50. The regularity increases with the increasing of B.

The red line is a nonlinear fitting given by the classic four-
parametric sigmoid Boltzmann function, commonly used for
sigmoidal datasets and phase transition models [24], obtained
with an adjusted rate of 99.4%, and here it can be described as

〈υM〉 = f (B) = 〈υM〉i − 〈υM〉f
1 + e

B−BC
	B

+ 〈υM〉f , (5)

where 〈υM〉f = 0.03 ± 0.01 is the value of the mean velocity
for B = 0.6, while 〈υM〉i = 1.34 ± 0.01 is for B = 0.
BC = 0.3139 ± 0.0006 is the central point of the transition
decay, 	B = 0.0064 ± 0.0005 is the step of values of B, and
M symbolizes the final iteration, n = 105. It is important to
notice that this estimate is valid for the 105-th iteration and
it may be changed for other amounts of iterations. In spite
of that, it illustrates some generic aspects of the influence of
the action of the magnetic field. For small and intermediate

values of B the particle can reach velocities higher than the
initial velocity, υ0 = 0.02, and FA can be observed. Around
B�0.30 and B�0.33 there are two transitions; the first one
suggests approximately the beginning of the suppression of
FA and the second one corresponds to a new plateau of
saturation indicating the confinement of the particle in regions
of the phase space with low velocities. Even though we
are considering the eccentric case, these results are in total
agreement with the plots of Fig. 3, for the concentric geometry,
concerning the effect of the magnetic field.

Figures 4 and 5 show only up to 105 collisions with the
external boundary because the integration of the Hamilton
equations spends too much computational time. However, in
order to not have any doubt about the results, we present in
Fig. 6 the calculation of four strong values of the magnetic
field, B = 0.45, B = 0.50, B = 0.55, and B = 0.60, up 108
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FIG. 4. (Color online) Particle energy growth for six different
values of the magnetic field, B = 0.0, B = 0.20, B = 0.31,
B = 0.32, B = 0.45, and B = 0.60 in terms of the collision number
(n). We observe that FA occurs for null and small fields. We used
the parameters δ = 0.30, r0 = 0.45, eR = er = 0.01, ω = 1.0, and
φe − φi = 0.

collisions with the external boundary. All the other parameters
are the same as Fig. 4. We can observe that there is some
roughness in the curves of the mean velocities but all of them
saturate and no FA is observed, which corroborates with Fig. 4.

The explanation for this behavior can be gotten from the
radius of curvature of the trajectories due to the magnetic field.
The oscillations of the boundaries make this radius no longer

FIG. 5. (Color online) Eccentric MPAB. Mean velocities at the
105-th collision with the external boundary for 65 different values of
B. The dash-dotted line corresponds to the initial particle’s velocity
and it is fixed as υ0 = 0.02. The difference between the initial velocity
and the plotted ones shows how much the particle can gain energy
depending on the magnitude of the magnetic field. For strong fields
the particle keeps its velocity nearby the initial value υ0. The red
curve is a numeric fitting while the gray one is only to guide the eyes.

FIG. 6. (Color online) Evolution of the mean velocity up 108

iterations for 500 initial conditions. The fields considered are
B = 0.45, B = 0.50, B = 0.55, and B = 0.60. We can see the
total suppression of FA for all values of the magnetic field.

constant since in each hit with the boundaries the velocity of
the particle is altered. For intermediate values of B, depending
on how the fluctuations of the radius of the particle trajectory
occur, one establishes the suppression or the maintenance of
the FA. Considering weak magnitudes of B, the mechanism of
FA is observed. On the other hand, for strong fields the particle
tends to stay confined in the region of whispering gallery orbits,
which is an annulus between the outer circumference with
radius (R0 ± eR) and the auxiliary circumference of radius
(r0 ± er + δ), in such way that it will not collide, or will rarely
collide, with the internal boundary even after a huge number of
iterations. Therefore, even considering a chaotic static regime
and introducing a periodic time-dependent perturbation on
the billiard boundaries, the mechanism of FA can be totally
deactivated without introducing any kind of dissipation. This
also shows that FA can be a tunable mechanism depending on
an external perturbation.
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APPENDIX: DERIVATION OF THE HAMILTONIAN
EQUATION (2) AND ASSOCIATED EQUATIONS

The kinetic and the generalized velocity-dependent poten-
tial energies of a charged particle, with charge q and mass
m, under the effect of a constant magnetic field, �B = Bẑ, are
respectively, given by

T = 1
2mυ2 (A1)

and

U = −q

c

d�r
dt

· �A(�r,t), (A2)
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where c is the light velocity,
→
A(�r,t) is the magnetic vector

potential, and �r is the particle position into the plane (x,y),
which is written as

�r = xx̂ + yŷ, (A3)

and
→
υ = d�r

dt
is the total velocity of the particle.

