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Spontaneous motion and deformation of a self-propelled droplet
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The time evolution equation of motion and shape are derived for a self-propelled droplet driven by a chemical
reaction. The coupling between the chemical reaction and motion makes an inhomogeneous concentration
distribution as well as a surrounding flow leading to the instability of a stationary state. The instability results in
spontaneous motion by which the shape of the droplet deforms from a sphere. We found that the self-propelled
droplet is elongated perpendicular to the direction of motion and is characterized as a pusher.
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I. INTRODUCTION

Active matters are assemblages of moving elements in-
dividually fueled by energy source [1]. The studies in this
field include cell motility [2–4] and moving droplets [5–10]
for an individual level and collective motion of fishes and
flocks of birds [11]. Such spontaneous motion is not driven by
external force but is sustained under a force-free condition.
This requires breaking translational invariance in space or
creating an irreversible cycle in time. The broken symmetry
is either extrinsic, that is, imposed externally by boundary
conditions or by material properties [12–14], or intrinsic,
namely nonlinear coupling makes an isotropic state unstable
[15–18]. The latter mechanism makes the system go to lower
symmetry. When there is relative distance between a propelled
object and another component, the translational symmetry is
broken and a steady velocity emerges [19,20].

The words pusher and puller are sometimes used in order to
characterize properties of active matters [21,22]. Each active
element (swimmer) either pushes or pulls surrounding fluid
and creates a force dipole with a sign depending on whether
the element is pusher or puller. The surrounding flow plays
an important role in the interaction between swimmers and
the interaction between a swimmer and a wall (see Table I
and Sec. II for a comparison between pusher and puller).
Besides the level of individual and a few swimmers, it has
been argued that the sign of the force dipole is associated
with the macroscopic viscosity of the suspension consisting of
swimmers [21,23,24]. In the continuum description, the force
dipole is closely related to active stress added to conventional
Navier-Stokes and nematohydrodynamic equations. Conse-
quently, whether a swimmer is pusher or puller, namely the
sign of the force dipole, plays an important role in determining
qualitative patterns of hydrodynamic instabilities [25]. Such
hydrodynamic equations are derived from conservation laws
and symmetry arguments and are analyzed with phenomeno-
logical coupling constants [26,27]. The interpretation of the
coupling constants from the properties of individual active
elements and their interactions is also discussed for a few
particular systems [28–30]. It is of relevance to analyze another
active system and discuss interpretations of coupling constants
appear in possible hydrodynamic equations.
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A spontaneously moving object does not necessarily pre-
serves its shape. In fact, a cell of an isotropic shape starts
to move by breaking a symmetry of internal states such as
distribution of functional proteins [31,32]. Although biological
systems involve a lot of complex molecules, it has been
suggested that there is a relationship between shape and
motility of a cell [33,34]. Here, in order to ask ourselves
whether there is a generic relation between shape and motility
of self-propelled objects, we will discuss a much simpler
system of artificial chemical molecules with a droplet rather
than a model of a cell.

Motion in the absence of an external mechanical force
has been discussed in terms of the Marangoni effect, in
which a liquid droplet is driven by a surface tension gradient
[35,36]. The nonuniform surface tension can be controlled by
a field variable such as temperature and a chemical (typically
surfactants) concentration [37]. The mechanism is that the
gradient induces a convective flow inside and outside a droplet,
which leads to motion of the droplet itself. A similar flow and
the resulting motion are observed for a solid particle in phoretic
phenomena such as thermophoresis [12,14]. In both systems,
objects are swimming in a fluid.

Even in the absence of such external asymmetry, sponta-
neous motion (and possibly deformation) is realized under a
nonequilibrium state when the droplet has a chemical reaction
and, more specifically, is able to produce chemical molecules
from inside. The coupling between the chemical reaction and
motion spontaneously breaks symmetry, leading to directional
motion. Surface tension plays an essential role in this system;
it serves as a chemomechanical transducer by which an
inhomogeneous concentration of chemical molecules becomes
a mechanical force acting on a surface of the droplet.

In the present work, we derive amplitude equations of
motion and shape of a droplet starting from a set of equations of
concentration fields taking hydrodynamics into consideration.
Spontaneous motion driven by such a chemical reaction was
first discussed in Ref. [38]. The present work is an extension
of the work in Ref. [16], in which only a translational
motion was discussed. We use a similar method but include
deformation and higher moments of a flow field. As far as we
know, deformation of a spontaneous moving droplet was first
proposed in Ref. [39]. Recently, a set of amplitude equations
of motion and shape has been phenomenologically proposed
also in Ref. [40] and is also derived from reaction-diffusion
equations [20,41]. Due to the coupling between the motion
and shape, they reproduce complex self-propulsive motion,

1539-3755/2014/89(1)/012913(15) 012913-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.89.012913


NATSUHIKO YOSHINAGA PHYSICAL REVIEW E 89, 012913 (2014)

TABLE I. The properties of pusher and puller. The force dipole is aligned in a lateral direction and is described using two arrows showing
a direction of force.

Pusher Puller

Force dipole ← → → ←
Viscosity [21,45] Reduction Increase
Interaction between sides [46] Attractive Repulsive
Wall-induced rotation [46] Parallel to a wall Perpendicular
Cell type [23,45] Spermatozoa, bacteria such as E. coli Alga Chlamydomonas
Surface tension (l = 2 mode) γ2 > 0 γ2 < 0
Shape Elongate perpendicular to a direction of motion elongate parallel to it

not only straight motion but also rotation and helical motion
[42]. The amplitude equations that we will see in this paper
are qualitatively the same as in Refs. [20,41] except for the
coupling constants. Nevertheless, it is worth mentioning that a
mechanical point of view is missing in the previous studies and
it is not clear how force (more precisely, force moments) acting
around the self-propelled particles is associated with motion
and deformation. For a biological cell, a geometric position of
the body and propelling objects is associated with its sign of
a force dipole. Escherichia coli is, for instance, characterized
as a pusher; it pushes a fluid back by use of flagella and at the
same time pushes a fluid forward by its body. In contrast, it
is not clear whether a swimmer driven by a chemical reaction
is a pusher or puller because it does not push or pull a fluid
in an apparent way. It is not even clear whether it has a force
dipole. This is important since far-field flow is dominated by
a force dipole, which plays a dominant role in an interaction
between swimmers. The previous phenomenological models
do not answer these points. The purpose of this paper is to
clarify the physical meanings of the coupling constants that
appear in the amplitude equations and to get insight about
these points. We will show clear evidence that the chemical
swimmer indeed has a force dipole and the sign characterizes
it as a pusher. We will also obtain an explicit form of an
active stress created by a self-propelled droplet using chemical
reactions.

This paper is organized as follows. In Sec. II, we discuss
force moments under an inhomogeneous surface tension. In
Sec. III, we present a model of a deformable droplet under a
chemical reaction. In Sec. IV, we discuss expansion of a con-
centration field around the critical point of a nonequilibrium
phase transition between a stationary state and a self-propelled
state. In Sec. V, we derive time evolution equations of
deformation. By considering flow and concentration fields,
we are led to introduce traceless symmetric tensors associated
with a shape of the droplet. Section VI is a main result; we show
amplitude equations. The relation to the mechanical structure
in Sec. II is explained by showing the coefficients that appear
in the equations. We conclude with Sec. VII and Sec. VIII
by summarizing our results and discussing their relevance
to other studies of self-propelled particles with deformation.
There is technical overlap between the present work and that
in Refs. [16] and [20]. Those who are familiar with these
works may go directly from Sec. II to Sec. V to find essential
physics in this work that avoids technical developments. The
details of calculation are summarized in the appendices and
the Supplemental Material [43]. Readers who are interested

in the techniques used in this paper may consult those
resources.

II. PUSHER OR PULLER

In this section, we discuss a flow field and mechanical
structures under an inhomogeneous surface tension. To do
this, we perform multipole expansion, namely expand the force
acting on a droplet into its moment. As we will see, motion
driven by a gradient of surface tension is force free [35,36].
This gives a vanishing first moment. The velocity of a droplet
and a surrounding flow field obtained in this section have
already been shown by solving a boundary value problem,
for example, in Ref. [36]. Nevertheless, it is worth seeing
these results in different perspectives, namely in terms of force
multipoles. We discuss higher moments and clarify the relation
between a force dipole and a second mode of surface tension
distribution as well as the relation between the velocity of a
droplet and a third mode of the distribution.

