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First-harmonic approximation in nonlinear chirped-driven oscillators
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Nonlinear classical oscillators can be excited to high energies by a weak driving field provided the drive
frequency is properly chirped. This process is known as autoresonance (AR). We find that for a large class
of oscillators, it is sufficient to consider only the first harmonic of the motion when studying AR, even when
the dynamics is highly nonlinear. The first harmonic approximation is also used to relate AR in an asymmetric
potential to AR in a “frequency equivalent” symmetric potential and to study the autoresonance breakdown
phenomenon.
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I. INTRODUCTION

Driven oscillators are ubiquitous in physics and engi-
neering. In the case of a linear oscillator driven by a fixed
frequency the amplitude of oscillations is determined by the
drive amplitude, oscillator-drive frequency difference, and the
damping factor. Nonlinear (NL) oscillators offer a way to
drive the oscillator to a high energy by using a weak drive. The
drive frequency, however, must be varied in time. Under certain
conditions, phase locking between the drive and the oscillator
takes place. In NL oscillators the frequency of oscillations
depends on the energy, so to follow the varying drive frequency,
the NL oscillator must adjust its energy. This process is known
as autoresonance (AR) (see Ref. [1] and references therein).

Autoresonance was first used in relativistic particle accel-
erators [2]. In recent years, AR was demonstrated and used
as a robust method of excitation and control of nonlinear
systems, ranging from atoms [3] and molecules [4] through
plasmas [5,6] and fluids [7] to nonlinear optics [8] and
superconducting Josephson junctions [9–11]. The most recent
applications involved antihydrogen project at CERN [12].
Chirped-driven nonlinear oscillators have also been thoroughly
studied in the quantum domain [10,13–16].

It should be noted that in all the above studies the term
autoresonance refers to a drive that does not depend on the
state of the oscillator. Typically it is of constant amplitude and
linear chirp. In Ref. [17] the term autoresonance is used for a
different nonlinear problem where the drive is chosen to fit the
state of the oscillator so that a certain functional is minimized.

The goal of the present work is to simplify the AR equations
and to get new results concerning AR dynamics. Yet the key
simplification we introduce, the first harmonic approximation,
is valid for other nonlinear scenarios.

In this work we exploit a result presented in the classical
mechanics book of Landau and Lifshitz [18] to show that
there are “equivalence classes” in AR. More specifically,
we show that AR in asymmetric potentials can be studied
using symmetric/even potentials [V (x) = V (−x)]. This equiv-
alence, however, is not exact. It holds when the first harmonic
of the oscillation dominates the action of the oscillator. At first,
it may seem that the first harmonic can be dominant enough
only in the weakly nonlinear regime where the potential is
roughly quadratic. However, we show that for a large class of
oscillators, it can hold even when the nonlinearity is extremely
strong.

We start in Sec. II, by writing the evolution equations
for a driven NL oscillator and giving the motivation for the
first harmonic approximation, which is studied in Sec. III. In
Sec. IV we use this approximation to relate AR in asymmetric
potentials to AR in symmetric “frequency equivalent” poten-
tials. In Sec. V the AR breakdown condition is derived from a
“universal” AR Hamiltonian (even in the presence of friction).
Finally, in Sec. VI we study a basic asymmetric potential
and show that some AR phenomena cannot be studied by
approximating the symmetric equivalent potential by a power
series in x, due to the presence of a pole in the complex x

plane. In Sec. VII we present our concluding remarks.

II. AUTORESONANCE IN ANGLE-ACTION VARIABLES

Angle-action variables are very useful in nonlinear dynam-
ics. In particular, they are used for studying driven oscillators
using the nondriven oscillators [19]. We are interested in
a chirped frequency drive, so instead of the angle of the
nondriven oscillators we use the phase mismatch between
the drive and the oscillator. In AR this mismatch is roughly
constant (phase locking). For this to happen, the oscillator
must change its energy, so that the frequency of the oscillator
will match the frequency of the drive. The Hamiltonian of the
driven system is

H = p2/2m + V (x) − εx sin[φd (t)], (1)

where ε is the drive amplitude and φd is the drive phase:

φd (t) =
∫ t

t0

ωd (t ′) dt ′. (2)

For linear frequency chirp, the drive frequency is

ωd (t) = ω0 + αt, (3)

where α is the chirp rate and ω0 is chosen to be the linear
frequency at the bottom of the potential. The NL resonance
equations [19] in angle-action variables for a chirped drive are

dI

dt
= −εx1(I ) sin φ, (4)

dφ

dt
= ω(I ) − ω(t) − ε

dx1(I )

dI
cos φ, (5)

where I is the action, φ is the phase mismatch between the
drive and the oscillator, and x1(I ) is the magnitude of the first
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harmonic of the position in the nondriven system. That is, for a
given action (or energy), in the nondriven system, the position
can be written as

x(t,I ) =
∞∑

n=0

xn(I ) cos[nω(I )t + ϕn(I )]. (6)

