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Rubik’s cube: An energy perspective
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What if we played the Rubik’s cube game by simple intuition? We would rotate the cube, probably in the hope
of getting a more organized pattern in each next step. Yet frustration occurs easily, and we soon find ourselves
trapped as the game progresses no further. Played in this completely strategy-less style, the entire problem of the
Rubik’s cube game can be compared to that of complex chemical reactions such as protein folding, only with
less guidance in the searching process. In this work we look into this random-searching process by means of
thermodynamics and compare the game’s dynamics with that of a faithful stochastic model constructed from the
statistical energy landscape theory (SELT). This comparison reveals the peculiar nature of SELT, which relies
on the random energy approximation and often chops up energy correlations among nearby configurations. Our
observation provides a general insight for the use of SELT in the studies of these frustrated systems.
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I. INTRODUCTION

Rubik’s cube has drawn long-lasting interest from the
general public as well as the scientific community since its
birth in the 1970s [1]. The cube itself bears a concise physical
structure and is operated with basic rotational rules. Yet it
appears difficult for most players to solve the cube toward its
ultimate, ordered pattern. The vast number of configurations
(of the order of 1019), along with the rotations that serve as
their links, form a network that has a regular structure, in the
sense that each configuration is linked to an identical number
of nearest neighbors. In spite of the numerous configurations,
it has been proven recently that the shortest path between
any two configurations contains no more than 20 steps [2],
each step standing for a rotation of some face by 90◦ or 180◦,
clockwise or counterclockwise [3].

Aside from the elegance of its mathematical structure
[4], the Rubik’s cube game, when played with a very naive
attitude, leads to experiences that are strikingly similar to those
with the famous protein-folding problem [5]. The similarity
mainly lies in the frustration during the global minimum
searching process, and this frustration is attributed to the lack
of farsighted guidance and the misleading local traps. In the
protein-folding problem, however, the searching process can
be suddenly sped up as guided sequential moves are triggered,
such as zipping or helical structure formation, which follows
the so-called “cooperative” nature [6–8], an essence due to
the chain-connecting structure in proteins. The lack of such
essence in the Rubik’s cube problem leads to a slower, more
random searching process, where single rotations are often
accompanied by huge energy leaps. In fact, following the
commonly used Monte Carlo simulation procedure [9], for
a standard 3 × 3 × 3 Rubik’s cube it is almost impossible
to reach the ultimate pattern within a reasonable computing
time. In the current study, we choose to use a simplified energy
function that ignores the edge patches of the cube, so as to make
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computer simulations and energy landscape analysis [10,11]
possible.

From our previous study [12], we have demonstrated that
the Rubik’s cube problem, if viewed from the thermodynamic
perspective, exhibits a peak in heat capacity. This peak
represents the existence of a transition between the native state,
which represents the configuration for the energy optimum,
and the disordered state, which stands for the vast number of
disordered configurations. This feature alone bears a striking
resemblance to the folding transition of the protein problem.
Moreover, via Monte Carlo simulations we find that the mean
first-passage time (MFPT) [13] exhibits a U-shaped trend
versus temperature. This indicates that the searching process
towards the native state gets much faster at the optimized
temperature than an unguided search throughout the whole
configuration space [14]. From a statistical study we have
confirmed that the energy landscape has a bias towards the
native state, while the nature for the frustrated landscape is best
exhibited through a nonexponential relaxation in the energy
autocorrelation function. All of these results coincide well with
the corresponding observations in protein-folding research.
Despite this analogy, we should point out that the Rubik’s
cube problem, having a highly simplified structure, possesses
a relatively tiny funnel-like region in its energy landscape,
which results in a more diffusive searching process than the
protein-folding dynamics.

In the protein science community, studies concerning such
bumpy energy landscapes are often performed with the aid of
the statistical energy landscape theory (SELT) [10,15], where
the numerous configurations as well as their detailed reaction
links are parameterized by one or a few reaction coordinates.
After being projected onto these reaction coordinates, the huge
amount of configurational information is transformed into a
statistical distribution that establishes the stochastic nature
of the theoretically rebuilt model, which features a random
energy Hamiltonian [16,17]. Originally developed for studies
on protein folding without consideration of cooperativity
[15,18], SELT is, in our perspective, a very promising tool
for describing the Rubik’s cube problem.
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In the spirit of methodologic study, we construct SELT
in the current work as a rebuilt version of the Rubik’s
cube model (RCM) we use, and examine the similarity and
dissimilarity between the two. Regarding the MFPT, the
Monte Carlo simulations performed for both models show the
same qualitative features that characterize the protein-folding
dynamics. In particular, the MFPT results from both models
agree well quantitatively in the high-temperature regime. To
understand the numerical discrepancy that increases at low
temperatures, we examine the energy-time series and find the
frozen movements peculiar to the random walker of SELT.
We point out from there the essential difference between the
dynamic behaviors with the two models. In short, while RCM’s
random walker pays more short-term visits to secondary
minima, SELT’s random walker seldom encounters the “trap
states” but gets frozen there once it steps in. Moreover, the
entrapment in SELT is both energetic and entropic, which
leads to a very different temperature dependence in its dynamic
behavior.

