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We investigate the failure mechanisms of load-sharing complex systems. The system is composed of multiple
nodes or components whose failures are determined based on the interaction of their respective strengths and loads
(or capacity and demand, respectively) as well as the ability of a component to share its load with its neighbors
when needed. We focus on two distinct mechanisms to model the interaction between components’ strengths and
loads. The failure mechanisms of these two models demonstrate temporal scaling phenomena, phase transitions,
and multiple distinct failure modes excited by extremal dynamics. For critical ranges of parameters the models
demonstrate power-law and exponential failure patterns. We identify the similarities and differences between the
two mechanisms and the implications of our results for the failure mechanisms of complex systems in the real

world.
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In the last decade a significant body of research has accu-
mulated in the study of complex systems, their structure and
dynamics [1]. Static robustness in terms of node removals has
been explored in [2]. But most real networks undergo dynamic
failures where the failure of a single or multiple nodes might
trigger cascades of failure through the network. Dynamical
redistribution of flow has been considered in different real
world networks: power grids [3], air transportation networks
[4], and communication networks [5].

Many physical systems fail as their capacity or strength
degrades over time under constant load or their load increases
over time as the strength remains fixed. For example, loss
of strength phenomena are observed in stress rupture or creep
rupture [6], tire wear, and the level of fluid in a hydraulic system
[7]; whereas load buildup is commonly considered in fiber-
bundle models of complex systems [8,9]. Failure occurs when
a component’s load is greater than its strength. Component
failure due to overloading is a serious threat in networks: a
single component failure and its subsequent load redistribution
can trigger cascades of failures through the network, ultimately
bringing down the entire system [3,8].

On the other hand, many communication and transportation
systems exhibit congestion phenomena as data or customer
traffic density increases beyond certain thresholds. Congestion
or jamming phenomena for critical values of traffic density
have been demonstrated in models of transportation [10] and
communication networks [11-13]. Traffic flow models for
air transportation systems have been explored in [4,14,15].
Congestion in one part of the network has the effect of
rerouting traffic to other parts of the network, resulting in
slowing down or clogging traffic in the entire system.

In this work we explore two different models of interaction
between component strength and load to understand the failure
mechanisms of complex systems. The first one is a loss of
strength (LOS) model where components lose strength over
time following prescribed rules. The second one is a customer
service (CS) model where component demand is modeled
through customer or data traffic arrival rate. For both models
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we investigate the strength-load interaction both at and below
critical loading levels [8,16]. At critical loading levels and
above the entire system abruptly collapses; we refer to this as
the critical state.

First, we describe the general system setup. We implement
both models on two different network topologies: individual
components organized in an n x n lattice or a scale-free (SF)
network of n? components following a power-law degree
distribution P (k) ~ Ak™", with exponents 2 < y < 3. The
SF network is constructed using the Barabasi-Albert (BA)
algorithm [17]. The BA SF model is a growth and preferential
attachment algorithm where at each iteration step a new node
is attached to m existing nodes in the network, where m is
a constant input parameter. At the end of the iteration steps,
a scale-free network of average degree (k) = 2m is obtained.
We generate BA SF networks for m € (2,4,6) which results in
average degree (k) € (4,8,12). These choices of (k) cover a
range of communication, biological, and social networks in the
real world [1]. In both network topologies each component can
be in one of three possible modes: fully operational, stressed,
or failed. We denote by (i,j) the location of a component
in the lattice. For the scale-free configuration we number the
components from 1 to n%. Next we describe the LOS model in
the lattice configuration.