Since the NL resonance equations are based on the single res-
onance approximation (not to be confused with first harmonic
approximation discussed later) only x1 appears in the equa-
tions. In this work we do not consider dynamics close to sepa-
ratrices, where this approximation is no longer valid. The main
benefit of using the angle action variables for AR is universal-
ity. While AR can take place in very different systems (e.g.,
optics and mechanics), the governing equations are still given
by Eqs. (4) and (5). The downside is that the two functions of
the nondriven oscillator, ω(I ) and x1(I ), must be known. In
principle, ω(I ) can be directly evaluated using the relations

T = 2π

ω
= 2

∫ x+

x−
1/

√
2m(E − V ) dx, (7)

I = 1

π

∫ x+

x−

√
2m(E − V ) dx, (8)

where x± = x±(E) are the turning points of the potential. The
evaluation of the first harmonic x1(I ), on the other hand, is
considerably more complicated and often requires explicitly
solving the equation of motion for various energies. The first
harmonic approximation, presented next, offers a significant
simplification by expressing x1 in terms of ω and I .

III. THE FIRST HARMONIC APPROXIMATION,
I = 1

2 ω(I)x2
1

Let us start by exploring the action of the nondriven
oscillator. The motion is periodic with some frequency ω(I ).
Using (6), the action is given by

I = 1

2π

∮
p dx = m

2π

∮ (
dx

dt

)2

dt = 1

2
ω(I )

∑
n=1

x2
nn

2.

(9)

If the contribution of the x1 is considerably larger than that of
the other harmonics, then we get I ∼= 1

2ω(I )x2
1 or

x1
∼=

√
2I

ω(I )
. (10)

At first sight, it may seem that this will work only in the
weakly nonlinear limit where the frequency is roughly the
linear frequency ω0 = ω(I = 0). Yet, in what follows we show
that under a certain condition, this approximation holds even
in the extreme nonlinear regime, where ω(I ) is significantly
larger than ω(I = 0).

To quantify the first harmonic approximation (10), we need
to evaluate the quantity

r = x1

/√
2I

ω(I )
= 1√∑(

xn

x1

)2
n2

. (11)

This quantity is smaller than one. Yet, our goal is to show that
it is not too far from one. Although there are known bounds
on the strength of the harmonics for large n depending on the
smoothness of x(t), there is very little that can be said on the
first few harmonics. As will be seen shortly, it is the first few
harmonic that matter the most.

To find a bound on the size of the n � 2 harmonics we use
lemma 33 from Ref. [20]: If there is a periodic signal y(t),
which is positive for half a cycle and negative in the other half,
then its harmonics satisfy

|yn| � n|y1|. (12)

Obviously, this is completely useless if applied to x(t). The
sum in (11) will not even converge and the lower bound on r

will be zero. Therefore, we will apply it to the third derivative
of the position. First, it must be checked that d3x/dt3 satisfies
the condition of the lemma. Notice that

d3x/dt3 = d

dt
[F (x)/m] = − 1

m

d2V

dx2

dx

dt
. (13)

The velocity satisfies the condition of the lemma since the
particle is moving from the left turning point to the right turning
point with positive velocity in half a cycle and returns with a
negative velocity in the other half of the cycle. Therefore,
from (13) we see that if

d2V

dx2
� 0, (14)

then the validity condition of the lemma is satisfied. The
condition d2V

dx2 � 0 is trivially satisfied in the immediate
vicinity of the equilibrium point and breaks down at the
first inflection point of the potential. Applying the lemma to
y = d3x/dt3 and using the relation yn = ω3n3an we get

|ω3n3an| � n|ω3a1| (15)

or

|an| � |a1|
n2

. (16)

Symmetric potentials have only odd harmonics, so we have

x1

/√
2I

ω(I )
� 1√∑

n=1
1

(2n−1)2

=
√

8

π
∼ 0.9, (17)

where the validity condition for this bound is given by (14).
Notice that we did not assume weak nonlinearity in our
derivation, so this bound is valid also in the extreme nonlinear
regime. This lower bound can actually be reached in an infinite
rectangular well that gives rise to a “sawtooth” solution, x(t).
In this case the harmonics xn scale exactly like 1

(2n−1)2 . In
practice, when the potential is less sharp the approximation
works much better. For example, for the Duffing potential,
VD = 1

2x2 + β

4 x4, β > 0, we get r � 0.97 even when x → ∞
(i.e., in the most nonlinear part of this potential).