Pushers and pullers are associated with a sign of force
dipole [21]. The simplest model is two connected beads under
an antiparallel force acting on them. If the system is totally
symmetric, that is, two beads are identical, the swimmer
does not move and is called shaker [22]. Self-propulsion is
realized either by asymmetry in space (such as the difference
in the frictional force arising from different size of beads)
and asymmetry in time (irreversible cycle of motion of beads)
[44]. The asymmetry is characterized either by extensile force
dipole (pusher) or contractile force dipole (puller). These
force dipoles create a surrounding flow and therefore play
an important role in the interaction between self-propelled
particles and rheological properties (summarized in Table I).
For example, viscosity increases for puller and decreases for
pusher. This argument is valid only for a low concentration of
self-propelled particles. When the concentration is high, the
tendency can reverse [24].

Under given surface tension, the force acting on the
interface of a spherical droplet with a size R0 is

fs = κγ (θ,ϕ)n + ∇sγ (θ,ϕ)t

= − 2

R0
γ (θ,ϕ)n + 1

R0

∂γ (θ,ϕ)

∂θ
t + 1

R0 sin θ

∂γ (θ,ϕ)

∂ϕ
b,

(1)

where n(θ,ϕ) is the unit normal vector on a sphere in a
polar coordinate (x,y,z) = (r sin θ cos ϕ,r sin θ sin ϕ,r cos θ ).
The curvature κ on a sphere with radius R0 is κ = −2/R0.
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∇s = 1
R0

∂
∂θ

+ 1
R0 sin θ

∂
∂ϕ

is a surface gradient derivative. The
first term in (1) describes Laplace pressure and the other terms
show tangential force due to a gradient of surface tension. The
normal vector is also expressed with spherical harmonics of
l = 1 [47] (see also Appendix B) as follows:

n = (sin θ cos ϕ, sin θ sin ϕ, cos θ )

=
(√

2π

3

(−Y 1
1 + Y−1

1

)
,i

√
2π

3

(
Y 1

1 + Y−1
1

)
,

√
4π

3
Y 0

1

)
.

(2)

We also define two unit tangent vectors on a sphere
t = (cos θ cos ϕ, cos θ sin ϕ, − sin θ ) ,b = (− sin ϕ, cos ϕ,0),
which satisfy n · t = n · b = t · b = 0. An arbitrary
distribution of surface tension is expressed using spherical
harmonics as

γ (θ,ϕ) =
∑
l,m

γl,mYm
l (θ,ϕ). (3)

The velocity field created by the force is obtained by solving
the inhomogeneous Stokes equation [16],

η∇2v − ∇p = −fsδ(r − R). (4)

We apply multipole expansion of the force up to the third
moment as

F
(1)
j =

∫
fjdV,

F
(2)
jk =

∫
fjxkdV, (5)

F
(3)
jkl =

∫
fjxkxldV .

The velocity field is expanded as [48]

vi(x) = TijF
(1)
j − Tij,kF

(2)
jk + 1

2 Tij,klF
(3)
jkl − · · · . (6)

Throughout the paper, the convention of summation over
repeated indices applies. The Oseen tensor Tij is

Tij = 1

8πη

[
1

r
δij + xixj

r3

]
. (7)

The moments are explicitly shown here when we choose an
appropriate axis, i.e., by taking γlm = 0 for m �= 0,

F
(2)
jk = 4πR2

0γ2

15

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠ (8)

and

F
(3)
jkl = 4

√
πR3

0

5

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1√
3
γ1 − 1√

7
γ3 for (j,k,l) = (3,1,1),(3,2,2)

− 2√
3
γ1 + 2√

7
γ3 for (j,k,l) = (3,3,3)

−
√

3
2 γ1 − 1√

7
γ3 for (j,k,l) = (1,1,3),(2,2,3),

(1,3,1),(2,3,2)
0 otherwise,

where γ2 terms vanish in F
(3)
jkl . Since there is no force acting

on the system, the first moment F
(1)
j is zero as it should be.

flow

motion

force

(a) flow
motion

force

(b)

FIG. 1. (Color online) Motion and deformation of pusher (a) and
puller (b). Under the given distribution of the surface tension, the
flow field, the direction of the force dipole, and the force acting
on the surface of a droplet are drawn depending on γ2 > 0 (a) and
γ2 < 0 (b).

The second moment describes l = 2 mode deformation. When
γ2 > 0, the direction of the force (stress) is expanding in the
z direction and contracting in the x and y directions. On the
other hand, the direction of the force is contracting in the z

direction and expanding in the x and y directions for γ2 < 0.
Therefore, if we choose the z axis as a direction of motion,
γ2 > 0 corresponds to pusher and γ2 < 0 corresponds to puller
[17]. If we carefully have a look at the two terms in (1), the
second terms dominate the forces. The forces arising from
the Laplace pressure (the first terms) have opposite directions
of forces, namely contracting in the z direction for γ2 > 0.
However, the force from surface tension gradient has a stronger
contribution due to the factor n appearing from derivative with
respect to θ . A shape of the droplet, on the other hand, is
determined by the Laplace pressure since it is associated with
a normal force. When γ2 > 0, the Laplace pressure is larger at
the front and the back along the direction of motion [Fig. 1(a)].
Therefore, the interface is flatter at higher surface tension (see
Fig. 1).

The velocity field for an arbitrary direction of motion and
deformation is expressed using vector spherical harmonics as
[49] (see also Appendix B)

v =
∞∑
l=1

vl =
∞∑
l=1

l∑
m=−l

[
vr

lm(r)Ym
l (θ,ϕ) + v


lm(r)�m
l (θ,ϕ)

+ v�
lm(r)�m

l (θ,ϕ)
]
. (9)

The coefficients for l = 1 is obtained from (5) and (6) as

(
vr

1m,v

1m,v�

1m

) =
(

− 2R3

15ηr3
γ1,m,

R3

15ηr3
γ1,m,0

)
. (10)

The vanishing coefficient �m
l (θ,ϕ) arises because there is no

helical force acting on the droplet since the forces in the two
radial directions originate from the gradient of a scalar variable
of surface tension.

The velocity of the droplet given by (22) for a spherical
droplet with (9) and (10) becomes

u = − 2

15η

3

4π

l∑
l=−1

∫
n(θ,ϕ)γ1,mYm

1 (θ,ϕ) sin θdθdϕda

= − 2

15η

√
3

4π

⎛
⎜⎝

1√
2
(−γ1,1 + γ1,−1)

i√
2
(γ1,1 + γ1,−1)

γ1,0

⎞
⎟⎠. (11)
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The velocity field and the velocity of the droplet that we
obtained is consistent with those obtained from a boundary-
value problem [15]. The origin of the velocity field (10) and
the velocity of the droplet (11) is F

(3)
ijk . Therefore the third

moment corresponds to translational motion. This shows that
the motion of the droplet is not driven by a Stokeslet or force
monopole in (5) but by a force quadrupole in (5). The same
velocity dependence is also observed in another force-free
motion, namely phoretic motion [50]. Note that the coefficients
γl,m in (3) and γn in Refs. [15,36] differ by the factor

√
3/(4π )

due to the definition of spherical harmonics.
The velocity field generated by the force dipole is given by

(9) with the coefficients

vr
2,m = − R2

5ηr2
γ2,m (12)

and v

2,m = v�

2,m = 0. In terms of normal vr and tangential vθ

velocities, the velocity field is obtained as vr,l=2 � (R/r)2

and vθ = 0. This is also consistent with the velocity field
obtained from a boundary-value problem [15]. As we have
seen from (10) and (12), far-field flow is dominated by the
force dipole decaying 1/r2 rather than the force quadrupole
1/r3.

A similar argument is possible in two dimensions. We
should note that there is no Stokes paradox for a droplet moving
under a gradient of surface tension [51]. This is because there is
no force monopole in this system and therefore no logarithmic
term. The detail velocity fields are shown in Appendix A.

III. MOTION OF A DROPLET

The surface tension discussed in the previous section is
dependent on concentration field c(r) of chemicals. A typical
example of the chemical is surfactant though our model is
not restricted in the example. The concentration field is also
regarded as a temperature field which modifies surface tension.
The surface tension is assumed to be linear in the concentration
at the interface,

γ (t) = γ0 + γcc(a,t). (13)

In this paper, we focus on the case of γc > 0. Yet the argument
is straightforwardly extended to another case.

Together with the argument of Sec. II, the flow field inside
and outside the droplet determined by concentration at the
interface between the droplet and a surrounding fluid. In
this section, we derive a set of kinematic equations showing
motion and deformation of a droplet is determined by the flow
field. The concentration field itself is affected by the position
of the droplet and the flow field as we will discuss in the
next section. These relations form the closed equations of the
system.