For the LOS model on a lattice topology each component
is initialized with a specific strength S;;. Component loads L;;
are initialized with the same value and during the simulation
are not exogenously varied. If L;; < 1S;;, where n € (0,1) is
a parameter to control the strength degradation threshold, then
the component is fully operational and the strength does not
degrade. If nS;; < L;; < §;; then the component at (i, ) is
considered stressed and loss of strength takes place over time.
We consider deterministic loss of strength for the components
[7]. The component’s strength degradation follows the
relationship S{; = —at + S/, where « is the strength
degradation rate parameter, ¢ is the time, and Sl’j denotes the
strength at time r = ¢’ when component LOS commences.
If L;; > S;; then the component fails and the load is
redistributed equally to the component’s immediate neighbors
in the system. Once a component fails it is removed from the
network.
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The objective of the S;; and L;; initializations is to capture
the interaction dynamics of the component strength and
load. The simulations work in the following way: First, all
component loads are set to a specific value L;; = L where L €
[0.5---4]. During a simulation L is not exogenously varied.
For each load setting L, 30 000 Monte Carlo simulations are
carried out and S§;; is reinitialized for each simulation. To gen-
erate a mix of strong and weak components, §;; is initialized
from a real uniform distribution 2/[6, 10]. To initiate LOS dy-
namics, for each simulation 4-5 components are initialized to a
stressed mode L;; > nS;; where deterministic loss of strength
takes place. As L is steadily increased, we arrive at critical
ranges of L where interaction between components L;; and S;;
triggers LOS dynamics and load redistributions for an increas-
ingly greater number of components. This allows us to capture
the failure mechanisms of the system. In the simulations ¢t =
kAt with At =0.1,k=1---500,n =12, n=0.7, and ¢ =
0.2. The components at the boundary are initialized to very
high strength to prevent failure. Since boundary components
do not fail we do not need to deal with their load redistributions.

In the SF network case each component has neighbors
following a power-law degree distribution. The simulation
initializations for the LOS SF network model is the same as
the lattice configuration except with n> = 100 and for each
simulation we generate a BA SF network. Also by construction
all components for the LOS model on a SF network have
neighbors so special handling of boundary components is not
necessary.

Next we describe the CS model on a lattice configuration.
For the CS model we have taken a “Eulerian” [18] point
of view for component flow dynamics as opposed to the
standard “Lagrangian” point of view of our references.
Component demand is modeled as a customer or data arrival
rate A. Although traffic in real communication networks is
non-Poissonian [12,19], as a first step we follow [11,14] and
model customer demand as a Poisson process with rate A.
The rate A is the same for all components and does not vary
during a simulation. Thus the system is in effect subjected
to a uniformly distributed globally varying load. Component
capacity is modeled through a fixed customer departure rate
vij- In addition, each component possesses an associated
queue ¢;; for extra storage capacity. At a given time step if
A < y;j then the component is fully operational. If A > y;;
then the excess demand (A — y;;) is redistributed to the fully
operational neighbors of the component. Excess demand is
transferred sequentially to the neighbors with the largest spare
capacity (y;; — A) > 0 where (i, j) denotes the location of the
neighbors. If component demand redistribution is successful
then the component remains fully operational. The component
excess demand redistribution might be partially or completely
unsuccessful. In that event, the remaining excess demand is
placed in the queue ¢g;; for processing in the next time step. If
the remaining excess demand is placed in g;; successfully then
the component at (i, j) is considered stressed. If the remaining
excess demand overwhelms ¢g;; then the component is con-
sidered congested (failed) as it is not able to service the traffic
demand. Once a component is congested it is taken off the
grid.

As in the LOS model, we capture the interaction between
component capacity and demand for the CS model through
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critical ranges of A that trigger demand redistribution and
congestion. In our simulations, component capacities y;; are
initialized by sampling from a integer uniform distribution
U[8,12] to generate a mix of strong and weak components.
We run 30 000 Monte Carlo simulations for each integer
value of A €[5,11]. For each simulation the system is
initialized with new capacities y;;. Each simulation is run
for t = kAt = 500 time steps where At = 1. The queue size
is set to ¢ = 6 and n = 12. For our ranges of A the queue
essentially provides components additional time to prevent
failure. Boundary components have queues set to large values
to prevent component failure and avoid load redistribution.
For the CS model on a SF network we have n> = 100 and due
to circular boundary conditions special handling of boundary
components is not necessary.

