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We consider degree-biased random walkers whose probability to move from a node to one of its neighbors
of degree k is proportional to kα , where α is a tuning parameter. We study both numerically and analytically
three types of characteristic times, namely (i) the time the walker needs to come back to the starting node, (ii)
the time it takes to visit a given node for the first time, and (iii) the time it takes to visit all the nodes of the
network. We consider a large data set of real-world networks and we show that the value of α which minimizes
the three characteristic times differs from the value αmin = −1 analytically found for uncorrelated networks in
the mean-field approximation. In addition to this, we found that assortative networks have preferentially a value
of αmin in the range [−1, − 0.5], while disassortative networks have αmin in the range [−0.5,0]. We derive an
analytical relation between the degree correlation exponent ν and the optimal bias value αmin, which works well
for real-world assortative networks. When only local information is available, degree-biased random walks can
guarantee smaller characteristic times than the classical unbiased random walks by means of an appropriate
tuning of the motion bias.

DOI: 10.1103/PhysRevE.89.012803 PACS number(s): 89.75.Hc, 05.40.Fb, 89.75.Kd

I. INTRODUCTION

In the past decade or so the quantitative analysis of
networks having different origin and function, including social
networks, the human brain, the Internet, and the World Wide
Web, has revealed that all these systems exhibit comparable
structural properties at different scales and are more similar
to each other than expected [1,2]. It has been found that the
structural complexity of networks from the real world usually
has a significant impact on the dynamical processes occurring
over them, including opinion dynamics [3], epidemics [4], and
synchronization [5].

Random walks are the simplest way to explore a network
and are one of the most widely studied class of processes on
complex networks [6,7]. Different kinds of random walks have
been used to implement efficient local search strategies [8,9]
and also to reveal the presence of hierarchies and network
communities [10,11]. Particular attention has been devoted to
the study of the characteristic times associated to random
walks, such as the mean return times, or the mean first
passage times, respectively, the average time the walker takes
to come back to the starting node or to hit a given node [12].
Such characteristic times can be determined analytically for
random walks on regular lattices [13], but their calculation
for graphs with heterogeneous structures is still the object of
active research [14,15]. Recent results include the derivation
of analytic expressions for the characteristic times of unbiased
random walks on Erdös-Rényi random graphs [16], on fractal
networks [17–20], and on particular classes of scale-free
graphs [21]. To date, only approximate solutions are available
for random walks on real networks [22–25].

A class of random walks which is particularly interesting to
consider on heterogeneous networks is that of degree-biased
random walks. In a degree-biased random walk, the probability
to move from a given node to one of its neighbors, of degree
k, is proportional to kα , where α is a tuning parameter.
According to the sign of the bias parameter α, the walkers

preferentially move either towards hubs or towards poorly
connected nodes [26]. Biased random walks have been recently
employed for community detection [27] and to define new
centrality measures [28,29]. Furthermore, analytical results on
the characteristic times of degree-biased random walks have
been obtained for specific classes of random graphs in the
mean-field approximation [30]. However, the structure of real
networks is far from being random, and empirical evidence
suggests that the presence of degree-degree correlations can
affect the dynamics of the walk [31]. For instance, the authors
of Ref. [26] have shown that the value of entropy rate of
biased random walks on real correlated networks substantially
deviates from the prediction for the corresponding randomized
graphs. Similarly, more recent works show that degree-biased
random walks can approximate maximally entropic walks,
but the quality of such approximation depends again on
degree-degree correlations [32,33].

In this article we study, both numerically and analytically,
three types of characteristic times for biased random walks,
namely mean return times (MRT), mean first passage times
(MFPT), and mean coverage times (MCT). We consider
different synthetic graphs and a large data set of social,
biological, and technological complex networks from the real
world, and we study the effect of the bias parameter α on
the characteristic times of the walk, focusing on the values
αmin that guarantee minimal return, first passage, and coverage
times. Our main result is that the characteristic times of
biased random walks on real-world networks sensibly deviate
from those observed in uncorrelated graphs. In particular,
we prove analytically that the minimum MRT in Erdös-
Rényi and scale-free random graphs is always obtained for
αmin = −1, while we show through numerical simulations
that the minimum MRT in real-world networks is obtained
for values of α that significantly deviate from −1. We find
that the value αmin depends on the presence and sign of
degree-degree correlations in the network, and in particular
that for assortative networks −1 < αmin < −0.5, while for
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disassortative networks −0.5 < αmin < 0. We show that in the
case of networks in which the expected degree knn(k) of the
first neighbors of a node with degree k is a power law, i.e.,
when knn(k) ∼ kν as observed in many real-world networks,
it is possible to derive an approximate relation between the
optimal bias value αmin and the exponent ν. This approximation
works well for assortative networks in which, for any given
value of ν, the predicted optimal value of αmin is close to
the real optimum. We also analyze the MRT for nodes of a
given degree class k, and we derive a closed form, valid for
uncorrelated scale-free graphs, to calculate the value of the
bias αmin(k) which minimizes the MRT for nodes of degree
k. We also discuss the results found for MFPT and MCT,
which suggest that the optimal value of α for MRT on a given
network is a quite accurate approximation for the values of α