II. MODELS AND METHODS

In this work we use a simplified 3 × 3 × 3 RCM, where we
ignore the edge patches and only consider the colors of corner
patches and face-center patches in the energy function. For
each configuration of this model, the corresponding energy is
defined by E = −∑6

i=1 ni , where the summation runs over all
six faces of the cube, and ni is the number of corner patches
that sit on the ith face and share the same color with the
central patch of that face. The lowest energy of the cube is
therefore −24, which corresponds to the ultimate configuration
where all six faces are solid colored. Following the language
of protein-folding dynamics, we choose to call this ultimate
configuration the “native state.”

Once the energy function is defined, one can rephrase the
Rubik’s cube problem in the language of thermodynamics. In
particular, its kinetic behavior under a constant-temperature
heat bath can be established using the Metropolis Monte Carlo
algorithm [9]. For each Monte Carlo time step, a move is
picked from a total of 12 rotations, whereas a “rotation” means
picking a face and rotating the layer of pieces underneath
that picked face by 90◦, clockwise or counterclockwise.
Whether this move is actually performed is determined by the
Metropolis algorithm, to assure the detailed-balance condition
upon thermodynamic equilibrium. For simplicity, we use
dimensionless units for energy and temperature and take
kB ≡ 1 for the Boltzmann constant.

To help grab a taste of the “game progress,’ as if in protein-
folding problems, we define an order parameter ρ that labels
the distance, namely, the minimal number of rotations, towards
the native state. The vast number of configurations of RCM
can be classified by their ρ numbers, which are no larger than
14. Subsequently, statistical information such as the energy
probability distribution P (E,ρ) and the total number of links
between successive ρ’s can then be derived.

In particular, the projection from the configuration space
onto the ρ axis leads us to the construction of SELT via
the random energy approximation. In RCM, each specific
rotation forms a link between a certain configuration of ρ

and another of ρ ± 1, with no ambiguity [19]. In other words,

FIG. 1. Illustration for the network-structure comparison of RCM
versus SELT. In SELT, configurations of the same ρ are combined
into one supernode, and each configuration of ρ is connected to all
configurations of ρ ± 1.

in the RCM network structure, the configurations work as
nodes, and each node is linked by rotations to 12 neighbors.
However, in SELT, the actual patterns of the configurations
are intentionally suppressed, and so is the specificity of their
links. All nodes of the same ρ merge to one supernode, while
the same total number of links remain connected between
supernode ρ and supernode ρ ± 1 (please refer to Fig. 1).
In doing so, the identities of links and configurations are no
longer recognizable. The total numbers of links between ρ

and ρ ± 1, denoted by l±(ρ), should give what we call the
connecting probability, λ±(ρ) = l±(ρ)/[l+(ρ) + l−(ρ)].

We perform Monte Carlo simulations for SELT with the
following algorithm: Starting from some “state” (rather than a
“configuration”) of certain ρ number and energy E, a random
walker would choose to move forward or backward, according
to the connecting probability λ±(ρ). The energy of this would-
be-next step is stochastically generated thereon, by a random
variable,H(ρ ± 1), that follows the statistical profile P (E,ρ ±
1) extracted from RCM.

Therefore, on the one hand, we have the original RCM
landscape, and on the other hand, with details smeared, we
construct an artificial landscape of SELT according to the
stochastic energy function. In this work we would like to use
the Rubik’s cube problem as a pivot to understand how well
this SELT can approximate the RCM landscape.