Before presenting our results we note an important differ-
ence between the CS and LOS models. In the LOS model,
a component’s load redistribution is the final step before it
fails: once LOS dynamics is initiated the component will
fail and an attempt will be made to redistribute its load. In
the LOS model a component can undergo, at most, one load
redistribution. In the CS model a component is essentially
renewed through successful excess demand redistribution. The
component fails only if the load redistribution is unsuccessful
and the associated component queue g;; is overwhelmed. In the
CS model a component can complete multiple excess demand
redistributions and remain fully operational.

Another important point is regarding failed component load
that is not successfully redistributed. In both models we shed
the load and consider it lost. This is common in the context
of internet traffic where packets are routinely discarded when
routers are congested [20]. Similarly, power grid substations
have mechanisms which take them offline during capacity-
demand imbalances [21].

Next, we define two quantities measured in the simulations.
During each simulation components fail as the system evolves
in time. We denote by Tg (terminal failure) the number of
component failures at the end of a simulation. The Tr is a
measure of the degree of system failure. We denote by Tt
(terminal time) the time step when the penultimate component
failure occurred. The Tt can be interpreted as the time at which
the system achieves a pseudosteady state.

The T and Tt distributions for different values of load
initialization for the LOS model on a lattice configuration are
shown in Fig. 1. At loading L = 0.5 the system is far from
critical. At these loading levels component failures are mainly
due to components that were initialized to commence LOS
and their subsequent load redistributions to weak components.
At these loading levels the systems are resilient to chains of
cascading failure triggered by load redistribution, this fact is
indicated by Fig. 1(a).

As the initialization load is increased, transition load
conditions can be identified for L = 2 and 2.5. The bimodal
distributions in Figs. 1(b) and 1(c) resemble the bathtublike
curves that are commonly observed in the reliability of com-
plex systems [22]. In Fig. 1(c) half the simulations represent
systems with all components failing. The other half represent
systems with partial component failures. This implies that for
approximately 50% of the simulations the system strength
topology is such that cascading chains of load redistributions
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FIG. 1. (Color online) LOS model distributions. Tr distributions (top row); T distributions (bottom row) L = (a),(e) 0.5; (b),(f) 2; (c),(g)

2.5;(d),(h) 4.

are triggered which eventually bring down the entire system.
For the other 50% of simulations the system strength topology
is strong enough to withstand the load redistributions, thus
avoiding a cascading chain of failures. Transition load settings
are similar to “tipping points” or “critical thresholds” [23]. In
our simulation framework, at tipping points systems may or
may not, depending on the system strength topology, descend
into catastrophic failure.

Recalling that Tk represents the degree of system failure
for a gi~ven simulation, let Tr denote “smoothed” versions
of Tg. Tr exhibits temporal scaling phenomena for the LOS
model for load values lower than the transition load on both
the lattice and SF networks of (k) = 12. Tk is constructed in
the following way. Referring to the T and Tt distributions in
Fig. 1, each point in the Tr distribution has an associated point
in the Tt distribution. For a particular system loading L, we
bin the Tk distribution in groups of 4 in ascending order and
denote them by Tg; with its value set to the minimum Tg value
in the bin [24]. For each bin we find the corresponding values
in the T distribution and compute their mean, denoted (Tt);.
We illustrate the temporal scaling phenomena of Tg in Fig. 2
for different values of loading for the LOS model in both
lattice and SF network configurations. In Fig. 2, T versus
(Tt) is plotted in a log-log scale. Each circle in the figures
represents the mean of a Ty distribution conditioned on a Tk;.

From these figures the following scaling relation is estab-
lished for loading values far below the critical load:

(Tr) = kT¢". (1)

Table I tabulates the numerical values for « and 7 for different
values of load. At low values of load, Figs. 2(a) and 2(c),
the logarithm of Tg scales linearly versus the logarithm of
(Tt). As the initial load setting is increased, a break point
develops and the Tgs separate into two different log-log linear
scales, as illustrated in Figs. 2(b) and 2(d). The slopes of
the figures indicate that the second group of Tgs have faster
transition dynamics to (Tt) compared to the first Tr group.