which optimize the MFPT and the MCT on the same network.
The paper is organized as follows. In Sec. II we introduce

degree-biased random walks and we provide the definitions of
return, first passage and coverage times. In Sec. III we study
how the MRT depends on the value of the bias parameter α,
and we compare the analytical predictions of characteristic
times, which assume the absence of degree correlations, with
the numerical results obtained on a large data set of real-world
networks. We also investigate the dependence of the MRT on
the degree of the starting node. In Sec. IV and Sec. V we study,
respectively, the behavior of MFPT and MCT on real-world
networks, and we show that the relation between the sign of
degree-degree correlations in a graph and the dynamics of the
walkers on the graph are indeed similar to those found for
MRT. In Sec. VI we provide a more detailed discussion of the
results presented in the paper, we derive an analytical relation
between ν and αmin, and we indicate possible applications to
several problems connected with characteristic times of biased
random walks. Finally, in Sec. VII we draw some conclusions
and we suggest possible future directions of research in this
field.

II. DEGREE-BIASED RANDOM WALKS

Let us consider an undirected and unweighted graph G =
(V,E) with N = |V | nodes and K = |E| edges. Denote as A

the adjacency matrix of graph G, i.e., the symmetric N × N

matrix whose entry aij is equal to 1 if an edge exists between
node i and j and is 0 otherwise. We consider the following
dynamical process occurring on the graph: a walker that at
each time step moves from a node to one of its neighbors
with a probability proportional to the α power of the degree of
the target node. The process corresponds to a discrete-time
Markov chain [34] on the state space V defined by the
transition matrix �, whose each entry πji is equal to the
probability for a walker on node i to jump to one of its
neighbors j and reads

πji = aij k
α
j∑

l ailk
α
l

. (1)

The exponent α is the control parameter that allows us to
tune the dependence of the process on the node degree.
When α > 0 the random motion is biased towards high-
degree nodes (hubs), while when α < 0 the walkers move
with higher probability to neighbors with low degree. When

α = 0 the common (unbiased) random walk is recovered.
The fundamental quantity to describe a random walk is
the occupation probability distribution pi(t). Being pi(t) the
probability that a walker is at node i at time t , then the
probability pj (t + 1) of being at node j at time t + 1 is given
by

pj (t + 1) =
∑

i

πjipi(t) (2)

or, in vector notation, p(t + 1) = � p(t). A fixed point solution
p∗ of the latter equation, such that p∗ = � p∗, is called
stationary distribution. If the transition matrix � is primitive,
i.e., if the graph is connected and contains at least one odd
cycle, the Perron-Frobenius theorem guarantees that p∗ always
exists, is unique, and

lim
t→∞ �t p(0) = p∗ ∀ p(0),

i.e., all initial occupation probability distributions p(0) con-
verge to the stationary distribution p∗ [35]. In particular, the
stationary distribution associated to the transition matrix (1)
of a degree-biased random walk is [26]

p∗
i = cik

α
i∑

� c�k
α
�

,ci =
∑

j

aij k
α
j . (3)

When α = 0, Eq. (3) reduces to

p∗
i = ki

2K
, (4)

which states that for unbiased random walks the number of
walkers at a node i is proportional to the degree ki , so the
dynamic process is completely characterized by the degree
sequence of the graph. Conversely, when α �= 0, the stationary
distribution p∗

i depends not only on the degree ki but also on the
degrees of the first neighbors of node i, through the coefficient
ci . The stationary probability distribution p∗ is therefore
sensitive to the degree sequence and also to the presence of
degree-degree correlations in the network. It is interesting to
notice that the majority of real-world networks exhibit degree-
degree correlations, meaning that their nodes are found to be
preferentially connected with other nodes having either similar
or dissimilar degree [36–38]. Consequently, in these networks
the stationary probability distribution p∗ can sensibly deviate
from that observed on a random graph having the same degree
distribution and no degree-degree correlations. Degree-degree
correlations are fully described by the joint probability P (k,k′),
which represents the likelihood that nodes with degree k and
k′ are connected through an edge or, equivalently, by the
conditional probability distribution P (k′|k), which represents
the probability that a node of a given degree k is connected
to a node of degree k′. The type of correlations is usually
characterized by the average degree knn(k) of the nearest
neighbors of nodes with degree k. This can be written in terms
of the conditional probability distribution P (k′|k) as [36]

knn(k) =
∑
k′

k′P (k′|k).

