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Analytical and experimental study of two delay-coupled excitable units
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We investigate the onset of time-periodic oscillations for a system of two identical delay-coupled excitable
(nonoscillatory) units. We first analyze these solutions by using asymptotic methods. The oscillations are described
as relaxation oscillations exhibiting successive slow and fast changes. The analysis highlights the determinant
role of the delay during the fast transition layers. We then study experimentally a system of two coupled
electronic circuits that is modeled mathematically by the same delay differential equations. We obtain quantitative
agreements between analytical and experimental bifurcation diagrams.
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I. INTRODUCTION

Complex firing patterns are believed to play a critical
role in many brain functions. Individual neurons may show
irregular behavior [1], while ensembles of different neurons
can synchronize in order to process biological information
[2] or to produce regular, rhythmical activity [3]. The rhythms
depend on the dynamical properties of each individual cell, the
nature of the connections between neurons, and the network
architecture. Anomalous forms of synchronization have been
connected to sensory processing disorders, sleep alterations,
parkinsonian tremor, and motor neuron diseases. A minimal
model consisting of two coupled FitzHugh-Nagumo (FHN)
units is the starting point of many studies on electrically
coupled neural systems [4–6]. The FHN model is a slow-fast
system of two coupled ordinary differential equations that
extracts the essential dynamical behavior of more complex
systems of equations modeling neurons. Here, we exclusively
consider the excitable (nonoscillatory) FHN system. It admits a
single steady state that is always linearly stable but a slight per-
turbation above threshold may initiate a large pulse of activity.

During the past decade, researchers became interested by
the effects of communication time delays between coupled
neurons [7,8]. Systematic numerical simulations of two
mutually delayed-coupled excitable FHN systems [9–12]
have shown that a stable periodic regime is possible as an
alternative to a stable steady state. The two units oscillate in
antiphase and the delay needs to surpass a critical value. There
are no oscillations if the delay is zero. In the amplitude versus
delay bifurcation diagram, a saddle-node bifurcation of limit
cycles is responsible for the generation of stable oscillations.
Physically, these oscillations are seen as a new form of
synchronization that could reinforce the coherence of the net-
work [13,14]. The emergence of isolated branches of periodic
solutions for systems described by delay differential equations
is an important dynamical phenomenon that deserves more
attention [15]. It motivates our analytical investigation of the
two coupled FHN system.

In [11], the following FHN equations,

ε
dxj

dt
= −yj + xj − x3

j

3
+ C[x3−j (t − τ ) − xj ], (1)

dyj

dt
= xj + a (j = 1,2), (2)

were investigated where ε is a small parameter. The authors
found numerically nearly 2τ -periodic solutions consisting of
two slowly varying plateaus for x1 and x2 connected by fast
transition layers. Approximations for the slow parts of the
periodic solution can be constructed without difficulties. But
the analysis of the fast transition layers is much more subtle.
Specifically, it requires the solution of the following nonlinear
differential equation

dx

ds
= −y0 + x − x3

3
+ C[x(s + δ) − x], (3)

where s ≡ t/ε. The constants y0 and δ are unknown and are
determined by seeking a solution of Eq. (3) satisfying boundary
conditions at s = ±∞. The quantity εδ is called “turn-on
delay” in [11] and is defined as the small correction of the
period from its leading value T = 2τ . The presence of the
time lag δ in Eq. (3) excludes any hope to find an analytical
solution. In order to explore the role of these transition layers,
we consider a piecewise linear FHN problem that allows
analytical solutions. As we shall demonstrate, the solution
of the transition layer equations are needed for the bifurcation
diagram of the periodic solutions. Specifically, we introduce
the following FHN equations:

ε
dxj

dt
= −yj − xj + H [x3−j (t − τ ) − a], (4)

dyj

dt
= xj (j = 1,2), (5)

where H (x) is the Heaviside function, 0 < a < 1/2 is the
threshold parameter for excitability, ε � 1 is a small parame-
ter, and τ = O(1) is the delay of the feedback. Equations (4)
and (5) have been used for other neuronal systems exhibiting
a delayed feedback [16,17]. The main advantage of Eqs. (4)
and (5) compared to Eqs. (1) and (2) is that the transition layer
equations become linear ordinary differential equations that
we can solve.