For the asymmetric case we get

x1

/√
2I

ω(I )
� 1√∑

n=1
1
n2

=
√

6

π
∼ 0.78. (18)
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Here again, we can find a potential which satisfies this bound.
Indeed, if the potential is infinite on the left side and linear
on the right side, its harmonics satisfy: an/a1 = 1/n2 for n =
1,2,3 . . . . Therefore, r =

√
6

π
for this potential. Since we found

an example that satisfies this bound, we conclude that there is
no better lower bound of the same generality. Provided more
information on the potential is available, we can find better
bounds but this is outside the scope of this the current work.

As a first demonstration of the approximation x1 �
√

2I
ω(I ) ,

we consider the V = x2n potential studied in Ref. [21]. It
was shown that H = bnI

2n/(n+1) and that x1 = 2γnI
1/(n+1).

The bn factors are known analytically but the γn were
evaluated numerically. Using ω = ∂H

∂I
= 2n

n+1bnI
n−1
n+1 we obtain

that x1 = √
2I/ω =

√
2I

1+ n−1
n+1

2n
n+1 bn

=
√

n+1
nbn

I 1/(n+1). Our approxi-

mation yields the right scaling in I , but it also provides an

analytical formula for γn: γn =
√

n+1
4nbn

. For n = 2, we obtain

γ2 � 0.3657, which is only 0.9% away from the numerical
value. For V = x6, our estimate of γ3 is 2% away from the
numerical value. In the following sections, we show how this
approximation can be used in studying AR phenomena.

IV. AUTORESONANCE IN ASYMMETRIC POTENTIALS

In this section we use the first harmonic approximation to
establish a relation between AR in an asymmetric potential to
AR in symmetric “frequency equivalent” potential.

A. Symmetric frequency equivalent potentials

It is shown in the Landau and Lifshitz book on classical
mechanics [18] that if the period of a one-dimensional (1D)
oscillator as a function of energy, T (E), is given, then the
distance between the turning points of the potential is

x+(V ) − x−(V ) =
∫ V

0

T (E)√
V − E

dE, (19)

provided the potential has only one minimum. This formula
shows that there are infinitely many frequency-equivalent
potentials. If, however, the potential is symmetric then T (E)
uniquely defines the potential. Let Vas(x) be some asymmetric
potential with a single minimum. At each energy, one can
shift both walls of the potential by the same amount so that
the turning point is centered at x = 0. The shift needed is a
function of the energy (of V ) so we can write the symmetric
frequency equivalent potential (SFE) as

Vsfe(x) = Vas[x − s(Vas)], (20)

where the shift function s(Vas) is the average position of the
turning points:

s(Vas) = x+(Vas) + x−(Vas)

2
. (21)

Clearly, Vsfe(x) satisfies Vsfe(x) = Vsfe(−x). In general, it is
not simple to invert the given asymmetric potential and obtain
x±(Vas). Moreover, even when possible, it is not always possi-
ble to write an explicit expression for Vsfe. In Sec. VI, we show
a convenient method to obtain Vsfe for small s. Next, we wish
to combine this result with the result of the previous section.

From the Landau and Lifshitz construction (19), it fol-
lows that ωas(E) = ωsfe(E). In Appendix A, we show that
there are other quantities, which are invariant. In particular,
Ias(E) = Isfe(E). Combing the two results we get

ωas(I ) = ωsfe(I ). (22)

Therefore, the only element that distinguishes AR dynamics
[see Eqs. (4) and (5)] in asymmetric potential from AR in
the symmetric frequency equivalent potential is the coefficient
x1(I ). Although in general x1,as �= x1,sfe, we have shown in
the previous section that, under a certain condition, they are
roughly equal. This leads to an important conclusion, which is
the subject of the next section:

To a good approximation, AR in an asymmetric potential
can be mapped to an AR in a symmetric potential

B. Studying AR threshold using the SFE potentials

The threshold phenomenon is one of the most important
aspects of the AR effect. As it turns out, there is a limitation
of how small the driving force can be. It must exceed a
certain threshold to give rise for drive-oscillator phase locking.
This threshold is determined by the chirp rate and by the
nonlinearity of the potential [21,22]. The faster the chirp, the
stronger the drive must be. Weaker nonlinearity (e.g., a smaller
quartic term in Duffing) lead to higher thresholds since AR is a
nonlinear effect and, as such, it must vanish (i.e. the threshold
goes to infinity) in the linear limit.