A. Kinematic equations of a droplet

Let us consider deformation around a spherical droplet. We
will have a kinematic equation of the shape following the step
discussed in Ref. [20]. The surface of the droplet is expressed

R0n

u

n(d)δRR

(a) (b)

FIG. 2. (Color online) Schematic picture of a self-propelled
droplet. (a) The deformed interface is drawn by a solid line with
respect to a reference spherical shape (dashed line). (b) Concentration
distribution across the interface is shown in blue (gray) gradation (top)
and in a solid blue (gray) line (bottom). The droplet with a sharp but
smooth interface is drawn in a black line.

as

R(a,t) = R0 + δR(a,t), (14)

where R0 is an unperturbed radius of a spherical droplet and
δR is deviation from it as a function of polar (θ ) and azimuthal
(ϕ) angles denoted by a surface area a (see Fig. 2). We may
expand the deformation as

δR(θ,ϕ) =
∑

l�2,m

wl,mYm
l (θ,ϕ) (15)

using spherical harmonics in three dimensions (see Ap-
pendix B for the definition of spherical harmonics with
normalization constants). Note that translational motion is
treated independently from deformation and, therefore, l = 1
is not included in the summation in (15).

The normal velocity vn and curvature κ are defined using a
level-set function δr = r − R(a,t) as [20]

vn(r,t) = − 1

|∇δr|
∂δr

∂t

∣∣∣∣
δr=0

(16)

κ(r,t) = −∇ ·
( ∇δr

|∇δr|
)∣∣∣∣

δr=0

. (17)

The unit normal vector on a curved interface is given as a
perturbation around a unit normal vector on a sphere for small
deformation,

n(d) = ∇δr

|∇δr| � n − ∇sδR. (18)

The position vector on an interface is described at the linear
order in deformation as (see Fig. 2)

R = R0n + δRn(d) � n (R0 + δR) . (19)

The normal velocity is expressed as

vn(a,t) = u · n(d) +
∑
l,m

dwlm

dt
Ym

l (a) (20)

and the curvature is approximated for small deformation
as

κ(a) = − 2

R0
− 1

R2
0

∑
l,m

(l + 2)(l − 1)wlm(t)Ym
l (a). (21)
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Although the velocity in (20) is the velocity of the contour
center of the surface, we will use the velocity of the center of
mass since the two centers are the same for a small deformation
[see (22)].

B. Velocity of the droplet

From geometric consideration, the velocity of the droplet u
is given by [52,53]

ui = 1

�

∫
dãvn(a)Ri(a), (22)

where � is the volume of the droplet and is same as that
of undeformed droplet for small deformation � = ∫ R2dã �
4
3πR3

0 . At the first order in deformation, the infinitesimal area
dã on a deformed interface is also approximated with the
undeformed area da. The velocity of the droplet (22) is also
rewritten as

ui � 1

�

∫
dãvn(a)ni(a) [R0 + δR(a)] . (23)

The velocity field driven by the force acting on the interface
has two origins [16]: normal and tangential forces in (1)

vi(r,t) =
∫

dã′Tij (r,r(a′))n(d)
j (a′)γ (a′,t)κ(a′,t)

+
∫

dã′Tij (r,r(a′))P (d)
jk (a′)∇kγ (a′,t). (24)

The projection of the vector onto the direction perpendicular
to nj (a′) is defined as

P (d)
jk (a′) = δjk − n

(d)
j (a′)n(d)

k (a′). (25)

The normal velocity is expressed using (13) as vn(r) =
vn,0(r) + vn,1(r) + vn,2(r), where⎧⎨

⎩
vn,0(r)
vn,1(r)
vn,2(r)

⎫⎬
⎭ =

∫
dã′Tij (r,r(a′))n(d)

i (a)

×

⎧⎪⎪⎨
⎪⎪⎩

γ0n
(d)
j (a′)κ(a′,t)

γcn
(d)
j (a′)cI (a′,t)κ(a′,t)

γcP (d)
jk (a′)(∇kc(a′,t))I

⎫⎪⎪⎬
⎪⎪⎭, (26)

where ()I denotes the value taken at the interface. vn,0(r)
describes a flow created during relaxation of a deformed shape,
and thus this term does not make any contributions to the
motion of the droplet. In fact, for a spherical droplet, this
term vanishes. Using (21) and (S3.1) in Ref. [43], its surface
velocity vn0(r(a)) is simply expressed by

vn0(r(a)) � − γ0

R2
0

(l + 2)(l − 1)wlmElY
m
l (a). (27)

The velocity of the droplet is also decomposed by two
contributions according to (26) as ui = ui,1 + ui,2. In the next
section, we will see that the concentration is also expressed
in terms of velocity of the droplet. Therefore, (23) is a
self-consistent equation for the droplet velocity and, indeed,

in Sec. VI we obtain the amplitude equation of velocity from
(23) (see also Ref. [16]).

The contribution from normal force is further decomposed
into

ui,1 � γc

�

∫
dã

∫
dã′ni(a) [R0 + δR(a)] Tjk(r(a),r(a′))

× n
(d)
j (a)n(d)

k (a′)c(a′,t)κ(a′,t)

= u
(0)
i,1 + u

(1)
i,1 + u

(2)
i,1 + u

(3)
i,1 + u

(4)
i,1 + u

(5)
i,1, (28)

where{
u

(α)
i,1

} = γc

�

∫
da

∫
da′ni(a)Tjk(r(a),r(a′))c(a′,t)

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2nj (a)nk(a′)

−6nj (a)nk(a′) δR(a)
R0

2nk(a′)∇s,j δR(a)

2nj (a)∇s,kδR(a′)

−4nj (a)nk(a′) δR(a′)
R0

1
R0

∑
l,m(l + 2)(l − 1)wlm(t)Ym

l (θ ′,ϕ′)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (29)

u
(0)
i,1 describes the distortion of a concentration field and is the

same as (22) in Ref. [16]. Due to deformation, there are the
following additional contributions. The deviation of a position
at the surface from a spherical shape and the change of a local
surface area are given by u

(1)
i,1 and u

(4)
i,1. The distortion of a unit

vector is included in u
(2)
i,1 and u

(3)
i,1. The curvature on a deformed

interface is included in u
(5)
i,1. In (29), u(0)

i,1, u(3)
i,1, u(4)

i,1, and u
(5)
i,1 are

immediately simplified using the results in Sec. S3 in Ref. [43]
for the integral with Oseen tensor,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u
(0)
i,1

u
(3)
i,1

u
(4)
i,1

u
(5)
i,1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= − 2γc

15�η

∫
da′

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4R0ni(a′)

−3R0∇s,iδR(a′)

8ni(a′)δR(a′)

2ni(a′)
∑

l,m(l + 2)(l − 1)

×wlm(t)Ym
l (θ ′,ϕ′)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

c(a′).

(30)

Similarly, the contribution ui,2 from tangential force is

ui,2 � γc

�

∫
dã

∫
dã′ni(a)[R0 + δR(a)]Tjk(r(a),r(a′))n(d)

j (a)

×P (d)
kl (a′)∇lc(a′,t)

= u
(0)
i,2 + u

(1)
i,2 + u

(2)
i,2 + u

(3)
i,2 + u

(4)
i,2. (31)

The detail expressions are shown in Sec. S2.A in Ref. [43].

IV. CONCENTRATION FIELD

We have seen the flow and motion of a droplet under a
given concentration field. In this section, we consider the
simplest possible dynamics of a concentration field that make
the droplet move under nonequilibrium states. Our model
is motivated particularly by the experiments of Refs. [6,9],
in which spontaneous motion is realized with the aid of
chemical reaction. In both experiments, the system is away
from equilibrium in the sense that a droplet either consumes
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or produces molecules that modify the surface tension. We
consider the following reaction-diffusion equation with an
internal source of the chemical:

∂c

∂t
+ v · ∇c = D∇2c − k(c − c∞) + A� (R − |r − rG|) ,

(32)

where rG is the center of mass of the droplet. The same model
was analyzed in Ref. [16] and it was shown that it exhibits
a spontaneous translation motion. The last term in the right-
hand side represents the source with a magnitude A. A > 0
corresponds to the production of molecules c(r) while A < 0
corresponds to consumption. The term of k expresses buffering
of a concentration field [54]. Note that we are treating the
system in the laboratory frame, and thus a fluid flow generated
by a gradient of a surface tension on the droplet is included
in two terms. One is the source term through a position of the
droplet rG, which is determined by the fluid flow as in (22).
The second one is convection and is shown by the second term
in the left-hand side of (32). The source makes a system out of
an equilibrium state; without this term no spontaneous motion
is realized. In this sense, this term is essential in our study. The
convective term could be included perturbatively in our result.
However, it is less dominant and it does not modify our results
qualitatively [15,16]. We will therefore neglect the convective
term in (32).

