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We study the influence of a linear nonlocal spatial coupling on the interaction of fronts connecting two
equivalent stable states in the prototypical 1-dimensional real Ginzburg-Landau equation. While for local coupling
the fronts are always monotonic and therefore the dynamical behavior leads to coarsening and the annihilation of
pairs of fronts, nonlocal terms can induce spatial oscillations in the front, allowing for the creation of localized
structures, emerging from pinning between two fronts. We show this for three different nonlocal influence kernels.
The first two, mod-exponential and Gaussian, are positive definite and decay exponentially or faster, while the

third one, a Mexican-hat kernel, is not positive definite.
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I. INTRODUCTION

We have shown recently [1] that a nonlocal interaction
term can induce oscillatory tails in otherwise monotonic fronts
connecting two equivalent homogeneous steady states (HSSs)
in the Ginzburg-Landau equation (GLE) for a 1-dimensional
(1D) real field. As a consequence, the interaction between
a pair of fronts has an oscillatory dependence with the
distance between the fronts with an exponentially decaying
envelope. The oscillatory dependence allows for a pair of
fronts to be pinned at specific distances determined by the
tail profile. In particular, localized structures (LSs) can arise
as a consequence of the pinning.

In [2], to which we refer as Part I here, we have presented a
suitable framework to understand the effect of linear nonlocal
spatial coupling on the shape of a class of fronts connecting
two equivalent HSSs, making it possible to determine the
parameter regions where fronts have an oscillatory profile.
Here we apply this general framework to rationalize and
extend the results advanced in [1] and elucidate the region
in parameter space where LSs can exist for different forms of
nonlocal interaction.

In particular, in Part I we considered 1D extended systems
described by a real field with a nonlocal interaction term
sF(x,o0), in which s is a parameter that controls the overall
strength and sign of the coupling while F(x,o) is a linear
function of the field. F(x,o) can be written as the convolution
of a spatially nonlocal kernel K, (x) with the field A(x),

o0

F(x,0) = / Ky(x —x') A(x"dx', (1)
—00

where o is a parameter of the kernel. For nonlocal kernels that

spatially decay to zero at large distances and we take o as

the parameter that controls the spatial extension (width) of the

coupling.

Nonlocality can also appear in nonlinear terms, as for
instance in systems involving heat or particle transport [3],
Bose-Einstein condensates [4], nonlinear optical systems [5,6],
liquid crystals [7], ecological competition of individuals [8],
or species [9]. In many instances, however, the linearization
around a HSS will lead to an effective linear nonlocal term,
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so that one could proceed in a way similar to that described in
this work.

Here we consider three different interaction kernels that
illustrate the generality of the spatially nonlocal effects
considered. Two of the kernels are positive definite, Gaussian
and mod-exponential, while the third is a not positive definite,
a Mexican-hat kernel. Table I gives the expression in real and
Fourier space of the three kernels used in the present work,
while Fig. 1 displays its shape. Moreover, these three kernels
are relevant in different applications.

Spatially nonlocal interactions in which the spatial interac-
tion kernel is positive definite are either attractive (activatory)
or repulsive (inhibitory) depending on the sign of s. The most
usual kernels of this type are the Gaussian and the exponential,
which have been studied in several contexts like competition
effects in ecology [8—10], nonlinear optics [5,11-13], reaction-
diffusion systems [14], and neuroscience [15-17]. Physically,
in reaction-diffusion systems a spatially nonlocal interaction
with an exponential kernel arises whenever an adiabatic
elimination of a fast diffusing substance is performed [18].
In optical systems with quadratic nonlinearities the interaction
between the fundamental wave and its second harmonic can
be understood as the propagation of the fundamental wave
in a nonlocal nonlinear medium with a mod-exponential
kernel whose width depends on diffraction and phase
mismatch [5].

More general exponential decaying kernels with a variable
exponent, including the exponential and Gaussian as particular
cases, have been also considered [9]. In some instances it is
possible to reconstruct an interaction kernel from experimental
data, as done in Ref. [19] for a thermal nonlinear optical
medium.

Kernels with both attractive and repulsive parts have
been introduced in the context of neuroscience. Neurons are
intrinsically discrete units, but one can make use of continuous
neural field models that are coarse grained descriptions of the
spatiotemporal evolution at the tissue level. These models,
like the two-layer (one activatory and the other inhibitory)
network Wilson-Cowan model [20] typically include nonlocal
effects. A Mexican-hat kernel was introduced by Amari [21]
to describe in terms of an effective field model a mixed
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TABLE 1. Definition of the three different kernels K, (x,o) used
in this work together with their Fourier transform K, (k,0): Gaussian,
the mod-exponential, and Mexican-hat kernels.

Gaussian  Mod-exponential Mexican hat
K, (x) —\/21—”0 e /20 eI ‘fg (1 — b;‘—i) e—¥2/207
Ro(k) e/ e 21+ b(=1+0%k)e 7

population of activatory and inhibitory neurons. Since then,
Mexican-hat kernels displaying local activation and lateral
inhibition characteristics have been used extensively in neu-
roscience [15,17] and also in reaction diffusion systems [22].
The reverse situation, local inhibition and lateral excitation,
has been also considered [15]. In some physical systems
nonlocal response functions with attractive and repulsive parts
arise as a result of two or more competing processes [6].
Examples include optical systems with third and quintic order
nonlocal nonlinearities [23], Bose-Einstein condensates with
contact and dipolar interactions [4], and nematic liquid crystals
subject to a light beam with thermal and orientational nonlinear
responses [7,24]. Here we study a kernel resulting from the
combination of two Gaussians, as shown in Table I and
Fig. 1(c), which also makes it possible to recover the results
for a Gaussian kernel in the limit b — 0.

The three kernels we consider as prototypical examples
decay exponentially with distance. Nonlocal terms with other
types of spatial dependence have also been considered in
the literature, as for example periodic response functions
which appear in optical systems with quadratic nonlinearities
depending on the sign of the phase mismatch [5,25] or nonlocal
functions that decay slower than exponentially [26]. We do not
consider these cases explicitly in this work.

The paper is organized as follows. In Sec. II we briefly
describe the GLE equation with nonlocal interaction. In Sec. III
we discuss the moment expansion of the kernel. Sections IV, V,
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FIG. 1. Representations of the three nonlocal interaction kernels
used in this work (o = 1): (a) Gaussian, (b) mod-exponential
(Laplacian), (c) Mexican hat (b = 1/2). The right panels (d)—(f) show
the Fourier transforms of the kernels in panels (a)—(c), respectively.

PHYSICAL REVIEW E 89, 012915 (2014)

and VI are devoted to the Gaussian, mod-exponential, and
Mexican-hat kernels, respectively. Finally, some concluding
remarks are given in Sec. VII.

II. THE GINZBURG-LANDAU EQUATION WITH
NONLOCAL INTERACTION

The prototypical cubic GLE for a real field A in 1 spatial
dimension can be written as [27]

A =pA— A’ + 0, A. )

The parameter w is the gain coefficient. The coefficients of the
diffusion and cubic terms are set to one by suitably rescaling
the spatial and temporal scales without loss of generality.
The GLE is symmetric under the parity transformation
X < —X.

For u < 0 the origin, A; =0, is the only steady state
(stable) in the system. At u = 0 the system exhibits a pitchfork
bifurcation, and two stable, symmetry related, HSSs appear at
Ay = £, /w.For u > 0the systemis bistable and exhibits front
solutions (kinks and antikinks) that connect the two HSSs. The
fronts always decay to the HSS in a monotonic way.

We now consider an additional nonlocal term F'(x,o0)
defined as in Eq. (1). We assume that the kernel is real
and preserves the symmetry under the parity transformation
x < —x,namely K, (x) = K,(—x). The extension of the GLE
with nonlocal coupling can then be written as

BA=(u—sMy)A — A’ + 8, A +5F(x,0), 3)

where s determines the strength of the nonlocal term. The
term —sMyA, where My = ffooo K, (x)dx, compensates for
the local contribution of F(x,o). Through this compensation
the nonlocal system (3) has the same HSSs as the GLE with
local coupling (2).