Note that the essence of RCM is inherited by SELT in
the form of λ±(ρ) and H(ρ ± 1). With such a simplified
probabilistic description, mean-field properties are inevitably
presented in SELT to some extent. However, fluctuations
beyond mean-field discussions are automatically generated
by the stochastic nature of H. In particular, note that while
SELT has been widely used in predicting complex molecular
dynamics, it is mainly performed with the aid of the master-
equation (ME) approach. This approach enhances the mean-
field feature of the system, as it replaces reactions via multiple
pathways by simple averaged reaction constants. Since further
insights will not be available until a faithful study beyond the
ME approximation appears, in this work we choose to perform
direct computer simulations instead, to extract more accurate
information for the dynamics of SELT.
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FIG. 2. Number of configurations versus (a) the order parameter
ρ and (b) the energy in RCM.

III. RESULTS

The statistics of the RCM configurations, such as the energy
probability distribution P (E,ρ) and the connecting probability
λ±(ρ), are acquired from our computer exhaustive studies that
branch out from the native state. There are a total of 88 179 840
configurations for our simplified 3 × 3 × 3 cube, and their
statistic information versus ρ and E is plotted in Fig. 2. Note
that the exponential growth near the native state, as revealed in
Figs. 2(a) and 2(b), implies that low-energy (i.e., E < −12) or
native vicinity configurations occupy only a very small fraction
of the overall configuration space.

In RCM, the probability distributions of energy change for
links between ρ and ρ ± 1 are denoted by P ±

RCM(�E,ρ), as
plotted in Fig. 3. The corresponding probability distributions
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FIG. 3. (Color) Probability distributions over energy change.
Only plots for forward motions of ρ → ρ + 1 are listed. As for
backward motions of ρ → ρ − 1, the distribution is just the reflection
of plot ρ − 1 → ρ over axis �E = 0. Red, RCM; blue, SELT.

in SELT are given by

P ±
SELT(�E,ρ) ≡

∑

E1,E2

P (E1,ρ)P (E2,ρ ± 1)δE2−E1,�E. (1)

We see in Fig. 3 that for ρ < 3 the probability distribution
created in SELT shows little difference from that in RCM.
Furthermore, the observation that both PRCM(�E,ρ) and
PSELT(�E,ρ) resemble a Gaussian distribution for ρ > 3 leads
to an intuitive speculation that, despite the specificity in its
configuration structure, RCM gives rise to such uncorrelated
profiles for energy change between consecutive steps, and the
random-energy hypothesis in SELT is, after all, well supported
in this aspect. Nevertheless, by comparison we find that
PSELT(�E,ρ) is, in general, broader then PRCM(�E,ρ), which
manifests the artifact produced by stochastically assigned
connections.

We now turn to a discussion of dynamics by first looking at
the MFPT towards the native state. As derived in our previous
work [12] on RCM simulations and the parallel study with
an ME approximation, the MFPT curves exhibit a U-shaped
feature (called “chevron rollover” in the studies of protein-
folding dynamics [20]), and the slow dynamics in the high-
and low-temperature regimes shown therein can be accounted
for by the tedious random-searching process and the existence
of deep energy traps, respectively. In the ME approximation
[12], the dynamics is mapped to a one-dimensional diffusion
process along ρ, where transitions between successive ρ’s are
represented by the average reaction rates,

kρ,ρ±1 =
∑

E

∑

E′
P (E,ρ)P (E′,ρ ± 1)k(E → E′), (2)

and k(E → E′) is the transition rate between two configura-
tions via the Metropolis algorithm.

With the new MFPT result in this work, we first make
a comparison between the ME approximation and SELT, in
terms of how much they preserve and reveal for the dynamic
message in RCM simulations. As shown in Fig. 4, the ME
approach underestimates the reaction dynamics, especially
at low temperatures. This can be easily explained: when
the approach described in Eq. (2) is applied, the kinetics
of all configuration links are averaged. Since deep energy
traps are featured by low-rate, low-population processes, they
fail to make any significant contribution to this average.
(Alternatively, one may choose to derive for each ρ the leaving
rate from the average waiting time, following what is done in
the Bryngelson-Wolynes theory [18,21,22]. In that manner the
dynamics of low-lying energy traps would be greatly amplified
and result in a very slow diffusion process.)

To go beyond the mean-field approach of ME, direct SELT
simulation should serve as a better approximation to RCM,
since fluctuation of the kinetic rate is then considered. In fact,
it is remarkable to see in Fig. 4 that the MFPT result of SELT
fits much better to that of RCM in the high-temperature regime.
However, the discrepancy between the two models increases
significantly at low temperatures. Further study is therefore
needed to resolve the dynamic distinction between the two
models.