Networks are called assortative when knn is an increasing
function of k and disassortative when knn is a decreasing
function of k [36]. In many real-world networks the nearest
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neighbors average degree is found to be a power-law function
of k, i.e., knn(k) ∼ kν , so the exponent ν—often called
degree correlation exponent—can be used to quantitatively
characterize degree correlations. A positive exponent ν > 0
indicates assortative correlation while a negative value ν < 0
indicates disassortative ones.

In this paper we are interested in the typical times of degree-
biased random walks. In particular, assuming that a walker is
at node i at time t = 0 and moves according to Eq. (1), we
consider the expected time that the random walker needs to

(i) come back to node i for the first time, referred to as
mean return time (MRT) and denoted as ri ,

(ii) reach a node j (j �= i) for the first time, referred to as
mean first passage time (MFPT) and denoted as tij ,

(iii) visit all nodes in the network at least once, referred to
as mean coverage time (MCT) and denoted as ci .

In the following sections we explore how the three char-
acteristic times defined above are affected by the bias in the
random walk. In particular, we will focus on the value of the
bias parameter α which, respectively, minimizes MRT, MFPT,
and MCT. We use a data set consisting of many assortative and
disassortative medium- to large-sized real-world networks, and
we will show how degree-biased random walks can highlight
assortativity or disassortativity from a dynamical point of
view.

III. MEAN RETURN TIME

It is possible to prove that the mean return time ri of a
random walk on a graph is equivalent to the inverse of the
stationary distribution of the walk [39],

ri = 1/p∗
i . (5)

In order to summarize in a single value the typical return time
for the entire network, we define the graph mean return time
R as the average of ri over all nodes,

R = 〈ri〉 = 1

N

N∑
i=1

ri . (6)

A. Empirical evidence

In the case of a degree-biased random walk, R depends
on α because the stationary distribution depends on α as in
Eq. (3). In Fig. 1 we show the graph mean return time R as a
function of α for three networks, namely a scale-free network
with N = 104 nodes, P (k) ∼ k−γ with γ = 2.5, and average
degree 〈k〉 = 46, constructed by the configuration model [40],
the scientific collaboration network of scientists in condensed
matter (SCN) [41], having N = 12 722 nodes and K = 39 967
edges, and a sample of the Internet at the Autonomous System
level (InternetAS) [36], having N = 11 174 and K = 23 409
edges. The values of R are rescaled by the network size N .

The networks reported in Fig. 1 are representative of the
general behavior observed in the entire data set. In fact, for
all the considered networks R is always a convex function
of α, with a single minimum, denoted by Rmin, observed at
a value of α denoted as αR

min. For the uncorrelated scale-free
network we find αR

min = −1 and Rmin ∼ N . The same result
has been found for Erdös-Rényi random graphs and for
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FIG. 1. (Color online) The graph mean return time R rescaled by
the number of nodes N as a function of α for Internet AS (dashed
red line), SCN (dotted green line), and an uncorrelated scale-free
network (solid blue line). Due to the presence of correlations, R/N

is a much narrower function of α in real-world networks than in
synthetic networks, suggesting that mean-field approximations can
adequately describe the dynamics of biased random walks only for
uncorrelated graphs.

other uncorrelated scale-free networks constructed through
linear preferential attachment [42]. As shown in Table I,
as the average degree 〈k〉 of a synthetic network increases,
the corresponding value of αR

min approaches −1. Also the
minimum return time becomes progressively more similar
to the size of the network: Rmin ∼ N . These results are in
agreement with what has been found in Ref. [30]. We will
give an analytical explanation of the fact that αR

min = −1 for
uncorrelated networks at the end of this section.

From Fig. 1 it is clear that the dynamical behavior of biased
random walks on real-world networks considerably deviates
from that observed in uncorrelated synthetic networks. In fact,
if a network has degree-degree correlations, then the minimum
of R always occurs for values of α larger than −1. In particular,
for SCN we have αR

min � −0.65 while for InternetAS we have
αR

min � −0.15 (refer to Table I for the values of αR
min in each of

the real-world networks considered in this study). As we see in
the figure, the value of R in real-world networks is also highly
sensitive to the value of α, and Rmin can be considerably lower
than the value of MRT corresponding to an unbiased random
walk (α = 0) on the same network. For instance, in SCN the
value of Rmin is about half the value of R corresponding to an
unbiased random walk. This result indicates that a carefully
chosen value of the bias parameter can significantly reduce the
characteristic times of degree-biased random walks.