To analyze the linear stability of a HSS we consider
perturbations from A = A, + e exp (I't + ikx). Linearizing
for small €, one obtains for Eq. (3) the dispersion relation

T(k) = u' — k> + s[R, (k) — My, )
where
p = —3A7, (5)
and
Ky (k) = / Ky(x)e **dx (6)

is the Fourier transform of the kernel. Owing to the kernel
symmetries, K, (k) = K,(—k) is real valued and the dispersion
relation I'(k) depends on k only through k?> = u, and we can
write

) = 1w = u+ sTKy () — Mo). )
For i < 0, A; =0and ' = p, while for u > 0, A, = £,/
and ' = —2u < 0. As a consequence, all stable steady states

of the GLE are associated with a negative value for '

A given HSS becomes unstable if the maximum of I'(k)
becomes positive at some k.. If k. =0 the instability is
associated with a homogeneous perturbation, while if k. 7% 0
the system undergoes a modulational instability (MI). For
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the local GLE, s = 0, the dispersion relation has a parabolic
shape with a single maximum at k = 0 where ['(0) = u'.
Changing the parameter p the parabola moves rigidly in
the vertical direction, so the maximum of the dispersion
relation is always located at zero, and therefore none of the
HSSs can undergo a MI. The zero HSS becomes unstable
against homogeneous perturbations at 4 = 0, where the two
HSSs A, = £,/u are born (pitchfork bifurcation). The two
nonzero symmetric HSSs are always stable in the param-
eter region where they exist. As we see later, nonlocality
induces a MI if, for some k., the last term in Eq. (4) over-
comes the stabilizing u' — k* term, making I'(k.) = O for a
finite k..

We note that the stability of a given HSS depends on the
overall dispersion relation ['(u), which includes a constant
term p’. This term comes from linear gain or losses in the
original GLE. In conserved systems, such as the nonlocal
nonlinear Schrodinger equation, the overall dispersion relation
does not have such a constant term [12]. WitNhout W, all

the terms in I'(u) are negative except for sK,(u). As a
consequence, modulational instabilities can only appear for

sle(, (1) > 0; namely the sign of the nonlocal Kernel in Fourier
space plays a critical role in the existence of instabilities as
encountered in Ref. [12]. Here the constant term shifts the
threshold for instabilities so that MIs can take place even for

moderate negative values of sK, (u).
We focus now on stationary spatial structures. Setting the
time derivative to zero in (3) one has

A = (—pu + sMp)A + A3 — sF(x,0). (8)

Defining the intermediate variable V, one obtains the following
2D spatial dynamical system,

A=V, V =(—u+sM)A+ A> —sF(x,0), 9)

where the prime stands for derivatives with respect to the
spatial variable x. The fixed points of (9) correspond to
solutions for A which do not depend on x, thus to HSSs.
Close to a HSS the shape of the fronts starting or ending at
it can be obtained by considering a perturbation of the form
A(x) = Ay + e exp(Ax) (where, in general, A is complex) and
linearizing for small €. The spatial eigenvalues fulfill

Ir's(A) =0, (10)

where [';(1) is the dispersion relation (4) replacing k with a
complex —iX, namely,

(b)) = D(=id) = W + A2 + s[Ko(—id) — Mp]. (1)

I';(A) depends on A only through A? = —u; thus, spatial
eigenvalues can also be obtained from I"(ug) = 0. If uy is real,
then there is a doublet of spatial eigenvalues Ag = £./—ug
with A real for uy < 0 or purely imaginary for ug > 0. If u is
complex, then u is also a zero and therefore complex spatial
eigenvalues come in quartets Ay = £qo £ iko.

As discussed in Part I [2], if the eigenvalues are well
separated, the leading eigenvalues, i.e., those with the smallest
real part, determine the asymptotic approach to the HSS. If
the leading eigenvalues are a real doublet, fronts approach
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monotonically to the HSS. If the leading eigenvalues are an
imaginary doublet, the HSS is modulationally unstable. The
most interesting case is when the leading eigenvalues are a
complex quartet, since fronts starting or ending at the HSS
have oscillatory tails and thus LSs may arise as a consequence
of the tail interaction.

Varying parameters, two doublets can collide and lead to
a complex quartet and vice versa. As explained in Part I
the collision is signaled by a real double zero (RDZ) of
I"(u), namely I'(u.) = IV (u.) = 0 for u. € R. If u. > 0 two
imaginary doublets become a complex quartet signaling a
Hamiltonian-Hopf (HH) bifurcation. If the HH occurs at the
maximum of I'(k) it corresponds to a MI. If u. < 0 two real
doublets become a complex quartet which corresponds to the
so-called Belyakov-Devaney (BD) transition [28]. Moving on
top of the RDZ manifold u. changes value and eventually
can change sign, so that a HH becomes a BD and vice versa.
This happens when T'(0) = I(0) = 0 and corresponds to a
quadruple zero (QZ) of the dispersion relation when written
as function of k, I'(k) [2].

As shown in Part I, besides the QZ, there are two other
codimension 2 (codim-2) points that play a relevant role in
organizing the phase space dynamics, namely the cusp point
where two BD or two HH manifolds start (or end) and the
3DZ(iw) in which the HSS becomes simultaneously unstable
to homogeneous and finite wavelength perturbations.

III. MOMENT EXPANSION

A qualitative understanding of the effects of a nonlocal
coupling by means of a moment expansion is possible for
kernels that in Fourier space have no singularities at finite
distances, as is the case of the Gaussian kernel to be considered
in Sec. IV. Proceeding as indicated in Part I, the nonlocal
interaction can be written as a series of spatial derivatives of
A (see also [29])),

o]

My; 3% A
F(x,o)=)" (2],)’! PR (12)

j=0

where M; = [ x/K,(x)dx. To describe the BD and HH
transitions which involve four spatial eigenvalues, we need to
keep the expansion terms at least up to fourth order derivatives.

For the GLE (3) truncating the expansion of the kernel at
fourth order one has

1 1
A =pA— A+ (1 + 5st)VZA + ESM4V4A. (13)

Equation (13) is related to the widely studied Swift-Hohenberg
equation [30,31]. An analogous truncation for a spatially
nonlocal interaction was considered in Ref. [32]. Notice that
Eq. (13) only makes sense if s M4 < O since otherwise large
wave number perturbations will always be amplified, leading
to divergences. Table II gives the values of the moments for
the nonsingular kernels considered in this article.

The dispersion relation for the fourth order truncated
moment expansion is

2+SM2 SM4 2
e u

Fw)=uw — ) u 4 (14)
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TABLE II. First moments M; for the Gaussian and the Mexican-
hat kernels.

Moment Gaussian Mexican hat
M, 1 2(1 —-b)
M, o? 2(1 — 3b)o?
M, 30* 6(1 — 5b)a*
Mg 156° 30(1 — 7b)o®
Mg 10508 210(1 — 9b)o®

The spatial eigenvalues are
ug = _)\.é
24+ sMy+ /24 sMy)? —2u'sMy/3
SM4 '

The RDZ manifold of~ INO) \ivhich signals HH and BD
transitions, is given by I"(u.) = I''(u.) = 0:

4u’ — 2+ sMr)u. =0, (16)

sMyu, = 6(2 + sM>). a7

=6

5)

Combining these two equations in order to eliminate u, yields
the RDZ manifold,

) 32 + sMy)?

Hrpz = My (18)

which is of codim-1 in the 3D (u,s M3,s M4) parameter space.
Since we are considering sMy < 0, iy, is always negative.
Setting #, = 0 in (16) and (17), one obtains the QZ manifold

sz = 0, SQz = —2/M2. (19)

Since I'(0) < 0, following the notation of Part I this is a
QZ~ point. For a fixed s M4, considering the (s,u") parameter
space the RDZ manifold has the shape of a parabola with vertex
at the QZ point and unfolding towards negative p'. In the part
of the RDZ with s < sqz, u. > 0 and corresponds to a HH
which in this case is a M1, while the other part corresponds to
a BD. For parameter values in the region between the BD and
Ml lines, where the leading eigenvalues are a complex quartet,
fronts connecting two equivalent homogeneous solutions have
oscillatory tails and LSs can be formed.

In some cases, one is interested in the effect of the
nonlocality for fixed values of the parameters of the local
GLE, namely for a given u’; then it is convenient to rewrite
Eq. (18) so that s is isolated,

WMy — 6M, + \//L/ZM} 120 MM,
3M3

SRDZ = ) (20)
where the + solution corresponds to the MI transition and the
— to the BD. .