To look further into the dynamics, we now examine the
average number of moves during the first-passage (FP) time,
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FIG. 4. (Color online) Results of the mean first-passage time
(MFPT). Squares represent SELT data from direct simulations; data
from RCM simulations (circles) and data from SELT predictions
using the master-equation (ME) analysis (triangles) were derived
previously [12] and are also shown here. Crosses and diamonds
mark the average numbers of first-passage (FP) moves for RCM and
SELT simulations, respectively. The average is performed for 10 000
simulations at each temperature for each model.

as shown in Fig. 4, for RCM and SELT. Note that a “move” is
defined here as an actual change of configuration, and in our
case, it is also equivalent to an actual change of the random
walker’s position on the order parameter axis. Surprisingly,
while the RCM result still exhibits a U-shaped feature,
the average number of moves in SELT shows a monotonic
decrease with 1/T . At T = 0.5 it even becomes less than 1000,
almost in scale with the number of moves during the diffusive
MFPT of a nonguided one-dimensional random walk.

The above observation reveals a curious fact, that while
the random walker in SELT simulations appears to be slow at
low temperatures, it actually spends considerably fewer moves
searching for the native state. Figure 5 is a snapshot of the
energy-time series for both simulations at T = 0.7. The ran-
dom walker of SELT stays frozen most of the time and, there-
fore, gives far fewer details in its dynamics. In other words,
the SELT simulations’ success in mimicking the MFPT trend
in RCM is in fact based on a very distinct dynamic behavior.

Energy-time series such as the one shown in Fig. 5 can
be used to derive the autocorrelation function CE(t), defined
by CE(t) = 〈�E(t)�E(0)〉/〈�E2〉, where �E ≡ E − 〈E〉.
Serving as a memory function, CE(t) provides a clearer
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FIG. 5. Snapshots of the energy time series for (a) RCM and
(b) SELT at T = 0.7.
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FIG. 6. (Color online) (a) Energy autocorrelation functions
CE(t) for RCM (circles) and SELT (squares) at the equilibrium of
T = 0.7. For each model, the values of CE(t) are obtained from a
simulation of 1010 Monte Carlo time steps. (b) Energy autocorrelation
functions at T = 0.7, acquired from 1000 FP simulations for both
models.

perspective for understanding the essentials of the different
dynamic behaviors. In particular, we show the results of CE(t)
at T = 0.7, for equilibrium in Fig. 6(a) and for FP processes
in Fig. 6(b). The legitimacy of the autocorrelation function in
Fig. 6(b) is based on the equilibrium provided by the sampled
FP cases. As a check, the FP average energy is 〈E〉 = −18.126
for RCM and 〈E〉 = −18.121 for SELT, both sitting closely
to the number 〈E〉 = −18.125, derived from the partition
function excluding only the native state.

When the native state is excluded, as demonstrated in
Fig. 6(b), SELT possesses a better memory on all time scales
of interest. The differences between Fig. 6(a) and Fig. 6(b) are
certainly due to the influence of the native state. By including
this influence, the result of the long-term memory competition
is reversed.

Note that in this example of a relatively low temperature, the
kinetics is mainly governed by the random walker’s behavior
in the vicinities of low-energy traps. That is, Fig. 6(b) reveals
the fact that SELT’s walker has a better memory, or, in other
words, spends a longer time, on low-energy traps, which in
turn implies lower probabilities of finding these traps (since
both models share the same energy histogram [23]). Indeed,
this deduction is echoed by the results of MFPT toward the
second minima (E = −20), as listed in Table I, where the
number from SELT simulations is almost 10 times longer than
that from RCM.

In Table I we also list the equilibrium average energy at
T = 0.7, for both SELT and RCM simulations. Note that while
〈E〉 is a time-averaged quantity, 〈E〉′ is an average over moves.

TABLE I. Average energies and MFPTs, for RCM and SELT
at T = 0.7. For each model, the average energies are derived from
a simulation of 1010 time steps. Unprimed data are time-averaged
quantities, while primed data are averages over moves. Each MFPT
value is obtained from 10 000 simulations.

〈E〉 〈E〉′ MFPT

To E = −24 To E = −20

RCM −22.7 −14.9 1.74 × 107 2.44 × 106

SELT −23.0 −10.7 3.60 × 106 2.25 × 107
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FIG. 7. (Color online) (a) Illustration for a deep energy mini-
mum of RCM. (b) Illustration for a trap state of SELT. Circled
dots represent the true-neighbor configurations. Links between ρ

and ρ ± 1 are represented by lines.