Table I also tabulates the break point Tr when the switch to
faster transition dynamics occurs and the residual error of the
data fit.

All systems in the LOS lattice configuration undergo
complete failure at the critical load L = 4, as seen in Fig. 1(d),
and Ty is characterized by a first-order phase transition into
the critical state [Fig. 4(a)]. We define the critical load as
the load required for complete system failure, Tg = 99 or
100, with probability greater than 0.95. For the LOS model
on SF networks the critical load is slightly higher at L = 4.5
for (k) =12, L =5 for (k) =8, and L = 5.5 for (k) =4.
Here we recall that component strengths are initialized in
the real number interval U/[6,10] with n = 0.7, meaning that

15 2
(a) (b)
Py 15 Slope =19
) 1 )
=) &
S R
‘ Slope = 1.1
gos " g
- — 05 Slope = 1.4
0 0
1. 2 2.2 2.4 2.6 2 2.2 2.4 2.6
Iog10(<TT>) Iog10(<TT>)
2 2
(C) (d) Slope = 11 3
—~ 15 ° —~15 o
EN g & , >
= 1 S Slope=12 ERE] °
20 ° o0
_q 05 2 Slope = 1.2
0.5
0 o
2 2.2 2.4 2.6 1.9 21 23 25 27
Iog10(<TT>) Iog1 0(<TT )

FIG. 2. (Color online) Tr temporal scaling for the LOS model,
lattice configuration (top row) and SF network (bottom row). The
plots are on a base 10 log-log scale (a) Lattice network L = 0.5;
(b) Lattice network L = 1.5; (c) Scale-Free network L = 0.5, (k) =
12; (d) Scale-Free network L = 1.5; (k) = 12.
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TABLE I. Experimental values for the temporal system failure scaling phenomena of Eq. (1).

L K1 T Residual norm Break point (Tf) K> T Residual norm
LOS model 0.5 28.5 0.9 0.16
on a 1 46.4 0.66 0.16
lattice network 1.5 61 0.7 0.13 25 428 0.05 0.28
LOS model 0.5 21.54 0.83 0.29
ona 1 24.24 0.77 0.23
scale-free network 1.5 21.54 0.83 0.13 33 432.87 0.09 0.11
(k) =12 2 41.24 0.76 0.09 29 342.93 0.14 0.04

for L > 6 x 0.7 = 4.2 a considerable number of components
will be initialized in the stressed mode L;; > nS;;. To induce
system failure in LOS SF networks, with decreasing (k) more
and more components need to be initialized to commence
failure dynamics. The implication being that the LOS model is
increasingly resilient to system failure with decreasing average
network connectivity (k). This result is in agreement with [2]
which demonstrates that scale-free networks are more resilient
to random errors or failure [25] compared to other network
topologies.

The Tt distribution fit for the LOS model at the critical
loads is shown in Fig. 3. The LOS model on a lattice
configuration for L = 4 is shown in Fig. 3(a). In the lattice
configuration the LOS model fits a power-law distribution
Prob(Tr) = aT1# with B =3.5 and o = 10°°. The LOS
model on SF networks with L = 4.5, (k) = 12 is shown in
Fig. 3(b). With probability 0.97 the model fits a power-law
distribution Prob(Tt) = Tt # with 8 = 2.6 and o = 10*2.
The LOS model on SF networks with L =5, (k) =8 is
shown in Fig. 3(c), and with L = 5.5, (k) =4 in Fig 3(d).
As can be seen from the figures, at the critical load as the
average degree (k) decreases the Ty distributions lose their
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FIG. 3. (Color online) LOS model Tt distributions at the critical
load. Note the breakdown in power-law scaling with decreasing
average network connectivity. (a) L =4 LOS Lattice model, fit to
Prob(Tr) = aTr . (b) L =4.5, (k) =12 LOS SF model, fit to
Prob(Tr) = aTr?. (¢) L =5, (k) = 8 LOS SF model. (d) L = 5.5,
(k) =4 LOS SF model.

power-law scaling. This implies that at the critical load, the
LOS model loses power-law scale invariance in the system
failure time distribution with decreasing average network
connectivity (k).