For kernels whose moments can be written as M; = o/ M
(cf. Sec. IIT A of Part 1), Eq. (20) becomes

12

SRDZ =

1 My 6 M:
S S n 4 _
3M; |:M

/ M4
M, o? a W i|

M20'2
(21
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In the limit of nonlocal interaction range going to zero, o — 0,
one has sgpy — —2/(M,o?) for both BD and MI transitions.
For infinite-range nonlocality, ¢ — 00, sgpz — 0 for the BD
transition while sgpz — 2u' My/ (3/\4%) for the MI. These
predictions will be compared with the results for a Gaussian
kernel in the next section.

IV. THE GAUSSIAN KERNEL

In this section we analyze the influence of a nonlocal
Gaussian kernel in the shape of the front starting (or ending)
at an HSS of the GLE. Without loss of generality this kernel
can be normalized so that My = 1. In terms of u = —A2 the
dispersion relation obtained linearizing around the HSS can
be written as (cf. Table I)

Fw)=p —s —u+sexp(—o’u/2). (22)

The spatial eigenvalues are the zeros of (22), a transcendental
equation that can be solved analytically in terms of the
Lambert’s W function [see Eq. (AS) in the Appendix]. The
result is

Uupg = —)»(2)
2 so? o2
=p —s+SW|—exp| =+ 23
o? 2 2

where [ € Z and W;(x) is the [th branch of Lambert’s
W function, W(x) € C, and, thus, the spectrum of spatial
eigenvalues is infinite (numerable). The function W has two
real branches,/ =0 and/ = —1.

In order to determine the location of the MI and BD
instabilities of the HSSs, we look for the RDZ of (22), which
is given by I'(u.) = [V (u.) = 0:

2

o (24)

exp(—o2u./2) = —

2
u’:s—l——2—|—uc. (25)
o

One consequence of (24) is that BD and MI transitions require
that s < 0, as u, has to be real. Combining (24) and (25) to
eliminate u leads to the condition defining the RDZ manifold
of I'(u). This manifold has one dimension less than the
dimensionality of the parameter space. Since we have three
parameters, i, s, and o, the RDZ manifold is a 2D manifold
given by

0 exp [ Tow 45| = -2 6)
—exp| —(— )| =—-—.

y PR P

The RDZ manifold given by (26) corresponds in Eq. (23) to
the branching point of the two real branches of Lambert’s W
function (see the Appendix), in which these two branches both
merge and finish. Solving Eq. (26) for u' = ugp,(s.0), one
has

’ + 2 1+1 s (27)
= — n{——)|.
Hrpz = $ o2 B

A cut of the pyp, manifold for o = 2 is shown in solid lines
in Fig. 2.

The codim-2 QZ manifold (which is a line in our 3D
parameter space), can be obtained by setting u. = 0 in (24)
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FIG. 2. (Color online) Boundaries in the (s, ") plane at which the
leading spatial eigenvalues of the GLE with a Gaussian kernel exhibit
different transitions for o = 2. Sketches indicate the location of the
leading eigenvalues in the [Re(A),Im(%)] plane (x, signal simple
eigenvalues; e, double eigenvalues; and [J, quadruple eigenvalues).
Dotted lines labeled as MIm4 and BDm4 show the MI and BD
transitions given by the fourth moment expansion (18).

and (25) or, alternatively, locating the submanifold of RDZ (26)
in which u, = 0. The result is that the QZ manifold is defined
by

toz =0, sqz=—2/0". (28)

For the parameters of the QZ, I'”(0) < 0; therefore, in the
notation of Part I, this is a QZ~ point. In the (s, ") plane shown
in Fig. 2 the QZ point is located at (—1/2,0). The character
of the two pieces of the RDZ manifold, BD or MI, can be
elucidated by calculating u, on top of the manifold, such that,
respectively, u, < 0 and u, > 0. From (24) one obtains

2 so?

Therefore, the part of the RDZ manifold in which sot < =2
has a positive u,. and corresponds to a MI while the part in
which —2 < so? < 0 corresponds to a BD. In Fig. 2 the MI
is located at the left of the QZ point and the BD at the right.
Fronts starting (or ending) at the HSS have oscillatory tails
for parameter values in the region between the MI and the BD
lines. This region is labeled as 3 in Fig. 2, in agreement with
the notation used in Part I. The other parameter regions of the
figure are also labeled as in Part I. For s < 0 we refer to Part I
for a detailed description of the regions and the transitions
between them. The s = 0 line corresponds to the GLE with
local coupling for which there are only two spatial eigenvalues
which are a real doublet for ' < 0 and an imaginary doublet
for ' > 0. At © =0 the two components of the doublet
collide at the origin (Hamiltonian-pitchfork bifurcation). For
s > 0, despite the presence of the Gaussian nonlocal kernel,
the spatial dynamics shows a qualitative behavior similar to
that for s = 0.
The second derivative of I"(«), given by

4
B (u) = % exp(—uc?/2), (30)
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does not vanish for any value of u provided s # 0. This
indicates that there is no cusp point for the GLE with a
Gaussian nonlocal kernel. For s = 0 the second derivative
vanishes but this corresponds to the GLE with only local
interaction whose dispersion relation is linear in u, thus it
has nothing to do with a cusp point.

We now look for 3DZ and 3DZ(iw) codim-2 points which,
as discussed in Part I, correspond to the coincidence of a
simple zero at the origin ['(0) =0 and a RDZ at finite
distance, ["(u.) = [(u,) = 0. The first condition, I'(0) =0
implies 1’ = 0; thus, 3DZ and 3DZ(i ) can be obtained setting
Urpz = 0in Eq. (27) and looking for solutions with nonzero
u.. There is no such a solution and therefore the GLE with a
Gaussian nonlocal kernel does not have any 3DZ(iw) or 3DZ
points.

The absence of cusp and 3DZ points indicates that the GLE
with a Gaussian nonlocal kernel does not have any crossover
manifold. This has strong implications on the location of the
complex quartets in the [Re(x),Im(A)] plane. In particular,
if a real doublet is leading the spatial dynamics, changing
parameters complex quartets cannot overcome the real doublet.
In this case, the only way oscillatory tails can appear is after a
BD transition in which two real doublets collide to become a
complex quartet.

We now consider the effect of the nonlocal Gaussian kernel
for given values of the parameters of the local dynamics,
namely for a given u’. Solving (26), e.g., for sgpz(1’,0), one

obtains
2 a?
SRDZ = —2W1 —exXp|\ —u — 1 . (31)
o 2
Since the argument of W is in the interval [—1/e,0] the sgpz
manifold has two branches correspondingto/ = Oand/ = —1.

These two pieces of the RDZ manifold are organized by the
codim-2 QZ manifold (28). Figure 3 shows three cuts of the
srpz (i, o) for different values of /. At ' = 0 one has the QZ
manifold (28) [Fig. 3(a)], from which the BD and MI branches
emerge as 1’ is decreased [see panel (b)]. The upper branch has
u, < 0 and therefore it corresponds to a BD while the lower
branch corresponds to the MI. LSs exist for parameter values
in the region between the BD and the MI curves. The BD
and MI branches separate as u’ is further decreased [see panel
(c)]; thus, the region where LSs exists becomes larger. The
asymptotic limit of both transitions as o — 00 is sgp(c —
o0) — 07 and sy — o0) — u'[33].

To illustrate the main behaviors exhibited by the system,
we plot in Fig. 4 the location in the complex X plane of the first
few spatial eigenvalues of (23) for u’ = —6, three values of s
(at different rows) and three values o (at different columns).
For attractive nonlocal interaction, s > 0, only the principal
branch, Wy, is real; thus, the spectrum contains only one real
doublet [panels (a)—(c)]. For small ¢ it is located very close to
the real doublet of the local dynamics, as shown in panel (a).
There is also an infinite number of complex eigenvalues but
they are located outside the region shown in panel (a). As o
increases, the location of the spatial eigenvalues approaches
the imaginary axis. Since, as discussed before, the GLE with
Gaussian kernel has no crossover manifolds, the real doublet
is always the eigenvalue located closer to the imaginary axis
[see panels (b) and (c)]. Neither a BD transition can exist for

012915-5



GELENS, MATIAS, GOMILA, DORISSEN, AND COLET

FIG. 3. (Color online) Boundaries in the (o,s) plane at which the
leading spatial eigenvalues of the GLE with a Gaussian kernel exhibit
different transitions. Panel (a) shows the QZ manifold at ' = 0.
Panels (b) and (c) show the BD and MI manifoldsat 4’ = —land u’ =
—6, respectively. The short-dashed curves show the BD and MI tran-
sitions as predicted by the fourth moment expansion [Eq. (21)]. Long-
dashed horizontal lines show the asymptotic values for o — oo.
Sketches represent the location of the leading eigenvalues.

s > 0 because there is no other real doublet with which the
leading real doublet can collide. As a consequence for s > 0
the spatial dynamics is always led by a real doublet and fronts
decay monotonically.