For both models, 〈E〉′ is less negative than 〈E〉. This is well
understood, since the move-average treatment greatly reduces
the weight carried by the minima, by overlooking the durations
of the random walker’s steadier stays on them. This effect is
even more prominent for SELT, as shown clearly by the frozen
stays in Fig. 5.

The MFPT results listed in Table I reveal a curious fact:
while SELT’s random walker finds the native state more
quickly, the time it needs to get to a second minimum is even
longer than the MFPT of RCM. On the contrary, the RCM
random walker gets to a second minimum more quickly than
its opponent gets to the native state. The implications of this
comparison are derived in Sec. IV.

IV. DISCUSSION

What causes such different behaviors from the two models
after all? In Fig. 7(a) we illustrate for RCM the landscape
around a deep energy minimum. Due to the specificity of
configuration links, around the minimum there exist gentle
and definite energy steps. Once getting into the vicinity, the
random walker moves in and out of the minimum frequently,
as shown in our time-series result in Fig. 5.

As for SELT, we need to turn to another perspective, as
illustrated in Fig. 7(b), for the specificity of configuration links
is replaced by the random energy approximation. As an artifact,
SELT combines various configurations into a supernode at
each ρ. Standing on a “state” of ρ, the random walker is
allowed to move onto any configuration of ρ ± 1. In this way,
a local minimum configuration in RCM might not remain a
minimum when it is transformed to become a state in SELT
yet can still serve as a trap dynamically. Conversely, a low-
energy trap state in SELT might not correspond to minimum
configurations when transformed back to RCM either (one
major exception is the native state, being a minimum, and
certainly the global minimum, in both models.) In Fig. 7(b)
we show that in SELT the true-neighbor configurations are
dramatically diluted in the ρ ± 1 populations. Effectively,
unlike the gentle and shallow energy steps toward these true

neighbors, the stochastically generated steps are often steep
and can confine the random walker straight in the trap.

To be specific, we now take a trap state of (E =
−20, ρ = 13), for example. In SELT, all 18 780 864(ρ =
12) + 6624(ρ = 14) configurations are taken as its neighbors,
whereas this trap state actually corresponds to 36 configu-
rations in the RCM. Out of these 36 configurations, 24 are
minima of the same class; each has 2 (out of the 12) true
neighbors that provide low-energy steps of �E = +2. The
remaining 12 are minima of another class; each has 2 (of
the 12) true neighbors that provide �E = +4.

This example shows how slim the chance is to win the
lottery of these low-energy true neighbors, as the random
energy approximation effectively brings entropic difficulty
to it. Still more, the numerous “virtual” neighbors enforced
on the state are mostly unfavored energetically. When the
random walker is eventually freed—either luckily, through
the low-energy true neighbors, or via any (true or virtual)
high-energy neighbor—once it is out, it can hardly find this
trap again and therefore does not linger around. As reported
in Table I, the chance of getting into the low-energy trap is as
slim as that of getting out, and even slimmer than the chance
of finding the native state.

The differences between the two models mainly lie in their
walkers’ distinct behaviors at secondary minima. The random
walker of RCM wastes considerably more moves roaming
around secondary minima. For example, at T = 0.7, during
the FP to the native state, the number of moves taken by
RCM’s walker is two order of magnitude larger than that of
SELT’s (as shown in Fig 4), whereas the average number of
FP moves to a secondary minima decreases to 8.7 × 103, in
the same order as that of SELT (4.2 × 103).

The Rubik’s cube model has such a network structure and
numerous configurations, which make its energy landscape
strikingly similar to those of complex macromolecules or
other glassy systems [16,24]. The Monte Carlo simulations of
RCM, instead of following clear pathways towards the native
state, proceed like a randomly searching walker within the
energy landscape. This dynamic behavior also mimics that of
complex chemical reactions, which are often studied using
SELT. However, we show in this work that the approach of
using the random energy Hamiltonian, which is often adopted
in SELT, fails to give a correct description for the dynamic
behavior of RCM.

Contrary to the general thought that the randomness in the
energy distribution results in a bumpy energy landscape and
slow searching dynamics, we have demonstrated through the
Rubik’s cube problem that the random energy description leads
to a faster dynamics instead. To our surprise, it is the lack
of energy correlation that speeds up the searching process.
Evidently derived from our results, these observations should
provide insight into the essence of the random energy approach
in studies of complex kinetics.
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