In the Fourier space, the equation reads [55]

∂cq

∂t
= −D(q2 + β2)cq + Hq, (33)

with inverse length β = √
k/D. The source term is expressed

in Fourier space as

Hq = ASqe
iq·rG (34)

with

Sq =
∫

d3reiq·r�(|r| − R)

=
∫ R0

0
r2dr

∫ π

0
sin θ

∫
dϕeiq·r

+
∫ R0+δR

R0

r2dr

∫ π

0
sin θ

∫
dϕeiq·r

= S(0)
q + S(1)

q . (35)

Since only l = 0 contributes to the first term, we obtain

S(0)
q = 4π

sin(qR) − qR cos(qR)

q3
= 4πR2

0

q
j1(qR0), (36)

where we have used

e±iq·r = 4π
∑
l,m

(±i)ljl(qr)Ym∗
l (θq,ϕq)Ym

l (θ,ϕ)

= 4π
∑
l,m

(±i)ljl(qr)Ym
l (θq,ϕq)Ym∗

l (θ,ϕ). (37)

Here, jl(x) is the spherical Bessel function of the first kind
[47]. The second term in (35) is

S(1)
q � 4πR2

0

∫ π

0
sin θ

∫ 2π

0
dϕδR(θ,ϕ)

∑
l,m

iljl(qR0)

×Ym∗
l (θq,ϕq)Ym

l (θ,ϕ)

= 4πR2
0

∑
l,m

iljl(qR0)w∗
lmYm∗

l (θq,ϕq). (38)

Following Ref. [16], the solution of (33) is expanded
close to the critical point of drift bifurcation, namely for
ε = u/(Dβ) � 1,

cq = Gq

D
Hq − G2

q

D2

∂Hq

∂t
+ G3

q

D3

∂2Hq

∂t2
− G4

q

D4

∂3Hq

∂t3
+ · · ·

(39)

with the Green’s function

Gq = 1

q2 + β2
. (40)

After inverse Fourier transformation, the concentration at the
interface cI follows the expansion of (39),

cI = c
(0)
I (rG + s) + c

(1)
I (rG + s) + c

(2)
I (rG + s)

+ c
(3)
I (rG + s) + · · · , (41)

where

c
(0)
I (rG + s) = A

D

∫
q
GqSqe

iq·rGe−iq·(rG+s)

� A

D

[
Q

(0)
1 (s) + Q

(1)
1 (θ,ϕ)

]
(42)

and

c
(1)
I (rG + s) = − A

D2

∫
q

(iq · u)G2
qSqe

−iq·s

= ui

A

D2

[
n

(0)
i

(
∂Q

(0)
2 (s)

∂s
+ ∂Q

(1)
2 (θ,ϕ)

∂s

)

+∇s,iQ
(1)
2 (θ,ϕ)

]
. (43)

A similar formula is also obtained for c
(2)
I (rG + s) and

c
(3)
I (rG + s). Due to deformation, the terms with Q(1)

n appear in
addition to the contribution from a spherical droplet Q(0)

n (see
(35)–(38) in Ref. [16]). These novel terms are anisotropic and
therefore are associated with coupling between the motion
and deformation. We show the detail form of the perturbed
concentration field in Ref. [43]. Here the velocity of the droplet
is given by

u = drG

dt
(44)

and we have defined

Qn(s) =
∫

q
Gn

qSqe
−iq·s = Q(0)

n (s) + Q(1)
n (θ,ϕ) (45)

according to (35). Q(0)
n (s) = ∫q Gn

qS
(0)
q e−iq·s =

2R2
0

π

∫∞
0 dqGn

qqj1(qR0)j0(qs) is isotropic contribution
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although Qn is not necessarily isotropic due to the anisotropy
of the shape, R(θ,ϕ). This is shown by the second term
Q(1)

n (θ,ϕ),

Q(1)
n (s) =

∫
q
Gn

qS
(1)
q e−iq·s =

∑
l,m

Q̄
(1)
n,l(s)w∗

lmYm∗
l (θ,ϕ), (46)

with

Q̄
(1)
n,l(s) = 2R2

0

π

∫ ∞

0
dq
∑
l,m

Gn
qq

2jl(qs)jl(qR0). (47)

V. DEFORMATION

The shape of the droplet is characterized by tensor order
parameters. This was pointed out for a moving droplet in
Refs. [20,42] for the second mode in three dimensions and also
in Ref. [41] for the third mode in two dimensions. The tensors
are symmetric and traceless so they satisfy rotational symmetry
and volume conservation. The third-rank tensor was also
used for bent-core liquid crystal molecules and is defined as

Tijk =∑4
m=1 n

(m)
i n

(m)
j n

(m)
k , where n(m) shows a vector of four

axes pointing to vertices of a tetrahedron [56]. The third-rank
tensor is traceless in the sense that Tiik = Tijj = Tiji = 0.
Here we consider a slightly different definition of tensor
order parameters, namely we define m-rank tenors through
the integral for deformation δR,

R0

�

∫
dani1 (a)ni2 (a) · · · nimδR(a) (48)

(see Appendix C). Here ni1 (a)ni2 (a) · · · nim denotes a traceless
tensor constructed by m unit normal vectors. The tensors
are consistent with those used in previous studies, except
normalization prefactors, in the sense that both of them have
the properties discussed below.

The tensors are symmetric and traceless, and thus the
number of independent components is not the number of
tensor elements. The second-rank tensor Sij has five in-
dependent components, which are given by the follow-
ing irreducible forms [57]: S33, S11 − S22, 1

2 (S12 + S21),
1
2 (S13 + S31), and 1

2 (S23 + S32). These correspond to two
elongation and three shear deformation. These independent
modes are also expressed by the coefficients of spherical
harmonics as w2,0, w2,2 + w2,−2, i(w2,2 − w2,−2), w2,1 −
w2,−1, and i(w2,1 + w2,−1), respectively [57]. The concrete
shapes of these modes are described in Fig. 3. The third-
rank tensor has seven independent components and therefore
there are seven irreducible forms [57]. These are explic-

itly given as 2Tzzz − (Txxz + Txzx + Tzxx) − (Tyyz + Tyzy +
Tzyy), Txxx − Txyy − Tyxy − Tyyx , Tyyy − Tyxx − Txyx − Txxy ,
1
2 (Tzxx − Tzyy) + 1

2 (Txzx − Tyzy) + 1
2 (Txxz − Tyyz), 1

6 (Txyz +
Txzy + Tyxz + Tyzx + Tzxy + Tzyx), 1

3 (Txzz + Tzxz + Tzzx) −
1

12 (Txyy + Tyxy + Tyyx) − 1
4Txxx , and 1

3 (Tyzz + Tzyz + Tzzy) −
1

12 (Tyxx + Txyx + Txxy) − 1
4Tyyy . These independent compo-

nents correspond to the coefficients of spherical harmonics for
w3,0, w3,−3 − w3,3, i(w3,−3 + w3,3), w3,2 + w3,−2, i(w3,−2 −
w3,2), w3,−1 − w3,1, and i(w3,−1 + w3,1). These shapes are
shown in Fig. 4.

In general, tensors of any rank appear. Nevertheless each
tensor order parameter of rank m scales as O(εm) close to
the critical point of drift bifurcation with a small parameter
ε ∼ u, droplet velocity as discussed in Ref. [20]. This is also
demonstrated in Sec. VI. Therefore we consider expansion up
to O(ε3), that is, a l = 2 mode Sij and a l = 3 mode Tijk (see
Appendix C).