For repulsive nonlocal interaction, s < 0, and small o, the
argument of W;(x) in (23) is in the range x € [—1/e,0], and
both Wy(x) and W_;(x) are real (see the Appendix) and, as a
consequence, there are two pairs of real eigenvalues. The pair
located closer to the origin is shown in panel (d) for s = —1
and in panel (g) for s = —7.5. Increasing o, the two real
doublets approach each other and collide at the BD transition,
which corresponds to the branching point of W, beyond which
there is no real solution. Panels (e) and (h) correspond to
parameters at the right of the BD curve in Fig. 3, and one finds
a leading complex quartet. Figure 5 illustrates the change of
the front profile when crossing the BD line. From Eq. (26) one
obtains that for 4/ = —6 and s = —1 the BD line is located
ato = /(2/5)Wy(5/e) ~ 0.570 807 6. For o = 0.5, at the left
of the BD line, the fronts are monotonic. Figure 5(a) shows the
detailed shape of the front close to the HSS corresponding to
A; = /1. The overall profile of the front connecting the two
HSS is shown in the inset. Close to the HSS the front is well
described by an exponential of the form

A(x) — A; =~ cre?'”, (32)
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FIG. 4. Location of the first spatial eigenvalues for the GLE with a
Gaussian nonlocal kernel in the complex A plane (shown as black dots)
for ' = —6. For comparison, the two gray dots show the location of
the eigenvalues for the local GLE (s = 0). The hyperbola, given by
Eq. (36), in grayscale represents an approximation for the location
of the spatial eigenvalues. For panels (a)—(c) on the top row, s = 1,
for (d)—(f) on the middle row s = —1 and for (g)—(i) on the bottom
row s = —7.5. For panels (a), (d), and (g) on the left column o = 0.3;
for (b), (e), and (h) on the middle column o = 2; and for (c), (f), and
(i) on the right column o = 3. For all values of o the number of spatial
eigenvalues is infinite: The plot just presents the region around the
origin in the complex plane.

where g = —2.753 is the leading spatial eigenvalue and the
coefficient c¢; has been fitted to ¢; = —4.507. When crossing
the BD line oscillations in the front profile appear initially with
an infinite wavelength. The front profile for ¢ = 1 is shown in
Fig. 5(b). Again close to the HSS the front profile is very well

0.1 ;
AA, @
0 L
2
~0.1 Ao
25— 0 5
—02 1l I I I I I 1 1 1
01 T T T T T T T T T
A-A_ | (b)
O,
2
-0.1 Ao
250 5
—O 2 I 1 I 1 1 1
0 2 4 6 8 10

FIG. 5. (Color online) The solid line shows front profile for the
GLE with a Gaussian nonlocal kernel for u’' = —6, s = —1, and
(a) 0 = 0.5 and (b) o = 1. The red dashed lines show the approxi-
mations given by Egs. (32) and (33) (see text).
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described by an exponential of the form
A(x) — A & cre? cos(kix + ¢1), (33)

where gy = —2.01 and k; = 1.01 are the real and imaginary
part of the spatial eigenvalue and the coefficients ¢; = 2.02
and ¢; = 2.91 have been fitted.

Returning to the description of Fig. 4, once crossed the
BD line, for s = —1 increasing o the spatial eigenvalues
get closer to the imaginary axis. Nevertheless, for s > '
the situation remains qualitatively the same no matter how
large is o, as shown in Fig. 4(f). For s < y/, as the range
of interaction o increases one crosses the MI line, so that the
HSS becomes modulationally unstable. Beyond the MI line the
spatial dynamics is led by two imaginary doublets as shown in
Fig. 4(1).

The spatial eigenvalues lie on a hyperbolalike curve for
o high enough (cf. Fig. 4). Although the analytical solution
is available [Eq. (23)], it does not yield a geometrically
transparent picture of the locus of the curve on which the
spatial eigenvalues lie. This behavior can be easily understood
by neglecting the linear term versus the exponential one in (22),

exp(—o2ug/2) =1 — u'/s. (34)
Using ug = —(qo + iko)? one gets
exp [0%(q5 — k) /2 +io*qoke] =1 — 1t/ /s. (33)
From the modulus of (35) one has
2 uw
2 2 _
qo—ko_;ln‘l—?', (36)

which represents a hyperbola with eccentricity +/2 in the
complex plane. The right-hand side of (35) is real and therefore
the phase o2goko must be 0 or an integer multiple of 7. For
w'/s <1,

2nm

qoko = —5-, neZ. (37)
o

Conversely, for u'/s > 1, the right-hand side of (35) is
negative and

quo = (211(7#, e Z. (38)
Equations (37) and (38) can be seen as a selection criterion,
which has to be satisfied by a point on the hyperbola to be a
spatial eigenvalue of the system. These hyperbolas are shown
in Fig. 4. The approximation is meaningless for o < 1 [cf.
Figs.4(a),4(d), and 4(g)]. When o > 2itis clear that the above
equation of the hyperbola provides a good approximation
of the location of the spatial eigenvalues and the “selection
criterion,” in fact, gives eigenvalues that lie increasingly close
to the real ones. Notice that the shape of the hyperbola depends
on the sign of the logarithm in (36). For panels in the top and
middle rows, |1 — /5| > 1, while for the panels in the bottom
row |1 — u’/s| < 1. Thus, the hyperbola in the latter case has
a conjugated shape as compared to the one in the panels of the
top and middle rows.

Regarding temporal instabilities, for so> < —2 the HSSs
are modulationally unstable for pu’ >}, as indicated by
Eq. (27). However, it is necessary to take into account that
a given value of u’ corresponds to w = u’ for the zero
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FIG. 6. Bifurcation diagram of the HSS of the nonlocal GLE with
a Gaussian kernel and for o = 2: (a) s = 0 (local case); (b) s = —1.
Stable solutions are shown by a solid line, while the unstable ones
are shown by a dashed line.

HSS and to u = —u’/2 for the nonzero HSS [see Eq. (5)].
Therefore, the zero HSS becomes unstable due to MI at a
value pumi = pyy < 0 and remains modulationally unstable
forany u >y - Similarly, the two nonzero symmetric HSSs
are modulationally unstable for 0 < © < uwp, where uyp =
—yy /2. As a consequence in the interval [, vz ] there are
no stable HSSs. For the parameters of Fig. 6(b), using Eq. (27)
one has py;; = —1 4+ (1 +1n2)/2 ~ —0.153 426, from which
it follows upm; & —0.153 426 and ppp =~ 0.076 713. Figure 7
shows the dependence of uy,; on s for three different values of
o . In the limit of 0 — oo this dependence is given by the line
u' = s. The effect of a nonlocal nonlinear response in a MI is
also discussed in Ref. [11,12].

Finally, we compare the results obtained here with an
expansion up to the fourth moment, as discussed in Sec. III.
Figure 2 shows in dotted lines the location of the BD and MI
manifolds given by (18). The prediction given by the fourth
moment expansion is quite good for the BD transition. The
prediction for the MI manifold, while following the correct
trend, becomes quite off as soon as one moves away from the
QZ point, where u, = 0. As for the dependence of sgpz on the
kernel width for a fixed u’, one can use Eq. (21) with M, = 1
and M4 = 3 (see Table I). As shown in Fig. 3 for the BD
transition, the result given by fourth moment approximation
(dashed line) is in good agreement with the exact one (solid
line). In the case of the MI, the fourth order expansion does
not work quite as well. In the limit of zero interaction range,
it correctly predicts an asymptotic behavior sgpz — —2/0%;
however, in the limit of infinite interaction range, o — 00, the
prediction is sgpz — 2u’.