For mathematical clarity, we concentrate on the periodic
solution of Eqs. (4) and (5) where the two units oscillate
in antiphase and are nearly 2τ periodic in time. In-phase
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(b)(a)

FIG. 1. (a) Antiphase oscillations. The values of the parameters are ε = 0.02, a = 0.4, and τ = 2. (b) Phase-plane orbits for (x1,y1) and
(x2,y2). Both orbits follow two branches of the function y = −x + H (x − a) (broken line) connected by fast transition layers localized close
to y = y− � 0.062 and y = y+ � 0.25.

periodic solutions or coexisting periodic solutions of different
period are possible and they can be analyzed using the same
asymptotic approach. They are briefly shown in the Discussion
section.

How robust are the 2τ -periodic regimes with respect to
noise? In the second part of the paper, we explore the response
of two coupled electronic circuits that are described mathe-
matically by the same FHN equations. These experiments are
not a routine investigation of an electronic system because a
high precision is needed to measure the turn-on delay εδ.

In Sec. II, we determine separate approximations for the
slow and fast parts of the oscillations valid in the limit ε

small. By combining each approximation over a period, we
obtain bifurcation equations that we analyze using either τ

or a as the control parameter. In Sec. III, we describe the
experiments in detail and determine a bifurcation diagram with
a as the control parameter (τ fixed). We then compare our
experimental results with our theoretical predictions and obtain
good quantitative agreements between the different bifurcation
diagrams. Finally, we discuss our results in Sec. IV.

II. THEORY

Equations (4) and (5) admit only one steady-state solution
(xj ,yj ) = (0,0). This state is always stable but under specific
initial conditions and parameter values a stable time-periodic
solution where x1(t) and x2(t) oscillate in antiphase is
possible. See Fig. 1(a). We observe that the period of the
oscillations is close to T = 4 which suggests that T � 2τ in
first approximation, since τ = 2. We also note that the behavior
of the solution can be decomposed into two slowly varying
parts and two fast transitions layers. Figure 1(b) represents the
periodic solution in the phase plane. Both (x1,y1) and (x2,y2)
exhibit the same orbit. The slowly varying parts of the solution
can be described by taking advantage of the small value of ε.
Indeed, inserting ε = 0 into Eq. (4) leads to the functions

y = 1 − x (x > a) or y = −x (x < a), (6)

which provides a good approximation of the slowly varying
parts. This function is represented by broken lines in Fig. 1(b).

The slowly varying parts are linked by two fast transition layers
located at y = y− and y = y+, respectively.

The numerical solution suggests seeking a T -periodic
solution that satisfies the antiphase condition

x2(t − T/2) = x1(t), (7)

and admits a period close to twice the delay. To this end, we
relate the period T and the delay τ as

T = 2τ + 2ε δ(ε), (8)

where δ = O(1) as ε → 0 needs to be determined. In order to
describe the limit cycle, we first look for an approximation of
the solution when it is a slowly varying function of t , i.e., when
y is increasing from y− to y+ (x > a) and when y is decreasing
from y+ to y− (x < a). We then examine the transition layers
characterized by almost constant values of y (y− or y+), and
by x function of the fast time t/ε.

A. Slowly varying parts

We start with Eqs. (4) and (5), and use (7) and (8) by noting
that

x2(t − τ ) = x2(t − T/2 + εδ) = x1(t + εδ), (9)

x1(t − τ ) = x1(t − T/2 + εδ) = x2(t + εδ). (10)

Setting ε = 0, the leading problem is then given by

− x − y + H (x − a) = 0, (11)

dy

dt
= x, (12)

for either (x1,y1) or (x2,y2). We start at y = y− with x > a.
From (11) and (12), we then have the following equations:

x = 1 − y and
dy

dt
= 1 − y. (13)

The solution for y is

y = (y− − 1) exp(−t) + 1 (14)
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(a) (b)

FIG. 2. Blowup of the fast transition layers of x1(t) when (a) y � y− and when (b) y � y+. The figure also represents x2(t − τ ) which
controls the Heaviside function.

and ends when y = y+ at t = t+. Using (14), we determine t+
as

t+ = ln

[
y− − 1

y+ − 1

]
. (15)