Once concentration is obtained, the kinematic condition
(20) reads a time evolution equation for a shape of the droplet.
Once we obtain equations for ẇlm, we may obtain the equation
for a tensor order parameter Ṡij using the relation between
spherical harmonics and tensor order parameters (Refs. [20,56]
and Appendix C). The benefit of the above definition of tensor
order parameters is that we do not need to calculate kinematic
condition for each wlm, but instead we constructed a traceless
tensor directly from deformation and the kinematic condition
is transformed into the equation of tensor order parameters.
The equation for a shape of the second mode is obtained by
multiplying R0

�

∫
dani(a)nj (a) on both sides of (20) as

a
(2)
2,0

dSij

dt
= R0

�

∫
da[vn − (u · n(d))]ni(a)nj (a)

= R0

�

∫
dani(a)nj (a)vn(a)

−uk

R0

�

∫
dan

(d)
k (a)ni(a)nj (a)

− 1

3
δij

R0

�

∫
da [vn(a) − uknk(a)]

� R0

�

∫
dani(a)nj (a)vn(a). (49)

Here we have used (D5). We define a symmetric traceless
tensor consisting of two vectors as

ni(a)nj (a) = ni(a)nj (a) − 1
3δij . (50)

x
y

z
(a) (b) (c) (d) (e)

FIG. 3. (Color online) Five independent shapes of a second mode (l = 2). Elongation in two directions [(a) and (b)] and shear deformation
in three directions [(c)–(e)] are shown. Each shape is expressed in terms of spherical harmonics as (a) w2,0, (b) w2,2 + w2,−2, (c) i(w2,2 − w2,−2),
(d) w2,1 − w2,−1, and (e) i(w2,1 + w2,−1).
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(a) (b) (c)

(d) (e) (f) (g)

x
y

z

FIG. 4. (Color online) Seven independent shapes of a third mode (l = 3). Each shape is expressed in terms of spherical harmonics as (a)
w3,0, (b) w3,−3 − w3,3, (c) i(w3,−3 + w3,3), (d) w3,2 + w3,−2, (e) i(w3,−2 − w3,2), (f) w3,−1 − w3,1, (g) i(w3,−1 + w3,1).

The term − 1
3δij is added in order to ensure the property of

traceless of the tensor order parameter. Because of (18), the
second term makes a contribution of O(ukTijk) and thus is
neglected. We rewrite (49) as

a
(2)
2,0

dSij

dt
= M

(0)
ij + M

(1)
ij + M

(2)
ij , (51)

where M
(0)
ij describes the relaxation of a shape from (27),

M
(0)
ij = − 16γ0

35ηR0
a

(2)
2,0Sij = −κ20Sij , (52)

where M
(1)
ij and M

(2)
ij correspond to the contribution from

normal and tangential forces under an inhomogeneous con-
centration field, respectively, and

(
M

(1)
ij

M
(2)
ij

)
= R0

�

∫
dani(a)nj (a)

(
vn,1(a)

vn,2(a)

)
, (53)

where vn,1(a) and vn,2(a) have already been shown in (26),
respectively. At the linear order in deformation, these are
calculated by the expansion of n with (18), κ with (21), and
c(r) with (41). We decompose as M

(1)
ij =∑4

k=1 M
(1,k)
ij and

M
(2)
ij =∑4

k=1 M
(2,k)
ij (see Sec. S2.B in Ref. [43] for the detail

expressions).
In the same manner, the time evolution of a m-rank tensor

is obtained by multiplying a traceless tensor consisting of
ni1ni2ni3 · · · nim . Note that there is no coupling between higher
modes in this framework such as SijTijk . This is because the
velocity of the droplet ui is chosen as an expansion parameter
close to the critical point of drift bifurcation.

A shape of the third mode, Tijk , is obtained by multiplying
R0
�

∫
dani(a)nj (a)nk(a) on both sides of (20). Here we

define the abbreviated notation of symmetric traceless tensor
consisting of unit normal vectors as

ni(a)nj (a)nk(a) = ni(a)nj (a)nk(a) − 1
5 (ni(a)δjk

+ nj (a)δik + nk(a)δij ). (54)

We obtain

a
(3)
3,0

dTijk

dt
= R0

�

∫
da[vn − (u · n(d))]ni(a)nj (a)nk(a)

� R0

�

∫
dani(a)nj (a)nk(a)vn(a)

+ R0

�

∫
dani(a)nj (a)nk(a)∇sδR(a). (55)

The equation of motion is decomposed as

a
(3)
3,0

dTijk

dt
= N

(0)
ijk + N

(1)
ijk + N

(2)
ijk + N

(3)
ijk, (56)

where N
(0)
ijk describes the relaxation of a shape from (27),

N
(0)
ijk = − 16γ0

21ηR0
a

(2)
3,0Tijk = −κ30Tijk (57)

and (
N

(1)
ijk

N
(2)
ijk

)
= R0

�

∫
dani(a)nj (a)nk(a)

(
vn,1(a)
vn,2(a)

)
, (58)

where vn,1(a) and vn,2(a) have already been shown in (26),

respectively. We may also have N
(3)
ijk = − 2

7
a

(2)
2,0

R0
Sijuk . We

again decompose (56) as N
(1)
ijk =∑4

k=1 N
(1,k)
ijk and N

(2)
ijk =∑4

k=1 N
(2,k)
ijk (see Sec. S2.C in Ref. [43] for the detail ex-

pressions). We expand these coefficients for c = c(0) + c(1) +
c(2) + c(3) and κ in terms of ui , Sij , and Tijk .

VI. AMPLITUDE EQUATION

Combining the results in the previous sections, we obtain
the following amplitude equations for velocity ui , deformation
of the second mode Sij , and deformation of the third mode Tijk

from (28), (51), and (56):

m
dui

dt
= (−1 + τ )ui − gu2ui + bujSij , (59)

dSij

dt
= − (κ2 + κ20) Sij + λuiuj , (60)
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dTijk

dt
= − (κ3 + κ30) Tijk + λ3uiujuk + b3Sjkui, (61)

where the third-rank symmetric traceless tensor consisting of
a second-rank tensor and vector is denoted as

Sjkui = [(Sjkui + Sikuj + Sijuk)

− 2
5uδ(Sjδδik + Skδδij + Siδδjk)

]
. (62)

Here we focus on the system close to steady states and
neglected the terms of üi , uu̇, and u̇j Sij . Without deformation,
that is, if we neglect (60) and (61) and set Sij = 0, (59)
recovers the results in Ref. [16] with the same coefficients.
The coefficients in (59) scale as

τ ∼ τ ∗ = γcA

D2ηβ3
(63)

and m ∼ m∗ = τ ∗/(Dβ2) and g ∼ g∗ = τ ∗/(D2β2) (see
Figs. 1–3 in Ref. [16]). The nondimensional number τ ∗
characterizes the activity of the system; as the source term
increases, spontaneous motion emerges. This is also dependent
on the strength of chemomechanical coupling, that is, as the
flow field is more sensitive to the surface tension, the activity
is essentially enhanced. In fact, the translational velocity of
the droplet makes a transition from zero to a finite value
when τ ∗ > 1 as clearly seen in (59). It is always the case
that τ ∗ � 0 and therefore as the increase of the source term
proportional to A and/or sensitivity of a surface tension to
a concentration field, the stationary state becomes unstable
[16].

The obtained equations for a shape have the same forms in
the order parameters (ui , Sij , Tijk) for the second mode in three
dimensions [20,42] and the third mode in two dimensions [40]
if we use two-dimensional irreducible forms. However, since
we have seen the relation of a shape to mechanical and flow
properties in the previous sections, it is worth it to see the
explicit forms of the coefficients. The coefficients associated
with deformation are expressed as

κ2 = −
4∑

β=1

(
M

(1,β,0)
ij + M

(2,β,0)
ij

) = κ∗
2 gκ2 (x), (64)

λ = M
(1,1,2)
ij + M

(2,1,2)
ij = −λ∗gλ(x), (65)

Here gκ2 (x) and gλ(x) are the functions of x = βR0 and the
scaling of the coefficients λ, κ2, and b in (74) is

λ∗ = 4γcA

175D3ηβ4a
(2)
2,0

∼ γcA

D3ηβ4
= τ ∗

Dβ
. (66)

κ∗
2 = 2γcAR0

35Dη
∼ γcAR0

Dη
= τ ∗Dβ3R0, (67)

b∗ = γcA

D2ηβ2
= τ ∗β. (68)

The concrete forms of the functions gi(x) (i = κ2,λ2,b) are
shown in Appendix. E.

The stationary shape is obtained from (60),

Sij = λ

κ2 + κ20

(
uiuj − 1

3
δij

)
. (69)

(a)

(b)

(d)

(c)

(e)
(f)

FIG. 5. (Color online) (Color online) The coefficients in the
amplitude equations of the second mode (60) and the third mode
of deformation (61). The values are normalized by (66)–(68) and
(75) and (76).