—M'M‘ 1.3

1

0.5

FIG. 7. Location of the MI in parameter space for the GLE with
Gaussian kernel as a function of the nonlocal strength s for different
values of the interaction range: The solid, long-dashed, and short-
dashed lines correspond, respectively, to o = 2,3,5, while the dotted
line represents the ¢ — oo limit.
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V. THE MOD-EXPONENTIAL KERNEL

We consider here the effect of a kernel whose profile decays
exponentially in space on the tails of fronts starting (or ending)
in an HSS of the GLE. In Fourier space the mod-exponential
kernel is a Lorentzian (cf. Table I),

1

Ru)y= —
W) = 1T e

(39)

which in the complex plain has a singularity at u = —1/(40?).
The dispersion relation obtained linearizing around the HSS
is given by

s

F fr— /_ -_ )
W= —u=s+ 77,

(40)
The spatial eigenvalues are the zeros of I'(u). In this case, there
are only four spatial eigenvalues Ay given by

uy = —)\.g

— 2w Ly . 2+“/
B STH T 42 o? |
(41)

MI and BD instabilities are 1ocat§d on the RDZ manifold
of I'(u), which is given by I'(u.) = I"(u.) = 0:

—1x20y—
ue = —— N2 (42)
402
’—s+i+2u (43)
=97 e “

MI and BD transitions require real u.; thus, MI and BD

transitions can only exist for s < 0, namely for repulsive

nonlocal interaction. Combining (42) and (43) to eliminate u.,

one obtains the RDZ manifold which in the (¢, s,0) parameter
space is the surface given by

, I

Hroz =8 = g3 £

Setting u, = 01in (42) and (43), one obtains the QZ codim-2

bifurcations (lines in the 3D parameter space). It turns out that

there are two QZ lines. The first one takes place for finite o

and is given by

(44)

1
402"
For the parameters of QZ1, I(0) = 32sqz10* = —80?% < 0;
thus, in the notation of Part I, this is a QZ~ point. The second
QZ line is located at

toz =0, sqz1 = — (45)

0Qz2 = OO, Mé;zz =S. (46)

For the parameters of QZ2, I'"(0) = 3250&2 = —o0; thus,
this is also a QZ~ point, albeit a particular one since the second
derivative is infinite. As a consequence, the parabola described
by the RDZ close to QZ2 is infinitely narrow, and the BD and
MI lines unfold from QZ2 practically tangentially.

In the part of the RDZ manifold that starts from the side
so? < —1/4 of QZ1 and the side s < ' of QZ2, u. > 0, it
thus corresponds to a MI bifurcation. On the other part u, < 0,
thus corresponds to a BD.

PHYSICAL REVIEW E 89, 012915 (2014)

FIG. 8. (Color online) Boundaries in the (o,s) plane separating
the regions of monotonic and oscillatory tails in the GLE with a mod-
exponential kernel for 4’ = —6 obtained from (47). The horizontal
dashed line at s = —6 shows the asymptotic limit of MI and BD lines
for o — oo.

Cusp or 3DZ codim-2 points cannot exist for the GLE with
a mod-exponential kernel since they require at least six spatial
eigenvalues. The crossover manifold does not exist either in
this case.

We now address the effect of the mod-exponential kernel
for a given value of p'. It is convenient to rewrite (44) as

1 1

4062 o
The + and — signs correspond to the BD and MI manifolds,
respectively. The MI and BD transitions are shown in Fig. 8 for
the nonzero HSSs for ' = —6 corresponding to p = 3. LSs
are found in the parameter region bounded by the BD and MI
curves. The existence of QZ?2 leads to a significant difference
with the Gaussian kernel (cf. Fig. 3). Increasing o, the BD
and MI lines tend asymptotically one to the other and meet at
the QZ2. As a consequence the region of LSs narrows as o
increases. The curve sgp has a maximum at o = 1/(2/2p)
(i.e., at 0 = 1/+/24 = 0.204 124 in Fig. 8), where it reaches
s = 0, the maximum value of s for which the RDZ manifold
exists. For © — 0 the BD and MI curves approach each other
and meet at QZ1.

Considering the MI and comparing with the local case
shown in Fig. 6(a), one also finds that there is a finite range
of values of i € [um1,4m2] around the pitchfork bifurcation,
© = 0, that are modulationally unstable. For the parameters of
Fig. 6(b),0c =2ands = —1 < —1/(40?), a1 = —9/16 and
M2 = —pmi /2 =9/32.

Written in terms of # the mod-exponential kernel in Fourier
space (39) has a pole of order 1 at u = —1/(402). As a
consequence a moment expansion around u = 0 such as the
one discussed in Sec. IIT A of Part I will converge only for
lu| < 1/(40?), and therefore it will be of limited use. A
truncation up to M, identifies the spatial behavior around
the first QZ, in particular the existence of spatial tails, and
thus of LSs, for s < 0, but as o is increased, the predictions
from moment expansion are quite off. This kernel can be
considered as the simplest with singularities, and no further
approximations can be obtained from a Laurent expansion
(Sec. III B of Part I) since 1/(1 + 40%u) is already the first and

SRDZ = —u. 47)
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only term of that expansion. Still, proceeding as in Sec. III B of
Part I, one can obtain an exact transformation for the nonlocal
interaction term. Using (39) the nonlocal interaction can be
written as

Fk,o) = Ak), (48)

1 +40k?
where A(k) is the Fourier transform of A(x). In real space this
leads to

(1 —-400,,)F(x,0) = A(x), (49)

which is an ordinary differential equation. Therefore, the GLE
with a mod-exponential nonlocal kernel can be written as a
partial differential equation coupled to an ordinary differential
equation,

A =(u—s)A— A+ 03, A+sF(x,0),
(50)

1
O F(x,0) = E[F(x,a) — A)],

where we have used that My = 1. This treatment of the mod-
exponential kernel was introduced in Ref. [34] and used also
by other authors [10,17].

VI. THE MEXICAN-HAT KERNEL

In this section, we discuss in detail the effects of a spatially
nonlocal kernel that is not everywhere positively defined. More
precisely the kernel we consider consists of two Gaussians and
has an extra parameter b > 0 (cf. Table I) that regulates the
spatial extension of the negative sector of the kernel. The total
area of this kernel is given by My = 2(1 — b) (cf. Table I), and
for b > 1, My < 0. For s > 0 one has short-range attraction
(activation) and medium to long-range repulsion (inhibition).
In this case, activation dominates globally for b < 1, while
otherwise overall inhibition is stronger than activation. For
s < 0 one has inhibition in the short range and activation in
the medium to long range and globally inhibition dominates
for b < 1 while activation does otherwise.

The dispersion relation for this kernel is [cf. Eq. (7) and
Table I],

Pu) = —2s(1 —b) —u +2s(1 — b + bo2u)e ™ /2,
(5D
and setting ['(u) =0 does not lead to a closed expres-
sion for the spatial eigenvalues, which have to be ob-
tained numerically for this kernel. The RDZ manifold is
given by I'(u.) = IV(u.) = 0:

1
— = (=1+3b—bo’u)e " ", (52)
SO

2
W =25 —2sb+ — +u — dsbe™" "/, (53)
o

Since now the parameter space (u,s,o0,b) is 4D, the RDZ
manifold is a 3D hypersurface. Equation (52) can be solved
analytically for u,,

1 1
Uel = ;[3 - Z - 2W1(X)i|1 (54)
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where [ = 0, — 1 are the indices of the two real branches of
the Lambert W function (see the Appendix) and

® ) 1 3b—1 (55)
= = X .
X = x589 2bso? P\ Tp

Substituting (54) into (53), one gets

5 1

, W) 2
Hroz, = 25(1 = B) + 25 — — — -

bo? o? a2Wi(x)
(56)

For —1/e < x < 0the RDZ manifold has two branches which
we label / =0 and [ = —1 as the indices of the W function
(see the Appendix). For x > 0 the RDZ manifold has a single
branch given by / =0. For x < —1/e, W does not take
real values; thus, there is no RDZ manifold. The asymptotic
behavior of the RDZ branches for large s is given by

1-3b
URDz0 = 2s|:l —b—2bexp <T>i|

3b —1 _
+ =5+ 06 h, (57)
Hrpz.—1 = 25(1 = b) + O[In(s)]. (58)