We next consider the slow evolution from y = y+ at time
t = t+ with x < a. From (11) and (12), the evolution equations
now are

x = −y and
dy

dt
= −y. (16)

The solution for y is

y = y+ exp[−(t − t+)] (17)

and ends when y = y− at time t = t−. From (17), we obtain
t− − t+ as

t− − t+ = ln

(
y+
y−

)
. (18)

Ignoring the contributions of the fast transition layers, the
leading expression of the period T as ε → 0 equals t−.
Using then (8), we conclude that T = 2τ equals t−, in first
approximation. Using (15) and (18), we obtain

T = ln

[
y− − 1

y+ − 1

]
+ ln

(
y+
y−

)
= 2τ. (19)

This equation can be rewritten as[
y− − 1

y+ − 1

](
y+
y−

)
= exp(2τ ). (20)

Equation (20) represents a first relation between the unknown
y− and y+. We need a second equation for y− and y+, which
motivates the analysis of the fast transition layers.

B. Transition layers

Figure 2 shows a blowup of the two fast transition layers
for x1(t) and x2(t − τ ). In Fig. 2(a), y remains close to y− and
x1(t) increases following Eq. (4). The equation for x1 can be
rewritten as

ε
dx1

dt
= −y− − x1 + H [x2(t − τ ) − a]. (21)

From Eq. (21), we note that an increase of x1 is possible only
if the Heaviside function takes its value 1. This occurs as soon
as x2(t − τ ) > a, which is what we observe numerically in
Fig. 2(a). To properly formulate the transition layer equation,
we introduce the fast time s ≡ t/ε and note that

x2(t − τ ) = x2(t − T/2 + εδ) = x1(t + εδ) = x1(s + δ),

(22)

which then implies using (21) that

dx1

ds
= −y− − x1 + H [x1(s + δ) − a]. (23)

This equation must be solved with the conditions [see Fig. 3(a)]

x1(0) = −y− and x1(δ) = a. (24)

Since H [x1(s + δ) − a] = 1 as soon as s > 0, Eq. (23)
becomes ordinary and its solution is

x1(s) = − exp(−s) + 1 − y−. (25)

The condition x1(δ) = a requires that

a = − exp(−δ) + 1 − y−. (26)

Figure 2(b) is a blowup of the fast transition where y � y+
and x1 decreases from x1 = 1 − y+. Its fast change is now

(b)(a)

FIG. 3. Same transition layers as in Fig. 2 but in terms of the
transition layer variable s. δ is defined as the interval of time between
x2(t − τ ) and x1(t) when they are sequentially equal to a.
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described by

ε
dx1

dt
= −y+ − x1 + H [x2(t − τ ) − a]. (27)

The decrease of x1 is possible only when x2(t − τ ) < a so that
the Heaviside function is zero. This is indeed what we observe
in Fig. 2(b). Mathematically, we introduce a new inner time
variable defined as s = (t − t+)/ε and formulate the transition
layer problem as [see Fig. 3(b)]

dx1

ds
= −y+ − x1 + H [x1(s + δ) − a], (28)

x1(0) = 1 − y+ and x1(δ) = a. (29)

Since H [x1(s + δ) − a] = 0 as soon as s > 0, Eq. (28)
becomes ordinary and admits the solution

x = exp(−s) − y+. (30)

The condition x1(δ) = a then requires that

a = exp(−δ) − y+. (31)

Adding Eqs. (26) and (31), we obtain a second equation for
y− and y+,

2a = 1 − y− − y+. (32)

Using Eq. (20), we eliminate y− and obtain

(−2a − y+)

(y+ − 1)

y+
(1 − 2a − y+)

= exp(2τ ) (33)

or, equivalently, a quadratic equation for y+,

y2
+[−1 + exp(2τ )] − 2y+{a[1 − exp(2τ )] + exp(2τ )}
+ exp(2τ )(1 − 2a) = 0. (34)

The solution of Eq. (34) with y+ < 1 is shown in Fig. 4. y− is
then determined using (32), and δ is obtained using (31).