As we have seen in Sec. II, the properties of the pusher or
puller are associated with a shape of the droplet. Therefore,
signs of λ and κ2 give us information about a shape for the
second mode. Since we do not discuss any instability for
the second mode itself, κ2 should be positive. Indeed, the
result shows κ2 is always positive in our system [Fig. 5(a)].
This does not depend on the value of the contribution from
an inhomogeneous concentration κ2 + κ20 compared with the
contribution of the shape relaxation κ20, which is proportional
to γ0 and is always positive. When the droplet moves parallel
to the z axis, the velocity is given as ui = (0,0,u), and

w2,0 = λ

3(κ2 + κ20)
u2. (70)

It is clear that the shape deviates from a sphere as the velocity
increases. The shape is characterized by the coefficients
λ/κ2. A function λ/λ∗ is plotted in Fig. 5(b). The result
shows that λ/λ∗ � 0. We may evaluate λ for x  1 as
λ � −3λ∗/(8x), and for x � 1, it becomes λ � −λ∗x4/35.

The droplet spontaneously moves when γc > 0 for A > 0. In
this case, we found it is always satisfied that λ < 0 [Fig. 5(b)]
and, accordingly, w2,0 < 0. Therefore, the shape is elongated
perpendicularly to the moving direction. This means that the
droplet is characterized as a pusher.

From (70), we have another nondimensional number for
isotropic surface tension,

γ ∗ = γ0

ηDβ3R2
0

, (71)

characterizing time scale of deformation. With this, defor-
mation is rewritten with normalized velocity ũ = u/(Dβ)
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motion

force

FIG. 6. (Color online) Schematic illustration of a self-propelled
droplet and a concentration field of chemical molecules that are
produced by the droplet.

as

βw2,0 � τ ∗ũ2

x(τ ∗ + γ ∗)
, (72)

showing that when τ ∗ � γ ∗, the droplet is almost sphere
and as τ ∗ increases it deforms proportionally to τ ∗/γ ∗.
This ratio characterizes the deformation of the self-propelled
droplet,

τ ∗

γ ∗ = γcAR2
0

γ0D
. (73)

As the relaxation time scale of a concentration field (∼R2
0/D)

increases, that is, the size of the droplet increases, the moving
droplet is more likely to deform.

The intuitive explanation of the sign of λ is as follows.
When a droplet is moving in one direction, the concentration
of chemicals is higher behind the droplet and at the center in
the axis perpendicular to the direction of motion. Therefore,
the concentration is relatively higher at the front and the
back and lower at the sides to look like a contrail. The
concentration distribution is schematically illustrated in Fig. 6.
For γc > 0, the surface tension is also higher at the front
and the back and lower at the sides, leading to deformation
perpendicular to the direction of motion. This mechanism also
applies to the case for γc < 0 and A < 0 [15], in which the
concentration is lower at the front and the back and higher at the
sides.

We may also calculate another coefficient as

b =
5∑

β=0

u
(β,1)
i,1 +

4∑
β=0

u
(β,1)
i,2 = b∗gb(x). (74)

If bλ > 0, there is a Lyapunov function [20]. We found that b

is always positive and therefore there is no Lyapunov function
in this system. On the one hand, this is not surprising because
our model contains a chemical reaction and therefore is under
the nonequilibrium state. On the other hand, given that a
Lyapunov function does exist without deformation, it may
suggest the importance of coupling between velocity and
shape.

As seen in (61), the third mode is determined by the first and
second modes. Therefore, the third mode is slaved by the other
two modes. The coefficients arising from the third mode is

κ3 = −
4∑

β=1

(
N

(1,β,0)
ijk + N

(2,β,0)
ijk

) = κ∗
3 gκ3 (x)

(75)
λ3 = N

(1,1,3)
ijk + N

(1,1,3)
ijk = −λ∗

3gλ3 (x),

b3 =
4∑

β=1

(
N

(1,β,1)
ijk + N

(2,β,1)
i,j,k

)+ N
(3)
ijk = b∗

3gb3 (x), (76)

where gi(x) (i = κ3,λ3,b3) are the functions of x = βR0

shown in Appendix E. These coefficients are plotted in Fig. 5
with following normalization constants:

κ∗
3 = 4Aγc

105ηD
a

(3)
3,0 ∼ Aγc

ηDβ
= τ ∗Dβ2, (77)

λ∗
3 = 8γcA

1225ηD4
∼ γcA

ηD4β5
= τ ∗

D2β2
, (78)

b∗
3 = γcA

ηD2
a

(2)
2,0 ∼ γcA

ηD2β2
= τ ∗β. (79)

The relaxation of a shape is determined by κ3 + κ30, which is
always positive [Fig. 5(d)]. Therefore, there is no instability
in this mode.

A. Inhomogeneous concentration distribution

Similar to the shape and the velocity of the
droplet, the concentration field is also described in
terms of tensors. The tensors are obtained by ex-
panding the concentration field into moments with

n
(0)
i (θ,ϕ), n

(0)
i (θ,ϕ)n(0)

j (θ,ϕ), n
(0)
i (θ,ϕ)n(0)

j (θ,ϕ)n(0)
k (θ,ϕ), and

so on. In particular, the second moment is given
as

C
(2)
ij (r) = R0

�

∫
n

(0)
i (θ,ϕ)n(0)

j (θ,ϕ)c(r)r2 sin θdθdϕ. (80)

According to (41), we may expand each mode of the
concentration fields, for instance, as C

(2)
i = C

(2,0)
i + C

(2,1)
i +

C
(2,2)
i + C

(2,3)
i + · · · . We are in particular interested in the

second mode,

C
(2,0)
ij (R0) = A

D
Q̄

(1)
1 a

(2)
2,0Sij (81)

and

C
(2,2)
ij (R0) � 2A

5D3
gλ(x)

(
uiuj − 1

3
δij

)
. (82)

Note that there is no contribution from c(1) on the second
mode. C

(2,0)
ij describes the distortion of a concentration field

due to deformation of a droplet. Let us suppose an elongated
droplet in the z direction, that is, Szz > 0. Since Q̄

(1)
1 > 0,

C
(2,0)
ij is positive when the reaction is A > 0, that is, there

is creation inside the droplet. It shows an inhomogeneity of
higher concentration along the z axis and lower in the xy

plane. This results in higher surface tension along z axis when
γc > 0, leading to relaxation toward a spherical shape. On the
contrary, C

(2,2)
ij , showing the distortion of concentration due

to the self-propulsive motion, makes the droplet deformed.
In fact, C

(2,2)
ij makes a higher concentration (higher surface

tension) along the z axis and lower concentration (lower
surface tension) in the xy plane as discussed in (65) for
γcA > 0. The shape becomes elongated perpendicular to the z

axis due to inhomogeneous surface tension, which is γ2 > 0.
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This argument also supports that the system is characterized
as a pusher.

B. Helical motion

Another point in the amplitude equations (59)–(61) is the
time scales of motion and deformation. If the time scale of
deformation is much faster than that of motion, the dynamics
of shape is slaved by the motion. Therefore shape does not
play a relevant role in the dynamics and we expect straight
motion. When the time scale of deformation is comparable
with that of motion, the coupling between motion and shape
affects the dynamics. In Ref. [42], various types of motion
have been discussed for (59)–(61) with arbitrary coefficients.
They found that straight motion becomes unstable and helical
motion appears for some range of parameters. Our model is
based on mechanics and hydrodynamics, and the coefficients
are not independent. Thus, it is of interest to see when the
helical motion appears with our physical coefficients. In our
notation, the helical motion is stable when [42]

−1 + τ ∗

τ ∗ � (τ ∗ + γ ∗) x2 + x(τ ∗ + γ ∗), (83)

where x = βR0. From (83), we found that the helical motion
is stable when x � 1. The time scale of velocity is m/(−1 +
τ ) ∼ (Dβ2)−1 for (59) while the time scale of deformation
is (κ2 + κ20)−1 ∼ (Dβ3R0)−1 for (60). The latter is more
sensitive to x = βR0 and thus as x becomes smaller, the time
scale of deformation becomes slower. Note that even under an
arbitrary concentration distribution there is no screw motion
of the droplet along a straight path driven by a surface tension
gradient as (10) suggests. Nevertheless, the helical motion is
realized by changing the path due to the coupling between the
motion and deformation.