The part of the RDZ manifold with u#, < O corresponds
to a BD transition while the part with u, > 0 corresponds
to a HH bifurcation. Note that the BD and HH parts of the
RDZ manifold are not directly related to the index / of jugpyy ;.
Instead, as discussed below, ugp;, o have both BD and HH
parts and the same applies to ugp, _;. For the moment, we
distinguish the part of the BD and MI manifolds in which the
second derivative of the dispersion relation I'(«), given by

/7 SU4 2 —o2u/2
I'Mwu) = T(l —5b 4 bo“u)e , (59)

is positive from that where is negative. The part of the RDZ
with T"(u.) > 0 corresponds to a local minimum of the
dispersion relation crossing zero and in this section it will
be referred to as HH* or BD*, while the part with I (u.) < 0
corresponds to a local maximum of the dispersion relation
crossing zero and will be referred to as as HH™ or BD ™. If the
local maximum signaled by the HH™ turns out to be the global
maximum, then it corresponds to a MI of the HSS and, as in
previous sections, it is referred to as M1

Setting u, = 0 in Eqgs. (52) and (53), one finds the QZ
manifold, which in the (u,s,o,b) parameter space is a 2D
surface given by

1

~23b— 1) (60)

toz =0, sqz
sqz has adivergence at b = 1/3, and, as a consequence, the QZ
manifold splits into two parts. Forb < 1/3, sqz < 0, as shown
in Fig. 9(a), while for b > 1/3, sqz > 0, as shown in Fig. 9(d).
This is a clear distinction with the previous two kernels for
which sqz was always negative.
As discussed in Part I there are two kinds of QZ points
depending on the sign of I'” (1) at the QZ point. From (59) we
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FIG. 9. (Color online) Boundaries in the (1',s) parameter space at which the leading spatial eigenvalues of the GLE with a Mexican-hat
nonlocal kernel exhibit different transitions for 0 = 1 and (a) b = 0.1, (b) b = bsz; = 0.2, (¢) b = 0.3, and (d) b = 0.5. Sketches indicate the
position of the zeros of I';(A) in the [Re()),Im(X)] plane (x, signal simple zeros; e, double zeros; A, triple zeros; [, QZs; and O, sextuple

Zeros).

have

4 2
5Qz0 (1 —5b) = o1 —Sb'
2 2 1-3b
For f‘gZ(O) < 0 the QZ is a QZ~ unfolding a BD™ and a
MI manifolds towards u’ < 0 [see Figs. 9(a) or 9(d)], while
for f‘éZ(O) > 0 one has a QZ* unfolding a BD* and a HH™
manifolds towards p” > 0 [see Fig. 9(c)].

At difference with the previous kernels, the GLE with
a Mexican-hat nonlocal kernel exhibits a codim-2 cusp
manifold. Setting [’ "(Ucusp) = 0, one has

(61)

f‘éz(o) =

1 1
Ucusp = ; 5— Z . (62)
From I (ucusp) = O one obtains
1 5 1
Scusp = _W eXp 5 — ﬁ . (63)

Finally, setting f(ucusp) = 0 and using (63), one arrives at

, 1 1 I 501
'U*cusp:; 9_5“[‘ I_Z exp E—% . (64)

From Eqgs. (62) and (54), one finds that at the cusp
Wi(Xcusp) = —1, which is the branching point of the Lambert
W function where the two real branches W, and W_; originate
(cf. the Appendix). These two W branches associated with
the two branches of the ugp, manifold which in parameter
space emerge from the cusp one tangent to the other [see
for example point C~ in Fig. 9(a)]. Since W_;(x) < —1 for
any value of x (cf. the Appendix), on the branch pugp, |,
Ue 1 > Ueysp and, since (59) can be written as M) =
(sba®/2)(u — ucysp) exp(—0u/2), the sign of I (u, ;) is that
of sb. On the contrary, on the branch ;L%DZ,O, Ue o < Ucusp
and T (uc0) > 0 for sb < 0, while I'(u,,0) < 0 for sb > 0.
Notice that (63) implies scusph < 0, so close to the cusp sb < 0.

For ucysp < 0 the cusp is, in the notation of Part I, a C~
unfolding a BD" manifold and a BD™ manifold, as is the case
of Fig. 9(a). The BD" corresponds to Krpz.o and the BD™ to
Mgpz.—1- Moving away from the cusp along the BD™ line, u,
increases and eventually it reaches zero at the QZ~, where the
BD™ becomes a MI. The C™ cusp also unfolds a crossover
manifold at which a real doublet and a complex quartet are
located at the same distance from the imaginary axis which
we label as XR. In parameter space XR can be seen as the
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natural continuation of the two BD manifolds that end one
tangent to the other at the cusp [see Fig. 9(a)].

For ucysp > 0 the cusp is a C* unfolding a HH and a HH™
which correspond to ugp;, o and to ugp, |, respectively [see
Fig. 9(c)]. Moving along the HH™ manifold away from the
cusp, u. o decreases and eventually it reaches zero at the QZ™*
point where the HH™ becomes a BD". Also unfolding from
C™ there is a crossover manifold (labeled as XI) at which
a imaginary doublet and a complex quartet are located at
the same distance from the real axis. Similarly as before, in
parameter space XI can be seen as the continuation of the two
HH manifolds ending at the cusp.

The GLE with a Mexican-hat kernel also has a 3DZ codim-2
point and a 3DZ(i w) codim-2 point. As discussed in Part I, at
these points a simple zero at the origin I'(0) = 0 and a RDZ at
finite distance, I" (1) = I"(u.) = 0, take place simultaneously.
Since I'(0) = 0 implies ¢’ = 0, the 3DZ and 3DZ(iw) can be
obtained setting (g, = 0in Eq. (56) and looking for solutions
with nonzero u.. Thus, within the i’ = 0 hyperplane the loca-
tion of the 3DZ and 3DZ(iw) is given by the implicit equation

O=2so2(l—b)+5—%—2Wl(X)— (65)

Wi(x)
The 3DZ(i w) point is located on the HH™ manifold that unfolds
from the C* cusp [see Figs. 9(c) and 9(d)] and has a significant
effect on it. At this point HH™, which at the cusp is a local
maximum of the dispersion relation crossing zero, becomes
a global maximum. Thus, the HH bifurcation becomes a MI
[see Fig. 9 of Part I]. Similarly, the 3DZ point is located on the
BD™" manifold that unfolds from the C~ cusp [see Fig. 9(a)].

The sextuple zero point, which organizes the overall
scenario, takes place when ucysp = 0, which in the (u,s,0,b)
parameter space is the line

bsy = — sz = 0. (66)

5’ 202’

The parameter space portrait for the GLE with a Mexican-
hat kernel is as follows. For b = bgy [Fig. 9(b)] the SZ unfolds
a BD" (ugpy o) manifold, a MI (ugp, ;) manifold, an XR
manifold, and an XI manifold in a way similar to that described
in Part I for the sixth-order dispersion relation in A. For negative
and large s the asymptotic behavior of BD* is given by
Eqs. (57) and that of MI by (58). The part for s < 0 of Fig. 9(b)
can be directly compared with Fig. 2(b) of Part I. We refer to
Part I for a detailed explanation of all the regions surrounding
the SZ as well as the transitions between them. The regions
relevant for the existence of stable LSs are region 3, where the
spatial dynamics is led by a complex quartet and the part of
region 4 close to the crossover XR, where the spatial dynamics
results from the combination of a real doublet and a complex
quartet. The s = 0 line corresponds to the GLE with local
coupling with two spatial eigenvalues which are real ' < 0
and imaginary for 4’ > 0.Fors > Oand u’ < OthereisaBD™
line given by jgp, o which separates region 3 led by a complex
quartet from region 7 led by two real doublets, in which fronts
are monotonic. For large positive s the BD™ line follows the
asymptotic behavior (57). Thus, the BD* line for s < 0 and
the BD™ line for s > 0 have the same oblique asymptote. For
s — 0the BD™ line goes to —oo. When crossing i’ = 0 from

§sz = —
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region 7 into region 1, the components of the doublet closer to
the origin collide, leading to an imaginary doublet. This is a
Hamiltonian-pitchfork bifurcation as described in Part I.