We note from Fig. 4(a) that y+, y−, and δ quickly approach
constant values as τ is increased from zero. From (34), (32),
and (31), we find the approximations

y+ � 1 − 2a, y− � 1 − 2a

2a
exp(−2τ ),

and δ � − ln(1 − a) (35)

as exp(2τ ) → ∞. They are verified as soon as τ � 2.

(a) (b)

FIG. 4. Leading approximations of y = y± and δ. (a) a = 0.4; (b)
τ = 2. If a = 0.4 and τ = 2, y− = 0.004, y+ = 0.20, and δ = 0.52
(num: y− = 0.007, y+ = 0.25, and δ = 0.5).

As τ → 0 [a fixed Fig. 4(a)] or as a → 1/2 [τ fixed
Fig. 4(b)], the difference y+ − y− between the extrema of y

decreases to zero and our analysis becomes invalid. A different
analysis is required where either τ or a − 1/2 are scaled with
respect to ε.

III. EXPERIMENTS

In order to test the experimental accessibility of our
analytical results we have performed measurements on a
nonlinear electronic circuit that simulate our FHN system
(see Fig. 5). The circuit consists of several operational
amplifiers (two acting as integrators, two as inverters) with
associated feedback components. The voltages Vx and Vy are
the dependent variables; Vz = Vz(Vx) provides the Heaviside
nonlinearity by using U1a and Q1. The evolution equations for
Vx and Vy are given by

R2C2
dVx

dT
= −Vx − Vy − Vz + 3Vref, (36)

dVy

dT
= Vx

R4C4
− Vref

R4C4
+ Vref

R5C4
− Vy

R5C4
, (37)

while

Vz = −VrefH [Vx(T − TD) − Va] + Vref . (38)

The circuit was built twice on a “breadboard” and connected
to a microcontroller based delay, built around an OLIMEX
SAM7LA2 board. The board is connected to a PC host
via RS232 and outfitted with 12-bit digital-to-analog (DA)
converters. For analog-to-digital (AD), the microcontrollers
10-bit internal AD converters were used.

We next reformulate Eqs. (36)–(38) in dimensionless form.
All AD/DA converters have a voltage range between 0 V
and 2.5 V. Vref = 1.25 V and 1.25 V < Va < 1.875 V are
generated by a DA output which allows us to use Va as a
control parameter. Introducing the new variables x, y, z, s,
and parameter a as

x,y,z = Vx,y,z − Vref

Vref
, t = T/(R4C4),

and a = Va − Vref

Vref

into Eqs. (36)–(38), we obtain

ε
dx

dt
= −x − y + H [x(t − τ ) − a], (39)

dy

dt
= x − y

R4

R5
, (40)

where

ε = R2C2

R4C4
.

The ration R4/R5 = 0.013 is small which motivates the
elimination of the last term in Eq. (40). Equations (39) and
(40) then have the same form as Eqs. (4) and (5). The
choice of R4C4 � 100 ms and R2C2 � 2 ms implies ε = 0.02.

The microcontroller is programed to sample at Ts = 200 μs
and the delay is TD = 103Ts = 200 μs. This then leads to
τ = TD/(R4C4) = 2.
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FIG. 5. (Color online) FHN circuit. U1a is used as a comparator to build the Heaviside step function. The delay is built using a microcontroller
with AD and DA converters (not shown).

Component variations are causing systematic errors which
are important as we determine the small correction of the
period given by εδ. Consequently, all operating components
were carefully measured and the length of the delay lines were
adjusted to keep τ and ε as close as possible to their fixed values
τ = 2 and ε = 0.02. The control parameter a was gradually
changed from a = 0.015 to 0.45. At the beginning of each
experiment, one of the two delay lines was loaded with a pulse
so that the stable rest state is strongly perturbed and a periodic
wave is initiated. For each value of a, the experiment was run
for an interval of time of 700τ. The contents of the delay lines
were then transferred to the host PC before we change the
value of a. The values of Vy were also recorded and lead to
the experimental bifurcation in Fig. 6. Compared to Fig. 4(b),
we observe a good quantitative agreement between analytical
and experimental bifurcation diagrams.

FIG. 6. Experimental bifurcation diagram with a as the bifurca-
tion parameter.