C. Active stress

The inhomogeneous concentration is associated with stress
acting on a fluid through surface tension. In this section, we
discuss how the stress tensor is modified by spontaneous
motion and deformation. The stress tensor arising from the
inhomogeneous concentration is given as [16,58]

σa(r) = −B1c(r)∇iφ∇jφ + isotropic terms, (84)

where φ(r) is a phase specifying a droplet and surrounding
fluid. The isotropic terms are absorbed into pressure because
of incompressibility. In the sharp interface limit, the stress is
described by using a normal vector [16],

σa(a) = 1

R0

∫
σa(r)dr = − γc

R0
c(r)ni(a)nj (a). (85)

Here the stress tensor is integrated over radial direction and
therefore defined on the surface. In fact, this stress accumulates
at the surface of the droplet. Integrating over the surface, we
obtain the anisotropic part of stress as

σa � σ ∗
a

(
uiuj − 1

3
u2δij

)
, (86)

σ ∗
a = ηλ

R0
� − γcA

D2β3R0
, (87)

which characterizes active stress by σ ∗
a . Since λ < 0, the active

stress is negative in the direction of motion. This also suggests
that the droplet is extensile, that is, pusher. If we regard the
velocity ui as a polar vector pi , then this active stress is the
same form used in active polar nematic liquid crystals [26].

If we put the numbers as D ∼ 10−3 mm2/s, the velocity
being u ∼ Dβ from our results of g and τ , R0 ∼ 100 μm,
β ∼ R−1

0 , and the characteristic change of surface tension
∼1 mN/m with γcA ∼ 1 mN/(m s), we obtain σa ∼ 100 Pa.
The active stress estimated for lamellipodium is σa ∼ 1000 Pa
[59] and is the same order for the actin cortex [60].

VII. DISCUSSIONS

Our result is consistent with the phenomenological models
proposed in Ref. [40], where the amplitude equations are
derived from reaction-diffusion equations [20,41]. Our ap-
proaches including hydrodynamics have an advantage in that
we stand on a mechanical point of view and indeed we success-
fully relate a shape, motion, and flow with force moments act-
ing on the droplet. In fact, we obtain nondimensional number
(71) and (73) that control the deformation of the self-propelled
droplet. The quantity could be measured and controlled in
experiments. We also note that our approach derives the am-
plitude equations for tensor order parameters ui , Sij , and Tijk

not by calculating all the coefficients of spherical harmonics
as in Ref. [20] but rather by translating the kinematic equation
directly into the time evolution equations of tensor order
parameters. Both approaches must lead to the same results but
we believe that our approach is easier and more systematic.

Without deformation, it has recently been reported in
numerical simulations that a self-propelled droplet has the
property of pusher [17,18]. Self-propulsion of a localized
spot in a reaction-diffusion system also shows deformation.
In Refs. [20,41], it has also been shown that a shape of the
spot is elongated perpendicularly to the direction of motion.
They also obtained λ < 0 and b > 0 in our nomenclature [see
(65) and (74)]. In Ref. [61], the motion of a camphor particle
under a given shape has been investigated. The result again
shows the direction of motion is perpendicular to the long axis
of an ellipsoidal shape, which is consistent with our result.
The model in Ref. [61] predicts b < 0 for (74) in our model,
which leads to smaller critical value of τ for the transition
between stationary and self-propelled states. However, this
differs from our result of b > 0. Our model does not fix a
shape and therefore the critical point does not depend on a
shape; the droplet is always spherical at the stationary state
while deformation occurs only when τ reaches at the critical
value. As we discussed in Sec. VI, there is no Lyapunov
function in this system. Therefore it is not possible to interpret a
translation between b and λ using a simple energetic argument.
Although there is no explicit interpretation of mechanical force
in these models, it is interesting that both the results of reaction-
diffusion equations and our model including hydrodynamics
show the same shape of a spontaneously moving object,
namely elongated perpendicularly to the direction. Further
investigation concerning relations between reaction-diffusion
models and hydrodynamic models is left for future work.

Our results show that a self-propelled droplet driven by
chemical reaction has a force dipole and it is characterized
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as pusher. One may be interested in how this conclusion
depends on the model (32). Here we discuss how the results
are dependent on the form of the source term. First, it is
stressed that the spontaneous motion occurs only for γcA > 0
and, under this condition, the sign of γc and A does not
matter. The source term in (32) modifies Sq in (35), which
is dependent only on β and R0. Therefore it does not modify
the scaling of the coefficients τ ∗, m∗, g∗, κ∗, λ∗, b∗, κ∗

3 , λ∗
3,

and b∗
3 other than β and R0. In our model, the source term

has both an isotropic (S(0)
q ) and an anisotropic (S(1)

q ) term. The
latter arises from deformation. If molecules are produced or
consumed irrespective to a shape of the droplet, the source term
is independent from deformation and Q̄(1)

n in gi(x) obtained
from the anisotropic term disappears. Even in this case, λ

does not change and κ is not qualitatively modified, resulting
in the same sign of a force dipole and deformation. From
these arguments, although it is not conclusive for an arbitrary
function of the source term, we expect our results are applied
in a wide range of situations.

VIII. SUMMARY

In this paper, we derived a set of equations for motion and
deformation of a self-propelled droplet driven by production
of chemical molecules from inside. We interpret an inhomoge-
neous surface tension as a force acting on the interface of the
droplet and obtain the force moments acting on a surrounding
fluid. The force moments drive a flow and accordingly generate
the spontaneous motion and deformation of the droplet. The
motion of the droplet modifies a concentration field because of
production of molecules. This feedback loop among position
and shape of the droplet, flow field, and concentration field
sustains not only a steady motion but also deformation.

We concentrate in this paper on a single droplet. Interaction
between deformed droplets is an interesting extension of
this work. Due to the anisotropic character of each droplet,
interaction may also become anisotropic. We plan to explore
these in future work [63].
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APPENDIX A: FLOW FIELD IN TWO DIMENSIONS

In two dimensions, the surface tension is expanded as

γ (θ ) =
∞∑

n=0

γn cos(nθ ) (A1)

and the force is expressed as the first line of (1). Here we choose
the x direction as a direction of motion. The velocity field is
expanded as (6) with the Oseen tensor Tij in two dimensions,

Tij = 1

4πη

[
− (ln r) δij + xixj

r2

]
. (A2)

The first term in (6) vanishes because there is no force
monopole F

(1)
j = 0 and the second term leads to the velocity

field

vr,l=2 = γ2

4η

R

r
cos 2θ (A3)

and vθ,l=2 = 0, which is consistent with the velocity field
obtained from a boundary-value problem. Note that the normal
velocity obtained from the first moment is canceled by a
higher-order term, and no deformation occurs in this case.
The third term in multipole expansion leads to the normal and
tangential velocity field,

(vr,l=1,vθ,l=1) =
(

u
R2

r2
cos θ,u

R2

r2
sin θ

)
, (A4)

where the velocity of the droplet is u = −γ1/(8η). As in three
dimensions, the velocity field for a force dipole decays more
slowly (∼1/r) that that for a quadrupole (∼1/r2) and therefore
dominates the interaction between swimmers.

APPENDIX B: SPHERICAL HARMONICS AND VECTOR
SPHERICAL HARMONICS

In order to avoid confusion about normalization, we list
the properties of spherical harmonics and vector spherical
harmonics. Spherical harmonics Ym

l (θ,ϕ) are defined as

Ym
l (θ,ϕ) =

√
(2l + 1)(l − m)!

4π (l + m)!
P m

l (cos θ )eimϕ, (B1)

with the associated Legendre polynomial P m
l (cos θ ) of degree

l and order m [47].
Vector spherical harmonics are defined as [62]⎛
⎜⎝

Ym
l (θ,ϕ)

�m
l (θ,ϕ)

�m
l (θ,ϕ)

⎞
⎟⎠ =

⎛
⎜⎝

Ym
l (θ,ϕ)er

∂Ym
l (θ,ϕ)
∂θ

eθ + 1
sin θ

∂Ym
l (θ,ϕ)
∂ϕ

eϕ

− 1
sin θ

∂Ym
l (θ,ϕ)
∂ϕ

eθ + ∂Ym
l (θ,ϕ)
∂θ

eϕ

⎞
⎟⎠. (B2)

The orthogonal relation of vector spherical harmonics reads
Ym

l · �m′
l′ = Ym

l · �m′
l′ = �m

l · �m
l = 0. Note that Ym

l and
other two harmonics (�m′

l′ and �m′
l′ ) are orthogonal irrespective

to l, l′, m, and m′ while �m
l and �m

l are orthogonal only for
l = l and m = m′.

APPENDIX C: TENSOR ORDER PARAMETER

In this appendix, we summarize tensor order parameters
characterizing the shape of a deformed droplet. First, we
consider the following integral:∑

l,m

∫
daniY

m∗
l w∗

lm

=
√

4π

3

(−w∗
1,1 + w∗

1,−1√
2

,i
w∗

1,1 + w∗
1,−1√

2
,w∗

1,0

)
= 0.