The phase diagram of the LOS lattice model is shown in
Fig. 4. The LOS lattice model demonstrates phase diagrams
similar to both first-order and second-order phase transitions.
At the critical load L = 4, cascades of load redistributions
induce massive failure causing all systems to fail as shown
in Fig. 1(d). The corresponding first-order phase diagram is
shown in Fig. 4(a). The loading at L = 4 is such that cas-
cading load redistributions induce failure with minimal LOS
dynamics. At transition loadings L = 2, systems undergoing
complete failure [refer to Figs. 1(b) and 1(c)] exhibit second-
order phase transitions as shown in Fig. 4(b). For second-order
phase transitions, the transition to complete system failure
is a gradual process involving repetition of LOS dynamics
and load redistributions cascading from one component to
the next.

Here we note that first- and second-order phase transitions
for traffic congestion in complex networks have also been
reported in [5,26]. In [5], the authors show that by increasing
the probability of node congestion (from 7 = 0.05 to 7 =
0.95, where 7} is a parameter to control the node congestion
probability) the traffic flow phase diagram switches from
second order to first order. On the other hand, in [26], the
first- or second-order phase transitions depend on the particular
traffic routing protocol utilized (shortest-path routing versus
traffic-aware routing). In comparison, for the LOS model, by
increasing the load from L =2 to L =4, the component
failure phase diagram switches from second order to first
order.
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FIG. 4. (Color online) Phase transition of the LOS lattice model.
(a) First-order transition at L = 4. (b) Second-order transition at
L=2.
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The Tg and Ty distributions for the CS model on a lattice
configuration are shown in Fig. 5. The CS model on a
SF network demonstrates qualitatively similar distributions.
Loadings A = 6,7 correspond to transition loadings for these
systems. The multimodal nature of the Ty distributions in
Figs. 5(b) and 5(c) indicates that multiple failure modes are
present in the distributions. Multimodal distributions have
been observed in nature in the eruption of geysers [27] and
the sizes of ants [28].

To isolate and identify the different failure modes, we
filter the T distributions based on the capacities of the
failed components. Recall that in simulating the CS model
we initialize component capacities from an integer uniform
distribution ¢/[8,12]. In Fig. 6(a) we color code the Tg
distribution for A = 6 [Fig. 5(b)] based on the capacities of
the failed components. From Fig. 6(a) the composition of the
different failure modes becomes clear. The Tg distribution for
A = 61is composed of a failure mode where only components of
capacity 8 fail, a second failure mode where only components
of capacity (8,9) fail, a third failure mode where only
components of capacity (8,9,10) fail, and so on. Similarly
we can filter the Tk distribution for A = 7.

It is also of interest to understand the dynamics that is
exciting the multiple failure modes for transition loadings A =
6,7. Motivated by extreme value theory [29] one explanation
lies in the demand dynamics. Although the average demand
on the system is A = 6 or 7, the CS model is sensitive to
the extremal behavior of the demand dynamics. Extremal
events have been modeled in areas as diverse as finance
[30] and earthquake characterization [31]. In Fig. 6(b) we
plot the extremal behavior of the demand dynamics as a
function of Tr for A = 6. The figure is constructed in the
following way: In Fig. 6(a) for each Tr € [1,100], we first
determine the maximum demand seen by each of the systems
in their associated window [0,Tt]. For each Tg € [1,100]
we then compute and plot the mean maximum demand
(shown in blue), the maximum maximum demand (shown

in red), and the minimum maximum demand (shown in
green).