The Lagrangian is then written as

L = 1

2
mυ2 + q

c

d�r
dt

· �A(�r,t), (A4)

with generalized (or canonical) momenta

pk = mυk + q

c
Ak, (A5)

and the corresponding Hamiltonian is

H =
∑

k

pkυk − L = mυ2 + q

c

→
υ · →

A − L, (A6)

or, substituting (A4) it is simply

H = 1
2mυ2 (A7)

which is the total energy of the particle.
In terms of the generalized momenta, the Hamiltonian is

then,

H = 1

2m

(
→
p − q

c

→
A

)2

. (A8)

In polar coordinates, (ρ,θ ), �r , and the total velocity,
→
υ = d�r

dt
,

are described as

�r = ρ cos θx̂ + ρ sin θŷ (A9)

and

→
υ = d�r

dt
= ρ̇ [ cos θx̂ + sin θŷ] + ρθ̇ [ cos θŷ − sin θx̂]

= ρ̇ρ̂ + ρθ̇ θ̂ = υρρ̂ + υθ θ̂ . (A10)

From there,

υ2 = d�r
dt

· d�r
dt

= ρ̇2 + ρ2θ̇2, (A11)

and the kinetic energy is

T = m

2
(ρ̇2 + ρ2θ̇2). (A12)

Considering the asymmetric gauge, Aθ = 1
2Bρ, the poten-

tial vector is given by

→
A = Aθ θ̂ = Bρ

2
θ̂ ; (A13)

hence,

U = − qBρ2

2c
θ̇ . (A14)

Then the Lagrangian of the system in polar coordinates is

L = m

2
(ρ̇2 + ρ2θ̇2) +

(
qBρ2

2c
θ̇

)
, (A15)

and the generalized momenta are

pθ = ∂L

∂θ̇
= mρ2θ̇ + qB

2c
ρ2, (A16)

pρ = ∂L

∂ρ̇
= mρ̇, (A17)

which are read as follows: pθ is the angular momentum of the
particle and pρ is the linear momentum along ρ. From these
equations we get

ρ̇ = pρ

m
, (A18)

θ̇ = 1

mρ2

(
pθ − qB

2c
ρ2

)
. (A19)

The Hamiltonian function of the system is obtained from
the generalized momenta (pk) and position (qk) and the
Lagrangian (A15),

H =
∑

k

pk q̇k − L, (A20)

H = (pρρ̇ + pθ θ̇ ) − m

2
(ρ̇2 + ρ2θ̇2) −

(
qBρ2

2c
θ̇

)
, (A21)

H = ρ̇

(
pρ − m

2
ρ̇

)
+ θ̇

(
pθ − m

2
ρ2θ̇ − qBρ2

2c

)
. (A22)

Now, we substitute the expression for ρ̇ (A18) and θ̇ (A19)
into (A22) and we easily get

H = 1

2m

[
p2

ρ + 1

ρ2

(
pθ − qB

2c
ρ2

)2
]

. (A23)

The same result follows when we substitute (A18) and
(A19) into (A12). The corresponding Hamilton’s equations
are

ρ̇ = ∂H

∂pρ

= pρ

m
, (A24)

ṗρ = −∂H

∂ρ
= − 1

2m

{−2

ρ3

(
pθ − qB

2c
ρ2

)2

+ 1

ρ2

[
2

(
pθ − qB

2c
ρ2

)(
−qB

c
ρ

)] }

= 1

mρ3

[(
pθ − qB

2c
ρ2

) (
pθ + qB

2c
ρ2

)]

= 1

mρ3

[
p2

θ −
(

qB

2c
ρ2

)2
]

, (A25)

θ̇ = ∂H

∂pθ

= 1

mρ2

(
pθ − qB

2c
ρ2

)
, (A26)

ṗθ = −∂H

∂θ
= 0 ⇒ pθ = constant of motion. (A27)

012916-5



B. CASTALDI et al. PHYSICAL REVIEW E 89, 012916 (2014)

This constant of motion is a consequence of the chosen
gauge. The boundary conditions can also break down this
constant. For the eccentric circles, a natural dependence on
θ is introduced. These equations of motion are numerically
integrated, with the time-dependent boundary conditions, and
we get (ρ,pρ,θ,pθ ) for each iteration of all initial conditions.

The squared total particle velocity, between two successive
collisions with the boundaries, is computed through (A11),
v2 = ρ̇2 + ρ2θ̇2, in such way that the right sides of (A24) and
(A26) give ρ̇ and θ̇ , respectively. Immediately after a collision,
the radial velocity is properly corrected and the procedure
continues.
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