To test our statement that AR in an asymmetric potential
can be approximated by AR in some symmetric potential, we
first compare the AR thresholds in the two potentials. We
expect the threshold for AR to be almost the same for
Vas and for Vsfe. To make an accurate comparison, it is
preferable to consider a potential where both Vas and Vsfe

can be written analytically. We choose the Duffing oscillator
Vsfe = 1

2x2 + β

4 x4 with β = 1/6 and “Landau shift” it by
rescaling the x coordinate differently for x > 0 and x < 0.
The resulting antisymmetric potential is given by

Vas =
{

V
(

x
1−ρ

)
x < 0

V
(

x
1+ρ

)
x > 0

, (23)

where ρ, the asymmetry parameter, controls the degree of
the shift. This particular form of coordinate shift does not
change the distance between the turning points. The potential
is symmetric for ρ = 0, while for ρ = 1, the left wall becomes
completely vertical, i.e., ρ = 1 is the largest shift possible
before the potential becomes a multivalued function. Figure 1
shows Vas and its Vsfe for ρ = 0.5. Using α = 0.001 we plotted
the evolution of the particle’s position in Vas (black) and
in its SFE potential (red). Although the asymmetry is very
significant, the threshold value, εth, in both potentials differs
by only 4% (εth = 0.02109 for the asymmetric oscillator). In
Sec. VI, we get 0.7% deviation for a smaller and smoother
shift of the Duffing oscillator.

To the best of our knowledge, the potentials studied so far in
the literature in the context of AR have been analytical. In this
example, however, AR can easily be observed even though V ′

as
is not differentiable at x = 0. This can be understood from the
NL resonance equations. For AR, ω(I ) must be well defined
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FIG. 1. (Color online) (a) The black curve shows the potential of
an asymmetric Landau shifted Duffing oscillator, and the red (light
gray) shows its symmetric frequency equivalent potential. (b) AR in
the original asymmetric oscillator and in the symmetric equivalent
just above the drive threshold amplitude. Figure (c): The same just
below the threshold. The symmetric equivalent potential predicts the
threshold in the asymmetric problem to an accuracy of 96%. (d) The
energy plot of the oscillators shows that the actual dynamics is very
similar in both oscillator at all times. The drive amplitude used in (d)
is 50% above the threshold.

and monotonic. Since the frequency and the action can be
written as integrals that involve the potential [see (7) and (8)],
the nonanaliticity has very little impact on AR dynamics.
Another aspect of nonanaliticity in AR is discussed in Sec. VI.

The striking similarity of the thresholds in Vas and Vsfe is
a test for our main claim in the weakly nonlinear regime, as
typically the system gets phase-locked when the frequency of
the oscillator and of the drive are rather close to the linear
frequency determined by ∂2

xVas at the bottom of the potential.
At the point where the trapping starts, the nonlinear frequency
shift typically does not exceed 10% of the linear frequency.
In principle, AR goes way beyond this regime. The larger
the desired amplitudes of oscillations, the larger the nonlinear
frequency shift must be. This does not go on forever, and at a
certain moment the nonlinear phase locking mechanism fails
and the amplitude of the oscillator stops growing. From this
point (the “breakdown” hereon), the oscillator and the drive
are no longer synchronized. The breakdown can take place
at a very large nonlinear frequency shift (it can be several
multiples of the linear frequency) depending on the chirp rate
and frequency. As such, it serves as a good object to test the
equivalence of Vas and Vsfe for studies of AR. This is the subject
of the next section.

V. EXPLICIT AR BREAKDOWN CONDITION

We turn now to another application of the x1 = √
2I/ω

approximation. As will be shown, the breakdown takes place
when the nonadiabatic effects prevail over the phase confining
potential created by the drive. By slowing down the chirp of
the drive, it is possible to reduce the nonadiabatic effects and
to push the breakdown to higher amplitudes. This is no longer
true when friction is included. Friction introduces a new scale

to the problem, and it is no longer possible to restrain the
breakdown effect by reducing the chirp.

So far this phenomenon received little attention [21,23],
even though it is just as fundamental as the threshold
phenomenon (in fact, the two are intimately related).

Obviously the breakdown phenomenon is highly important
for applications and demonstrations of AR as it sets a limit on
the size of the effect. Moreover, as mentioned before, when
friction is included the breakdown can take place even for small
oscillation amplitudes, and it cannot be avoided by changing
the chirp.

The breakdown condition (without friction) was written in
Ref. [21] for the potential V = x4/4. The effect of friction on
the breakdown was first studied in Ref. [23] for three-oscillator
interactions. Here, we wish to write the condition for more
general potentials, to include friction, and to apply the x1(I )
approximation.

In the Appendix B we derive a general AR Hamiltonian for
the phase-locked regime:

HAR = δI 2

2
(

dI0
dω

) − εx1(I0) cos φ + α
dI0

dω
φ

= P 2

2M(t)
+ VAR(t,φ), (24)

where I0 = I0(ω) is the action of the nondriven oscillator
as a function of frequency, and δI is the deviation of the
actual action from the nondriven one: δI = I − I0. φ is the
drive-oscillator phase mismatch as before. Thinking of δI as
momentum, P , and φ as a coordinate, the first term can be
viewed as the kinetic energy [with time-dependent mass, M(t)]
and the two other terms can be considered as potential energy,
VAR(t,φ), since they depend only on the coordinate and time.