IV. DISCUSSION

We performed an analytical study of a stable periodic
solution of two mutually delay-coupled FHN systems. This
solution coexists with a stable steady state and its existence
cannot be anticipated from a linear stability analysis of a
basic steady state. Indeed, this periodic regime emerges from
a limit point (saddle node) of limit cycles and we believe
that this bifurcation mechanism is important for problems
modeled by delay differential equations. Another case of
isolated branches of periodic solutions is documented for a
laser subject to a delayed feedback [15]. In order to observe
these oscillations experimentally, we built a system of two
coupled electronic circuits that is described mathematically
by the same FHN equations. Despite the difficulty measuring
the small correction to the leading approximation of the
period, we obtain quantitative agreement between analytical
and experimental bifurcation diagrams.

The delay-induced branching of periodic solutions is
possible because of a perfect synchronization between the
current and delayed fast pulses in x1 and x2. The time
history of the fast transition layers plays an active role in
the determination of the bifurcation equations. For opto-
electronic oscillators exhibiting slow-fast square-wave os-
cillations, a similar asymptotic analysis of a limit-cycle
solution was possible [18,19]. However, the analysis of the
fast transition layers is not needed for the derivation of the
bifurcation equations. For these optoelectronic oscillators,
the square-wave oscillations result from a Hopf bifurcation
mechanism.

We concentrated on the case where the two coupled units
oscillate in antiphase with a period close to twice the delay.
But stable in-phase periodic solutions with a period close to
the delay have also been observed. The asymptotic analysis
of this case leads to Eqs. (31) and (32), and the following
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FIG. 7. (Color online) (Left) 2τ/3-periodic oscillations in an-
tiphase. The values of the parameters are a = 0.4, ε = 0.02, and
τ = 2. (Right) Three distinct periodic regimes coexist with the stable
steady state: (a) oscillations in antiphase with a period close to
2τ (T = 4.021), (b) oscillations in phase with a period close to τ

(T = 2.012), and (c) oscillations in antiphase with a period close to
2τ/3 (T = 1.342).

equation for the maximum y+:

y2
+[−1 + exp(τ )] − 2y+{a[1 − exp(τ )] + exp(τ )}
+ exp(τ )(1 − 2a) = 0. (41)

If exp(τ ) is sufficiently large, we obtain the same bifurcation
diagram as for the antiphase periodic solution. Furthermore,
a stable antiphase of period close to 2τ/3 was also found
numerically. See Fig. 7. We note that the orbits of the τ

and 2τ/3-periodic regimes are smaller in amplitude compared
to the 2τ -periodic solution suggesting that they could be
less robust with respect to noise. This question is currently
investigated experimentally by using our electronic system.

The asymptotic analysis is based on the limit ε small which
allows us to find separate approximations for the slow and

fast evolutions of the solution. These approximations are valid
provided the difference y+ − y− remains O(1) compared to
ε. The limit point of periodic solutions is located at τ = 0
[Fig. 4(a)] or at a = 1/2 [Fig. 4(b)], in first approximation. If
y+ − y− → 0, a different analysis is needed where either τ or
a − 1/2 is scaled with respect to ε.

We have verified that all the periodic solutions constructed
or simulated numerically using the piecewise linear FHN
equations (4) and (5) can be observed numerically for the
continuous FHN equations (1) and (2). Figure 4, however,
indicates that the limit cycle never reaches the extrema of the
Z-shaped nullcline. This contrasts with the continuous FHN
system where the limit cycle may come close to the extrema
of the S-shaped nullcline [11]. If the delay is sufficiently
large, the time evolution along the left branch of the S-shaped
nullcline becomes longer, spending a lot of time near the stable
steady state before jumping to the right branch. This provides
the value of y0 in Eq. (3) as being the steady-state value.
However, the time lag δ is still unknown and the solution of
the transition layer equation (3) is still an open problem. In
[11], the transition layer is treated as an initial value problem
that is solved with several assumptions.

Finally, we note that the case of two distinct delays
[x2(t − τ2) and x1(t − τ1) in Eq. (1)] can be reduced to the
problem of identical delays by reformulating the evolution
equations [20]. In addition, the synchronization problem with
both delayed coupling and delayed self-feedbacks has also
been explored [21].

ACKNOWLEDGMENTS

T.E. is grateful for the invitations of Eckehard Schöll to visit
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