In Fig. 6(b) we can clearly observe the staircaselike growth
trend of mean maximum demand as a function of Tg and the
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FIG. 6. (Color online) Extremal behavior of the CS model for
A = 6. (a) Multiple failure modes. (b) Maximum demand as a function
of TF.
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FIG. 7. (Color online) CS model Ty distribution fit at the critical load. (a) A = 11, Tt distribution. (b) A = 11, fit to Prob(Tt) = Exp(w).

step function growth of the associated minimum and maximum
bounds of maximum demand. It is our opinion the extremal
behavior of the demand dynamics [32] in conjunction with the
structure of the component capacity topology is responsible
for exciting the multiple distinct failure modes observed in
Fig. 6(a).

For example in Fig. 6 consider the interval T € [10,25];
mean maximum demand in this interval roughly corresponds
to around 14 with components of capacity 8 failing. Noting
that the queue size is 6, we can understand why components
of capacity 8 are being overwhelmed by the mean maximum
demand (8 4+ 6 = 14) in this interval. However, in addition
to the specific sequence and number of extremal demands,
relatively stronger neighborhood capacity topologies are
partly responsible for the left side of the bell shape and
relatively weaker neighborhood capacity topologies are partly
responsible for the right side of the bell shape in the interval
Tr € [10,25]. For a specific level and sequence of extremal
demand, arelatively stronger neighborhood capacity topology
provides components a greater opportunity to survive through
load sharing. We could construct similar arguments for the
other bell-curve-like waves in Fig. 6 such as the interval Tg
€ [30,50], where components of capacity (8,9) are failing and
mean maximum demand is approximately 15.

The result in Fig. 6 is similar in spirit to results in [33],
where the authors show using shell models of turbulence that
large fluid velocity fluctuations propagating from shell to shell
cause multiscaling in the shell velocity variation distributions.
In other words, the velocity variation distribution is composed
of two separate regions, the first due to “small” but “usual”
velocity fluctuations and the second due to “large” but “rare”
velocity fluctuations. Comparing to our results in Fig. 6, we can
see the extremal demand dynamics exciting different scales of
failure in the T distribution.

The T distribution fit for the CS lattice model at the critical
load A = 11 is shown in Fig. 7. At the critical load the CS
model fits an exponential distribution Prob(Tr) = ﬁe‘TT/ 2
with parameter p = 19.06 [Fig. 7(b)]. The CS model on
SF networks demonstrates similar results. In communication
and transportation applications M /M /1 queues have arrivals
according to Poisson processes and service time distributions

are exponential [34]. Although individual components in the
CS model resemble M/D/1 queues,' at critical demand rates
the load-sharing capability of the CS model is rendered redun-
dant and the structure of the component capacity topology
causes the system to demonstrate exponential distribution
failure times. Here we also note that exponential and subex-
ponential distributions have been widely reported in financial
applications such as drawdowns of the stock market, major
currencies, and major financial indices [35]. The relation-
ship between the extremal dynamics of the CS model and
market drawdowns presents an interesting subject for future
investigation.

To summarize, we have used the concept of component
strength and load interaction to investigate the failure mecha-
nisms of complex systems utilizing two different strength-load
interaction models. The LOS model explores strength-load
interaction through a loss of strength mechanism. The CS
model explores capacity-demand interaction through the cus-
tomer or data arrival-departure rate mechanism. At low levels
of loading which correspond to lower network utilization,
the failure mechanisms in the LOS model follow predictable
trends [Eq. (1) and Fig. 2]. The failures in the systems can
be managed and network resources are sufficiently allocated.
The system is resilient to cascading failure triggered by load
redistribution.

At transition loadings or tipping points, both models
demonstrate increasingly unpredictable behavior with system
volatility and increasing disorder. Systems may or may not
descend into catastrophic failure, and extremal dynamics
excite multiple failure modes in systems. The results imply that
at these loadings the system resources (characterized by the
system strength topology) need to be allocated appropriately
to avoid catastrophic failure.

For critical loads system failure is reached through phase
transitions. At criticality, depending on the strength-load
interaction mechanism, systems demonstrate power-law or
exponential temporal failure patterns.

The interested reader will find an in-depth discussion on queueing
theory, and, in particular, M/M/1, M/D/1 queues in [34].
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