At each instant, the potential VAR(t,φ) has the shape of a
“washboard potential.” The cos φ term, which is proportional
to the drive amplitude ε, creates the minima in the potential
that enable the phase confinement. The term proportional to
φ creates a tilt in the potential that makes the minima of the
potential less deep. This term is proportional to the chirp rate
α, and it is only this term that contains the information on
how fast the system parameters change in time. Hence, all
the nonadiabatic effects originate from this term. As long
as the washboard potential has minima, trapping may take
place. Since the washboard parameters change in time the
minima completely disappear, at a certain stage (the potential
wells “open up”), and phase locking is no longer possible.
The potential opens up when the minimum and the nearest
maximum coalesce, i.e., ∂2

φVAR(t,φ) = 0. From this, we get
φbreakdown = −π/2 and the breakdown condition:

εx1(I0) = α
dI0

dω
. (25)

Next we want to generalize (25) to the case of AR with a
damping force. It is shown in Appendix B that by using a
certain transformation it is possible to incorporate the effect of
a friction force of the form 
 dx

dt
into an effective Hamiltonian

that generates the new equations of motion. This Hamiltonian
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also has a washboard form potential. By repeating the same
steps as for the frictionless case, we get that the breakdown
condition is now

εx1(I0) = α
dI0

dω
+ 2
I0. (26)

By using the x1 = √
2I/ω approximation we obtain the

following breakdown condition:

ε =
(

α

2
+ 
ω

)
x1 + αω

dx1

dω
. (27)

Even without any knowledge of the relation between x1 and
ω, it becomes clear that the 
 term alone will satisfy the

breakdown condition when x1 is large enough. Simply stated, a
friction-related breakdown takes place when the friction force
becomes stronger than the driving force. To get a more explicit
form, the relation ω(x1) is needed. Naturally, this relation is
oscillator dependent. For simplicity, we consider once again
the Duffing oscillator.

The equation of motion for the symmetric Duffing oscillator
with friction is d2x

dt2 = −
 dx
dt

− x − βx3. We consider here
β > 0 and accordingly α > 0. To get an explicit expression
for the breakdown amplitude we use the approximation
ω2 = 1 + 3

8βx2
1 [18]. Using this in the breakdown formula (27)

we find that the breakdown amplitude, xbd, for the symmetric
Duffing oscillator is

xbd =
√

6α[3α −
√

9α2 + 2
(
√

3βε + 
)] + 2
(
√

3βε − 
)



√

3β
. (28)

Since the first term in the numerator is negative, the second
one must be positive, so that friction will not completely
prevent AR from taking place. That is, ε > 
/

√
3β. In the

limit of very slow chirp, α → 0, and nonzero 
, we get

xbd(α → 0) =
√

2(
√

3βε − 
)

3β

. (29)

In the frictionless case (28) reduces to

xbd(
 = 0) = 1

3

√
ε2

α2
− 12

β
. (30)

All these breakdown formulas cease to be valid when the
breakdown amplitude is roughly equal to the threshold ampli-
tude since the approximation δI 	 I0 breaks down. For ex-
ample, the value ε = 12α/

√
β, which yields xbd(
 = 0) = 0,

is well below the threshold for phase locking.
The existence of friction does not affect the relation

established above regarding AR in Vas and in Vsfe. Therefore,
Eq. (28) holds also for Landau shifted Duffing oscillators. The
only difference is that in the asymmetric case, the center of
oscillations is no longer at x = 0. Nonetheless, the breakdown
amplitude around the new zero still follows (28). In Fig. 2 we
see formula (28) at work. We use the same potential as in Fig. 1
and the same chirp rate. The drive amplitude, though, is now
ε = 0.04, which is roughly twice the threshold value that is
used in Fig. 1.

VI. FINDING THE SYMMETRIC FREQUENCY
EQUIVALENT POTENTIAL

In the previous sections, we used a simple potential
whose asymmetry is such that both the symmetric and the
asymmetric potentials are known analytically. However, in
practice only Vas(x) is known. To get the shift function s(V ),
explicit expressions for the turning points x±(V ) are needed.
Even for polynomial nonlinearity x±(V ) is either not soluble
analytically or too cumbersome to work with. In Appendix C,
we present a method for obtaining Vsfe(x) directly from Vas(x)
provided the shift s is small enough with respect to the turning

points. The first order in our scheme yields

s(1) = Vas(x) − Vas(−x)

V ′
as(x) − V ′

as(−x)
, (31)

To avoid confusion, V ′
as(−x) � ∂Vas

∂x
|−x . The first order approx-

imation for the SFE potential is

V
(1)

sfe (x) = Vas
(
x − s(1)

) + Vas
( − x + s(1)

)
2

. (32)

In the Appendix C, we write the expression for the second order
in s as well. Notice that even small Landau shift can lead to
significant changes in the potential depending on the steepness
of the potential. Therefore, a small shift is not necessarily a
weak perturbation with respect to the original potential.