(C1)

This integral vanishes because w1m corresponds to trans-
lational motion and does not contribute to deformation.
Nevertheless, it forms a tensor representation of a first mode
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expressed by spherical harmonics for l = 1. Other examples
of this representation are found in (2) and (11).

1. Second-rank tensor

The second-rank tensor Sij is given by

R0

�

∑
l,m

∫
dani(a)nj (a)Ym

l (a)clm = 1

2
√

5π
Sij = a

(2)
2,0Sij .

(C2)

The product of two spherical harmonics is reduced to single
spherical harmonics using the Wigner 3j symbols [47]. Using
this, the product of two normal vectors is expressed with
spherical harmonics for l = 2. Then the tensor order parameter
of the second is given as

S11 =
√

3

2
(w2,2 + w2,−2) − w2,0

=
√

3

2
(w∗

2,2 + w∗
2,−2) − w∗

2,0,

S12 = S21 = i

√
3

2
(w2,2 − w2,−2) = i

√
3

2
(w∗

2,−2 − w∗
2,2),

S13 = S31 =
√

3

2
(−w2,1 + w2,−1) =

√
3

2
(w∗

2,−1 − w∗
2,1),

S22 = −
√

3

2
(w2,2 + w2,−2) − w2,0

= −
√

3

2
(w∗

2,2 + w∗
2,−2) − w∗

2,0,

S23 = S32 = i

√
3

2
(−w2,1 − w2,−1) = i

√
3

2
(w∗

2,1 + w∗
2,−1),

S33 = −(S11 + S22) = 2w2,0 = 2w∗
2,0.

Here we have used Ym∗
l (θ,ϕ) = (−1)mY−m

l (θ,ϕ). The same
form was obtained in Ref. [20] but there is a small dif-
ference arising from the different definition of spherical
harmonics.

2. Third-rank tensor

The third-rank tensor Tijk may be expressed using spherical
harmonics, similar to the second-rank tensor, as

R0

�

∑
l,m

∫
dani(a)nj (a)nk(a)Ym

l (a)wlm = a
(3)
3,0Tijk, (C3)

where a
(3)
3,0 = 1

5

√
3

7π
and each element is given as

T111 = 1

4
[
√

15w3,−3 −
√

15w3,3 + 3w3,1 − 3w3,−1],

T222 = i

4
[
√

15w3,−3 +
√

15w3,3 + 3w3,1 + 3w3,−1],

T333 =
√

3w3,0,

T112 = T121 = T211

= − i

4
[
√

15w3,−3 +
√

15w3,3 − w3,1 − w3,−1],

T113 = T131 = T311

= 1

4
√

3
[
√

30w3,−2 +
√

30w3,2 − 6w3,0],

T223 = T232 = T322

= − 1

4
√

3
[
√

30w3,−2 +
√

30w3,2 + 6w3,0],

T123 = T312 = T231 = T132 = T213 = T321

= − i

2

√
5

2
(w3,−2 − w3,2),

T122 = T212 = T221

= 1

4
[−

√
15w3,−3 +

√
15w3,3 − w3,−1 + w3,1],

T133 = T313 = T331 = w3,−1 − w3,1,

T233 = T323 = T332 = −i(w3,−1 + w3,1).

3. Fourth-rank tensor

The fourth-rank tensor Dijαβ is defined as

R0

�

∑
l,m

∫
dani(a)nj (a)nα(a)nβ(a)Ym

l (a)wlm

= a
(2)
4,0Sijαβ + a

(4)
4,0Dijαβ, (C4)

where

Sijαβ = 1
6 (Sij δαβ + Sαβδij + Siαδjβ

+ Siβδjα + Sjαδiβ + Sjβδiα) (C5)

and a
(2)
4,0 = 6

7a
(2)
2,0. The fourth-rank tensor has symmetry

such that Dijαβ = Djiαβ = Dijβα, and therefore the tensor
is expressed as a 6 × 6 matrix (Voigt representation). In
addition, the tensors Sijαβ and Dijαβ are symmetric also in
the representation Dijαβ = Dαβij .

APPENDIX D: PROPERTIES OF UNIT NORMAL VECTOR
AND SPHERICAL HARMONICS

In this section, we summarize useful properties of unit
normal vectors on a sphere and spherical harmonics. First,
it is readily shown that∫

dani(a) = 0. (D1)

The product of the normal vector is integrated as

R

�

∫
dani(a)nj (a) = δij , (D2)

R

�

∫
dani(a)nj (a)nk(a)nl(a) = 1

5
(δij δkl + δikδjl + δilδjk).

(D3)

In order to calculate the third mode, we also need

R0

�

∫
dani(a)nj (a)nk(a)nα(a)nβ(a)nγ (a)

= 1

35
[[δij δkαδβγ ]], (D4)
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where [[]] implies a sum of 14 other permutations among all
indices.

Next, we consider the integral including the derivative of
spherical harmonics. First, we have

R0

�

∫
da∇s,iY

m
l (θ,ϕ)wlm = 0 (D5)

since wlm = 0 for l = 1. Using an integral by part, the integral
including a normal vector and surface gradient operator acting
on spherical harmonics is expressed as

R0

�

∑
l,m

∫
dani∇s,j Y

m
l (θ,ϕ)

= 1

�

∑
l,m

∫
dani

[
tj

∂

∂θ
+ bj

1

sin θ

∂

∂ϕ

]
Ym

l (θ,ϕ)

= a
(2)
1,1Sij (D6)

with a
(2)
1,1 = 3

R0
a

(2)
2,0. In the same manner, we may list the

following calculations:

R0

�

∑
l,m

∫
da

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ni(a)nj (a)∇s,k

ni(a)nj (a)nk(a)∇s,α

∇s,i∇s,j

ni(a)∇s,α∇s,β

ni(a)nj (a)∇s,α∇s,β

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Ym
l (θ,ϕ)wlm

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
(3)
2,1Tijk

a
(2)
3,1S

(3,1)
ijkα + a

(4)
3,1Dijkα

a
(2)
0,2Sij

a
(3)
1,2Tijk

a
(2)
2,2S

(2,2)
ijαβ + a

(4)
2,2Dijαβ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (D7)

where a
(3)
2,1 = 4a

(3)
3,0, a

(2)
3,1 = 1

7R0
a

(2)
2,0, a

(2)
0,2 = 6

R2
0
a

(2)
2,0, a

(3)
1,2 =

12a
(3)
3,0, and a

(2)
2,2 = 1

7R2
0
a

(2)
2,0. The fourth-rank tensors in these

formula are

S
(3,1)
ijkα = −2(Sij δkα + Sikδjα + Sjkδiα)

+ 5(Skαδij + Sjαδik + Siαδjk) (D8)

and

S
(2,2)
ijαβ = −8Sij δαβ + 20Sαβδij − 8Siαδjβ

−Sjβδiα − Siβδjα − 8Sjαδiβ . (D9)

APPENDIX E: THE FUNCTIONS gi (x)

In this section, we summarize the function gi(x) in the
coefficients of the amplitude equations. In the second mode,

gκ2 (x) = 10
Q

(0)
1

R0
− 3

∂Q
(0)
1

∂s
+ Q̄

(1)
1,2, (E1)

gλ = − 1

R0

∂Q
(0)
3

∂s
+ ∂2Q

(0)
3

∂s2
, (E2)

gb(x) = −
[

1

15

∂Q̄
(1)
2,2

∂s
+ 2

5

Q̄
(1)
2,2

R0
+ 17

15R0

∂Q
(0)
2

∂s
− 3

5

∂2Q
(0)
2

∂s2

]
.

(E3)

For the third mode,

gκ3 (x) = Q̄
(1)
1,3 + 22

R0
Q

(0)
1 − 3

∂Q
(0)
1

∂s
, (E4)

gλ3 (x) = 3

R2
0

∂Q
(0)
4

∂s
− 3

R0

∂2Q
(0)
4

∂s2
+ ∂3Q

(0)
4

∂s3
, (E5)

gb3 (x) = γcA

735ηD2

a
(2)
2,0

a
(3)
3,0

[
8

R0
Q̄

(1)
2,2 − 4

∂Q̄
(1)
2,2

∂s

+ 8
∂2Q

(0)
2

∂s2
− 42

R0

∂Q
(0)
2

∂s

]
− 2

7

a
(2)
2,0

a
(3)
3,0R0

. (E6)
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