For b < bsy the SZ unfolds a QZ~ within the u' =0
hyperplane and a cusp located at ' < 0, as shown in Fig. 9(a)
for b = 0.1. From Eq. (62), for b < bsz, ucusp < 05 thus, this
is a C~ cusp unfolding two BD manifolds and a crossover XR.
The BD™ manifold (given by luilDZ,fl) connects C~ with QZ~,
where it becomes an MI. The BD™ manifold (given by uyp, o)
connects C~ with the 3DZ located in the ' = 0 hyperplane.
For large negative s the asymptotic behavior of both manifolds
is given by Eqs. (57) and (58). The overall picture shown in the
part of Fig. 9(a) corresponding to s < 0 has the same structure
as Fig. 2(a) of Part I, to which we refer for a discussion. As
for s > 0O the regions are the same as in Fig. 9(b) but the BD™
line given by 15y o has moved down to more negative values
of u' [notice the different vertical scale in Figs. 9(a) and 9(b)]
and region 3 has narrowed. As a consequence one has a large
parameter region for s < 0, where LSs may be formed, which
includes region 3 unfolding from QZ~ and the part of region 4
close to XR while for s > 0 there is a narrow region 3 located
at small s and reachable only for strongly negative values of 1.

If b is further decreased, the C~ cusp moves towards smaller
values of s and more negative values for u’. At the same time
the BD" line born at the right of the cusp becomes more
vertical. The BD™ line at s > 0 is located further down and
region 3 keeps narrowing. In the limit » — 07 the cusp goes
t0 Scusp = 07 and g, — —00, while the BD™ line located
in the s > 0 semiplane goes also to —oo. The result is that
one recovers the parameter space diagram obtained for the
Gaussian kernel (Fig. 2).

Forb > bgz the SZ unfolds a QZ* and a 3DZ(i ) manifolds
located within the u' = 0 hyperplane and a cusp located at
u' > 0 as shown in Fig. 9(c) for b = 0.3. From Eq. (62),
for bsz, ucusp > 0; thus, this is a C* cusp unfolding two HH
manifolds and a crossover XI. The HH* manifold (given by
Wrpzo) connects C* with QZ™, where it becomes a BD*.
The HH™ manifold (given by wgp, ;) connects C* with the
3DZ(i w). Globally, the part for s < 0 of Fig. 9(c) has the same
regions and transitions as those obtained for b > O for the
sixth-order dispersion relation considered in Part I [Fig. 2(c)].
Fors < Oregion 3 now unfolds from the 3DZ(i w) point and has
a sharp-pointed shape and thus is narrower than in Figs. 9(a)
and 9(b). For s > 0 the regions are the same as in Fig. 9(b)
but the BD™ line given by figpy; o has moved up and region 3
has widened significantly. Still, in order to reach region 3 for
s > 0 it is necessary that 4 is not too close to zero.

If b is further increased, the QZ* point moves towards
more negative values for s. For b — 1/37, sqz — —oo [cf.
Eq. (60)]. Also, the slope and the ordinate at the origin of
the oblique asymptote of pyp, , tend to zero as b — 1/3,
as can be seen from Eq. (57).’F0r b > 1/3, the QZ point
is located at sqz > 0, starting from sqz = 0o at b =1/3"
and monotonically approaching sqz = 0 as b increases. The
QZ is, in fact, a QZ~ point since for b > 1/3, f‘gZ(O) <0
[see Fig. 9(d) for b = 1/2]. The QZ~ unfolds a BD™ and a
MI manifolds given by pugp; o- The cusp Ct is still present
in the 4’ > 0, s < 0 quadrant, unfolding a HH* line which
asymptotically connects with the MI line for s > 0, since both
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are part of puyp, . As before, the HH™ unfolding from C*
goes to the 3DZ(iw) point, where it becomes an MI. Now
one has region 3 reaching all the way up to u’ = 0 for both
s < 0ands > 0, and, in fact, region 3 is much larger for s > 0
than for s < 0. From a physical point of view this can be
understood by noticing that for » > 1/3 all the moments of
the Mexican-hat kernel, except M, are negative. Thus, while
the overall area of the kernel is positive and for s > O the
nonlocal interaction can be considered as globally attractive,
at medium and long distances the nonlocal interaction is
repulsive. This compensates the local attractive interaction
leading to oscillations in the front profile.

Increasing b in the half plane s > 0, the QZ~ approaches
zero but there are no qualitative changes. In the half plane s < 0
the slope of the HH™ that unfolds from C* given by uyp,
decreases [e.g., Eq. (58)] and the 3DZ(i w) point moves towards
more negative values of s. For b = 1 the 3DZ(iw) point is
located at s — —oo. For b > 1the HH™ does not cross u’ = 0
and there is no 3DZ(i w) point and, thus, no crossover XR nor
region 3 for s < 0. The result is that for » > 1 only region
3 unfolded by QZ~ located at s > 0 remains as parameter
regions where stable LSs can be formed.

We now focus on the effect of the Mexican-hat nonlocal
kernel for given parameter values of the local GLE, that is for
a given u'. In what follows we take b = 1/2 [Fig. 9(d)] so
that the total area of the kernel is My = 1, as in the kernels
considered in the previous sections.

For this kernel a closed formula for sgpz(u’,0) is not
available, but, nevertheless, it can be found semianalytically by
replacing (54) with (53) with b = 1/2. The result for u' = —6
is shown in Fig. 10. As discussed above, the result is that one
finds two sections of the RDZ manifold for s > 0, BD™ and
MI, unfolding from QZ~, while for s < 0 one has a MI and a
crossover XR unfolding from 3DZ(iw) [see also Fig. 9(d)].

305 BD il # %

FIG. 10. (Color online) Boundaries in the (o,s) plane separating
the regions of monotonic and oscillatory tails when using a Mexican-
hat shaped kernel in the nonlocal GLE. ' = —6.
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FIG. 11. Location of the first spatial eigenvalues for the GLE
with a Mexican-hat nonlocal kernel in the complex A plane (shown
as black dots) for b = 1/2 and ' = —6. The top row corresponds to
s = 30 with (a) o = 0.1, (b) o = 0.5, and (c) 0 = 2. The middle row
corresponds tos = —1 with(d) o = 1, (e) 0 = 2, and (f) 0 = 3. The
bottom row corresponds to s = —8 with (g) o = 1, (h) 0 = 2, and
(i) o = 3. For comparison the two gray dots show the location of the
eigenvalues for the local GLE (s = 0). In all the cases the number of
spatial eigenvalues is infinite: The plot just presents the region around
the origin in the complex plane.

Figure 11 shows the location in the complex A plane of the
first few spatial eigenvalues for different values of s and o.
The first row corresponds to s = 30. For o small the spatial
dynamics is led by a real doublet located close to the real
doublet of the GLE with local coupling [Fig. 11(a)]. There
is another real doublet located outside the region plotted in
Fig. 11(a). Increasing o the second real doublet gets closer to
the origin and collides with the first pair in a BD transition
leading to a complex quartet [Fig. 11(b)] within parameter
region 3, where front tails have a oscillatory profile (see
Fig. 10). Further increasing o leads to a collision of the
components of the complex quartet on the imaginary axis
(MI transition), which results in two imaginary doublets
[Fig. 11(c)] within parameter region 2.

For b = 1/2 and s < 0 the one finds only one real doublet
in the spatial spectrum. For s not too negative this real doublet
leads the spatial dynamics for any value of o as shown in the
second row of Fig. 11, which corresponds tos = —1. The three
panels of this row are within parameter region 4 (see Fig. 10).
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For a large negative s the real doublet leads the dynamics
only for small o [see the eigenvalues plotted in Fig. 11(g)
for parameters within region 4 of Fig. 10]. Increasing o one
encounters the crossover XR after which there is a complex
quartet located closer to the imaginary axis than the real
doublet [Fig. 11(h)] and therefore one enters in the parameter
region 3 unfolding from the 3DZ(i ) point. For larger values
of o there is a MI transition at which the components of the
complex quartet collide on the imaginary axis. After this the
spatial dynamics is led by two imaginary pairs as shown in
Fig. 11(i) for parameters within region 2.