FIG. 2. (Color online) (a) Breakdown created by nonadiabatic
effect. The black curve shows AR evolution for the same potential
as in as in Fig. 1 (see text for parameters), and the red (light gray)
curve shows AR in the symmetric frequency equivalent potential. (b)
Breakdown generated by friction. The horizontal lines in both plots
show the theoretical estimation for the breakdown amplitude. In (c)
and (d), we plot the energy of the oscillators with and without friction,
respectively.
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FIG. 3. (Color online) The black curve is the original asymmetric
potential. In red (light gray), we plot our first-order approximation to
the exact symmetric frequency potential. The second-order correction
is shown in the dashed green curve. The first and second orders are
hardly distinguishable from each other or from the exact symmetric
potential (not shown here). Yet when comparing thresholds in the
asymmetric potential and in the symmetric potentials it is found that
the first-order approximation predicts the threshold to an accuracy
of 97% while the second order is 99.3% accurate. The symmetric
frequency potential is not an analytical function, and the blue vertical
lines show the radius of convergence of a Taylor series.

To test this procedure, we consider the potential Vas =
1
2x2 + 1

3λx3 + 1
4βx4, which was used in Ref. [24] to study

subharmonic AR. This potential is equivalent to adding a
uniform force term to the Duffing oscillator. Figure 3 shows
Vas(x), V (1)

s (x), and V (2)
s (x) for β = 1/6 and λ = 4/10.

Although the difference between V (1)
s (x) and V (2)

s (x) is
hardly detectable in this plot, the tiny difference changes the
value of the threshold quite a bit. The threshold of V (1)

s (x) is
97% of the threshold of Vas while the threshold of V (2)

s (x),
is 99.3% of the Vas threshold. Although the exact analytic
expression is available, it is instructive to expand it in powers
of λ:

V
(2)

sfe = 1

4
(βx4 + 2x2) + λ2(−3βx6 − 5x4)

18(βx2 + 1)2

+ λ4(−3βx8 − 28x6)

324(βx2 + 1)4
+ O(λ6). (33)

In the example studied above the same accuracy is obtained
even if only order λ4 in (33) is kept.

Order λ2 is the same for V
(1)

sfe and V
(2)

sfe but they differ at order
λ4 and higher. Interestingly, (33) has a pole in the complex x

plane. This pole sets the radius of convergence of a Taylor
expansion in x to be xmax = 1/

√
β. In the current example,

this point is not too far away from the threshold amplitude
(about 50% larger from the threshold amplitude). This suggests
that the threshold phenomenon cannot be accurately studied
by Taylor expanding the potential around the minimum. The
breakdown phenomenon, for example, cannot be studied at all
regardless of the number of elements in the Taylor expansion
around the minimum.

Using Witham’s averaging method it is possible to get
an effective symmetric potential of the form Veff = 1

2x2 + 1
4

(β − 10
9 λ2)x4 [24]. When expanding our SFE potential around

zero in powers of x we find V
(1,2)

sfe = 1
2x2 + 1

4 (β − 10
9 λ2)x4 +

O(x6, . . .). In this expansion, V
(1)

sfe and V
(2)

sfe start to differ
at O(x6). Note that Veff can be used only for small λ and
small amplitudes (not too close to the radius of convergence).
Yet, for small amplitudes where Veff is valid, we get a perfect
consistency with our SFE potentials.

VII. CONCLUDING REMARKS

In this work we identified a certain class of oscillators
where one can neglect the higher harmonics of the nondriven
motion in studying AR dynamics, even when the system
is highly nonlinear. This first harmonic approximation of
the action allows a simplification of the equation of motion
of the driven oscillator. In particular, it was shown that to
a good approximation, AR in an asymmetric potential can
be studied by analyzing the frequency equivalent symmetric
potential. These “symmetric frequency equivalent potentials”
may not be analytic even when the original asymmetric
is. It was demonstrated that the main features of AR, the
threshold and the breakdown, can be accurately obtained
using these potentials (the accuracy depends on the validity
of the first harmonic approximation in a given problem).
The breakdown phenomenon was studied in detail using the
associated Hamiltonian formulation.

Interestingly, we have found cases where the first harmonic
approximation works well even when condition (14) no longer
holds. Therefore, it is likely that a better validity condition
exist.