As discussed in Part I in the part of region 4 located near
the crossover XR, the real part of the complex quartet is close
to that of the real doublet and the spatial dynamics results,
in fact, from the combination of the real doublet and the
complex quartet. Thus, although asymptotically the front tail
is monotonic, closer to the front core the complex quartet
manifests, introducing oscillations, whose role in the fronts
interaction can lead to the existence of stable LSs. At difference
with the case where the leading eigenvalues are complex, and
the front tail has oscillations asymptotically, here the front
shows oscillations only close to the core, and thus the locking
of two fronts can only occur at short distances.

To determine the part of region 4 where this occurs we
consider the full evolution equation (3) with the Mexican-hat
nonlocal kernel. We set the initial condition such that there
are two fronts connecting the two equivalent HSSs (kink and
antiking) and look at the velocity at which the two fronts
approach each other. In Ref. [1] (cf. Fig. 1) it was shown
that the interaction of two monotonic fronts (in systems with
two equivalent states) decays exponentially (both for local and
spatially nonlocal interactions where the kernel decays faster
than exponentially). In the part of region 4 where the fronts
are no longer monotonic, the envelope of the interaction of
two oscillatory fronts still decays exponentially, but at some
particular distances the fronts pin and the relative velocity
drops to zero. Figure 12 shows the dependence of the relative
velocity v(d) on the distance between the fronts d (the width
of the kink-antiking structure) for different values of the
interaction range o.

One can see that when the range of nonlocal interaction
vanishes (o = 0) the logarithm of the relative velocity grows
linearly when decreasing d. Switching on the nonlocal inter-

0
S=—
-1
;’@: ) =3
S _ o=
=2 2 o=1
o
-3 c=0
-4
0 2 4 6 8 10 12
width d

FIG. 12. Velocity at which two fronts connecting the two
equivalent HSSs approach each other for the GLE equation with
a Mexican-hat nonlocal kernel with b=1/2, u' =6, s =—1
and different values for the interaction range o within parameter
region 4.
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FIG. 13. (Color online) Spatial front profile for the GLE with
a Mexican-hat nonlocal kernel for b = 1/2, ' = —6, s = —1 and
(a) 0 =1 and (b) o0 = 3. The red dashed lines show the approxima-
tions given by Eqs. (32) and (67) (see text).

action with a small interaction range (e.g., ¢ = 1) a similar
linear growth is encountered, albeit with a smaller slope, for
d > 3. For smaller values of d the two fronts have a stronger
interaction and the logarithm of the velocity increases linearly
when decreasing d but at a much slower rate. For o = 1
although the real part of the complex quartet is not far away
from the real doublet, as shown in Fig. 11(d), the separation
is still sufficient to warrant a quasimonotonic front shape
as shown in Fig. 13(a). Close to the HSS the front profile
is well described by an exponential of the form (32) with
q1 = —1.433, which s the value for leading spatial eigenvalue,
and fitting the amplitude to ¢; = —1.299. As a consequence,
the velocity at which two connected fronts approach each other
is a monotonic function of the front separation.

As the range of the nonlocal interaction o increases, the real
part of the complex quartet keeps approaching the real doublet
as shown in Fig. 11(e) for o = 2, and a plateau appears in
the velocity when the distance is around 3 (see line for o = 2
in Fig. 12). For o = 3 clearly the velocity goes to zero at
d = dy ~ 2.3. Fronts initially separated by a distance larger
than this one will approach each other until reaching d while
fronts whose initial distance is slightly smaller than dy will
separate until reaching dy. Thus, dj is a stable distance at
which the fronts lock, forming a LS.

Proceeding in this way one can determine numerically the
boundary within region 4, where the oscillations induced by the
complex quartet close to the front core enable the formation of
LSs. This boundary is labeled as LO in Fig. 10. For small
nonlocal interaction ranges the line LO approaches to the
crossover XR. This comes from the fact that for small values
of o the real parts of the doublet and the quartet separate faster
than for large values of o, as illustrated in Fig. 11 [compare
panels (d) and (g), for instance]. Thus, the parameter region
where one must account for both the real doublet and the
complex quartet is smaller for small o.

Figure 13(b) shows an oscillatory front profile for ¢ = 3
within the parameter region between XR and LO. At difference
from the BD transition here the oscillations appear at a finite
spatial wave number and close to the HSS the front profile is
very well described by a combination of two exponentials of
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the form

A(x) — Ay = c1e?* + cre®* cos(krx + @), (67)

where g; = —0.518 is the real spatial eigenvalue, while ¢, =
—0.6495 and k, = 0.734 are the real and imaginary parts of the
complex spatial eigenvalue. The coefficients ¢; = —0.7014,
¢y = 0.9892, and ¢, = —1.584 have been fitted.

VII. CONCLUSIONS

In this paper we have applied the general framework
developed in Part I (see Ref. [2]) to illustrate the effect
of nonlocal interactions using the GLE as a prototypical
example. In particular, the work presented here allows for a
detailed explanation of some of the findings advanced in [1].
One of the main results of [1] was that in spatially extended
nonlinear systems exhibiting fronts connecting two equivalent
HSSs, the addition of a spatially nonlocal linear interaction
term can induce the creation of localized structures in systems
with monotonic fronts. This interesting effect is induced by a
repulsive nonlocal interaction that is able to induce oscillatory
tails in the spatial front profile and, thus, lead to stable
LSs. This was shown in Ref. [1] for the case of a Gaussian
nonlocal influence kernel. Leveraging the general framework
developed in Part I [2], we rationalize these results and
show its generality by considering two other choices of the
nonlocal influence kernel, a mod-exponential and a Mexican
hat. Remarkably, in the case of the two first kernels we have
been able to find analytical conditions for the existence of the
LSs. In the case of the Mexican-hat kernel, with coexisting
attractive and repulsive interactions, LSs are obtained through
two different mechanisms for both the cases with short-range
excitation and long-range inhibition and the other way
around. One mechanism is the BD transition [28,35] in which
oscillations appear initially at infinite wavelength and the
other a crossover in the location of the spatial eigenvalues
on the complex plain in which finite wavelength oscillations
develop.

There are anumber of problems that exhibit bistable dynam-
ics and domain walls connecting them and also, presumably,
spatially nonlocal effects, e.g., in chemical reactions [36] and
in nonlinear optics [37]. The present work shows that spatial
nonlocal effects can have a big influence on these phenomena.
Comparisons with experimental results can be made more
quantitative by reconstructing the experimental kernel [16,19].
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FIG. 14. A plot of the real branches of Lambert’s W function,
two-valued in the range [—1/e,0]. The dashed line corresponds to
Wy(x) and the solid line to W_;(x).

APPENDIX: LAMBERT’S W FUNCTION

The so-called Lambert’s W function [38] is the inverse func-
tionof x = f(y) = yexp(y),i.e.,y = W(x) (see, e.g., [39,40]
for further details). It can be seen as a generalized logarithm, a
useful analogy, because as the (complex) logarithm function,
Lambert’s W function is multivalued. So, we define it as

x = Wi(x)exp[W,(x)], [€Z,

where, in principle, x € C and / € Z is the branch index.
The principal branch, Wy(x) or simply W(x), has a branch
point at x = —1/e and a branch cut along the negative real
axis x € [—oo,—1/e] [Wy(—1/e) = —1] and is real valued in
the interval x € [—1/e,00]. Moreover, it is analytic at x = 0,
Wy(0) = 0. On the other hand, W_;(x) is real in the interval
x € [—1/e,0] and has a branching point at x = O (in addition
to the branching at x = —1/e that it shares with the principal
branch). The two real branches of W are shown in Fig. 14.

The Lambert function can also be used to find the exact
solution of transcendental equations of the type x + exp(x)
equal to a constant. Thus, a solution to the equation

(AL)

cx +explax) =b (A2)
can be found with the change
Y —b—ex, (A3)
a
as
Y W[g exp(ab/c):|, (A4)
c c
and undoing the change of variables one gets
b 1
x=2_ —W[C—l exp(ab/c):|. (A5)
c a ¢

The real branches of Lambert’s W function admit the
following series expansions, valid close to x = 0 [x < O for
W_i(0)],

o0

(=ny'~"' 2, 33
Wo(x)zz o x"=x—x +§x +---, (A6)

n=1

W_i(x) =In(—x) — In[—In(—x)] + - - - . (A7)

Equation (A6) corresponds to the Taylor expansion of Wy(x)
around x = 0 whose convergence radius is 1/e, while (A7) is
in fact an asymptotic expansion [39].
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