Finally, we point out that the first harmonic approximation
may also have use in the quantum domain. In studying quantum
AR in the semiclassical limit, the matrix element 〈n|x|n + 1〉
needs to be evaluated [13]. According to the correspon-
dence principle in the semiclassical limit (e.g., Ref. [25]):
〈n|x|n + 1〉 = x1. Using the first harmonic approximation,
x1 ∼ √

2I/ω(I ), and the Bohr-Sommerfeld quantization rule,
I = n� [26], one can obtain x1(n) without knowing explicitly
the form of the states |n〉and |n + 1〉.
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APPENDIX A: FREQUENCY AND ACTION EQUIVALENCE

In their derivation, Landau and Lifshitz obtained a formula
from which the turning points period can be constructed,
given the dependence of the period on energy T (E). For our
purposes, the actual construction is not needed. We just want
to show the degree of freedom in the construction. Using
this freedom, it is possible to match a symmetric frequency
equivalent potential to every single minimum 1D asymmetric
potential. We start by showing the frequency (or period)
invariance between Vas and Vsfe and then show that the same
proof can be used to obtain the invariance of many other
quantities. In particular, we show that the action is invariant
under Landau shifts. We start from the standard formula for
the period:

Tas = 2
√

m/2
∫ x+

x−

dx√
E − Vas(x)

. (A1)
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Now, using (20), we write

Tas =
√

2m

∫ x+(E)

x−(E)

dx√
E − Vsfe[x − s(V )]

, (A2)

where the shift function is

s(V ) = x+(Vas) + x−(Vas)

2
. (A3)

We define a new coordinate

xnew = x − s(V ), (A4)

and therefore

s[Vas(x)] = s{Vsfe[x − s(V )]} = s[Vsfe(xnew)]. (A5)

The differential is

dx = dxnew

(
1 + ds

dVsfe

dVsfe

dxnew

)
. (A6)

Then

Tas =
√

2m

∫ �x(E)/2

−�x(E)/2

dxnew√
E − Vsfe(xnew)

+
√

2m

∫ �x(E)/2

−�x(E)/2

ds

dVs

dVsfe

dxnew

1√
E − Vsfe(xnew)

dxnew.

(A7)

Notice that dVsfe(xnew)

dxnew
is odd in xnew and that 1/

√
E − Vsfe(xnew)

is even. ds/dVsfe is a function of Vsfe which is even in x, there-
fore ds/dVsfe is even as well. As a result, the second term is
zero. The first term is exactly the period of the frequency equiv-
alent symmetric potential, so eventually we get Tas = Tsfe.
Repeating the exact same steps, it is easy to show that for the
same energy the action is the same, Ias(E) = Isfe(E):

Ias = 1

2π

∮
pdq = 1

π

∫ x+

x−

√
2m[E − Vas(x)] dx

= 1

π

∫ �x(E)/2

−�x(E)/2

√
2[E − Vs(x)] dx = Isfe. (A8)

Similarly, this procedure will work for any quantity of the form∫ T

0 G(V [x(t)],|ẋ|) dt .

APPENDIX B: THE AR HAMILTONIAN

The Hamiltonian of the fundamental chirped NL resonance
equations (4) and (5) is

Hc = H0(I ) − ωd (t)I − εx1 sin φ. (B1)

We write the action as I = I0(t) + δI . As we shall see later
I0 will be the action of the nondriven oscillator for a given
frequency ω = ωd (t) where t is regarded as a parameter,
so that I0(t) = I0[ω(t)]. Note that while {I,φ} satisfy the
Hamilton’s equations, the variables {δI,φ} do not. To fix this
we make a canonical transformation and find the Hamiltonian
that generates the equations for δI and φ:

HδI = H0(I0 + δI ) − ωd (t)δI − εx1 cos φ + dI0

dt
φ, (B2)

where ωd (t)I0(t) was dropped, as it does not affect the equation
of motion. In AR, after passing the linear resonance at t = 0,
the potential energy of the drive is small in comparison to the

kinetic and potential energy of the oscillator. This suggest that
the action at this state is roughly given by the action of the
nondriven oscillator. That is, we can use I0 � δI and Taylor
expand the Hamiltonian around I0:

HδI
∼= dH0

dI

∣∣∣∣
I0

δI + d2H0

dI 2

∣∣∣∣
I0

δI 2

2
(B3)

−ωd (t)δI − εx1 cos φ + dI0

dt
φ. (B4)

To cancel the first order in δI we set

dH0

dI

∣∣∣∣
I0

= ωd (t). (B5)

The LHS of (B5) is ω(I0), and therefore this equation defines
implicitly I0(t). In other words, I0(t), changes in time so that
the nondriven frequency will match the changing drive fre-
quency. Next, notice that dI0

dt
= dI0

dω
α and that d2H0

dI 2 = ( dI0
dω

)−1.
x1 depends on I0 + δI , but since it is multiplied by the
small ε, we can write x1(I0). Finally, we obtain a “universal”
autoresonance Hamiltonian:

HAR = δI 2

2
(

dI0
dω

) − εx1(I0) cos φ + α
dI0

dω
φ

= P 2

2M(t)
+ VAR(t,φ). (B6)

Without the α term this is similar to a pendulum Hamiltonian
with time dependent coefficients (P is the momentum, φ is the
coordinate). The α plays a destabilizing role. When it becomes
too large, the cos φ term is no longer capable of trapping the
phase.

Next, we want to find a new Hamiltonian that includes
the effect of a friction force of the form −
 dx

dt
. The friction

modifies Eq. (4), and it now reads [22]
dI

dt
= −εx1(I ) sin φ − 2
I. (B7)

Equation (5) remains unchanged. We define a new variable,

I = Je−2
t , (B8)

then

dJ

dt
= −εe+2
tx1(Je−2
t ) sin φ, (B9)

dφ

dt
= ω(Je−2
t ) − ωd (t) − εe+2
t ∂x1(Je−2
t )

∂J
cos φ.

(B10)

Accordingly, the corresponding Hamiltonian for J and φ is

H (J,φ,t) = e+2
tH0(Je−2
t ) − ωd (t)J

− εe+2
tx1(Je−2
t ) cos φ. (B11)

Writing J = J0 + δJ and Taylor expanding, we get the
Hamiltonian for δJ :

HδJ = e+2
t
[
H0(I0) + δJ e−2
t∂I0H0(I0)

+ δJ 2e−4
t∂2
I0
H0(I0)

/
2
] − ωd (t)(J0 + δJ )

− εe+2
tx1(Je−2
t ) cos φ + dJ0

dt
φ. (B12)
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For convenience, we returned back to I0 in factors, which do
not depend on δJ . Setting the linear term in dJ to be zero, we
obtain

∂I0H0(I0) = ωd (t), (B13)

just as before. Using this in (B12) we have

HAR,fric = δJ 2e−2
t∂2
I0
H0(I0)

/
2

− εe+2
tx1(I0) cos φ + dJ0

dt
φ. (B14)

For the AR breakdown discussion in Sec. V it will be more
convenient to write the potential terms using J0 = I0e

2
t .
Finally, we obtain that the AR Hamiltonian with friction is
given by

HAR,fric = e−2
t δJ 2

2
(

dI0
dω

)
+ e+2
t

[
−εx1(I0) cos φ +

(
α

dI0

dω
+ 2
I0

)
φ

]
.

(B15)

Comparing this to (B6), we see that even in the presence of
friction the Hamiltonian still keeps the same form: a kinetic
energy term with time-dependent mass and a potential energy
term, which consists of cos φ and φ terms (a “washboard”
potential).

APPENDIX C: SMALL ASYMMETRY
EXPRESSION FOR Vsfe

In this Appendix we use a perturbative approach to derive
Vsfe from Vas for small shifts. We start with a Taylor expansion
of Eq. (20):

Vsfe(x) = Vas[x − s(Vas)]

= Vas(x) − V ′
as(x)s + V ′′

as(x)s2/2 · · · , (C1)

where prime designates differentiation with respect to x.
Assuming the shift s is small (with respect to �x = x+ − x−),

we can neglect higher order term and obtain an approximate
expression for Vsfe. We start with O(s1). V (1)

s (x) = −V ′
as(x)s.

This potential has to be symmetric, i.e., the asymmetric part is
zero:

0 = V
(1)

sfe (x) − V
(1)

sfe (−x)

= [Vas(x) − Vas(x)] − [V ′
as(x) − V ′

as(x)|−x]s, (C2)

so

s(1) = Vas(x) − Vas(−x)

V ′
as(x) − V ′

as(−x)
. (C3)

As before, we use the notation V ′(x)|−x ≡ V ′(−x). Now, there
are two alternatives to obtain Vs . The first is to use s(1) in the
first order approximation of Vs and get an expression for Vs .
The second option is to use s(1) in Eq. (20). The advantage of
the second alternative is that the first order approximation is
used only once and not twice. The problem with the second
procedure is that Vas(x − s(1)) is not exactly symmetric. To
overcome the problem, we symmetrize the potential and write

V
(1)

sfe (x) = Vas
(
x − s(1)

) + Vas
(−x + s(1)

)
2

, (C4)

where we have used the fact that s(1)(−x) = −s(1)(x). This
procedure has been considerably better than the first alternative
mentioned above. For some purposes V (1)

s (x) will be enough,
yet for others higher accuracy is needed. A quadratic equation
for s(2) can be obtained by keeping order s2 in (C1) and by
forcing condition (C2). Although with mathematical software
pacakges the obtained expression is completely practical to
work with, we wish to obtain a more compact (yet less
accurate) expression for s(2) by writing s(2) = s(1) + ds and
keeping only order ds and (s(1))2. After some algebra, the
result is

s(2) ∼= s(1) + [Vas(−x) − Vas(x)]2[V ′′
as(−x) − V ′′

as(x)]

2[V ′
as(−x) − V ′

as(x)]3
, (C5)

and finally

V
(2)

sfe (x) = Vas
(
x − s(2)

) + Vas
(−x + s(2)

)
2

. (C6)
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