In Fig. 2 we report the values of Rmin and αR
min for each

network in the data set. For those networks with αR
min < −0.5

the minimum value Rmin is only slightly greater than the size
of the network N , while the differences are more pronounced
in the region α > −0.5. Notice that all the networks with clear
assortative degree-degree correlations (indicated by circles and
green labels) have a value of αR

min < −0.5, while disassortative
networks (indicated by triangles and red labels) have αR

min >

−0.5. This result indicates that the presence of degree-degree
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TABLE I. Values of ν and of αmin for MRT, MFPT, and MCT in synthetic and real-world complex networks. The mean-field approximation
gives correct results for synthetic uncorrelated networks (i.e., Erdös-Rényi, configuration model and Barabási-Albert networks) with sufficiently
large values of 〈k〉 and N . The values of ν are missing for those networks for which knn(k) is not a power-law.

Network Nodes Edges 〈k〉 ν αR
min αT

min αC
min

Synthetic models
Erdös-Rény 104 2 × 104 4 – −0.78 −0.46 ± 0.01 −0.90
ER 104 5 × 104 10 – −0.89 −0.78 ± 0.01 −1.00
ER 104 2 × 105 40 – −0.97 −0.96 ± 0.01 −1.00
Conf. Model (γ = 3) 103 4037 8 – −0.87 −0.65 ± 0.01 −0.65 ± 0.05
Conf. Model (γ = 3) 5 × 104 21458 8 – −0.86 – –
Conf. Model (γ = 3) 103 8764 17.5 – −0.94 −0.87 ± 0.01 −0.95 ± 0.03
Conf. Model (γ = 3) 103 28522 57 – −0.99 −0.98 ± 0.01 −0.98 ± 0.02
Conf. Model (γ = 2.5) 104 232722 46.5 – −0.98 −0.98 ± 0.01 −0.98 ± 0.02
Barabási-Albert (m = 3) 103 3 × 103 5.9 – −0.78 −0.36 ± 0.02 −0.30 ± 0.05
BA (m = 5) 103 5 × 103 9.9 – −0.98 −0.67 ± 0.01 −0.50 ± 0.05
BA (m = 20) 103 2 × 104 40 – −1.02 −0.99 ± 0.01 −1.05 ± 0.05
BA (m = 3) 105 3 × 105 6 – −0.76 – –
BA (m = 5) 105 5 × 105 10 – −0.99 – –
BA (m = 20) 105 2 × 106 39.9 – −1.02 – –
BA (m = 20) 4 × 104 8 × 105 39.9 – −1.02 – –

Real-world networks
Gnutella (P2P) [50] 62561 147877 4.72 – −0.91 −0.55 ± 0.02 −0.5 ± 0.05
PairsFSG [51] 10618 63787 12.01 – −0.89 −0.68 ± 0.01 −0.60 ± 0.05
Email URV [52] 1133 5451 9.62 0.05 −0.76 −0.62 ± 0.01 −0.70
Jazz [53] 198 2742 29.01 0.11 −0.70 −0.70 ± 0.01 −0.90
amazon [54] 410236 2439437 11.89 – −0.68 – –
USPower [55] 4941 6593 2.66 −0.02 −0.66 0.17 ± 0.01 −0.12 ± 0.05
SCN [41] 12722 39967 6.28 0.18 −0.64 −0.32 ± 0.01 −0.5 ± 0.1
ca-CondMath [41] 21363 91286 8.54 0.16 −0.63 −0.43 ± 0.01 −0.47 ± 0.05
ca-HepTh [41] 8638 24806 5.76 0.19 −0.65 −0.37 ± 0.01 −0.47 ± 0.05
ca-AstroPh [41] 17903 196972 22.00 0.22 −0.62 −0.58 ± 0.01 −0.52 ± 0.05
ca-ASTRO [41] 13259 123838 18.68 0.34 −0.59 −0.54 ± 0.01 −0.60 ± 0.05
ca-HepPh [56] 11204 117619 20.99 0.54 −0.57 −0.51 ± 0.01 −0.43 ± 0.05
pgp [57] 10680 24316 4.55 – −0.48 −0.20 ± 0.02 −0.25 ± 0.05
C. elegans [55] 279 2287 16.39 −0.15 −0.79 −0.68 ± 0.01 −0.7 ± 0.1
bio-Yeast [58] 2312 7165 6.20 −0.42 −0.44 −0.32 ± 0.01 −0.20 ± 0.02
www-Google [59] 855802 4291352 10.03 −0.42 −0.43 −0.33 ± 0.02 −0.25 ± 0.1
soc-Slashdot [59] 82168 582290 14.17 −0.78 −0.43 −0.38 ± 0.02 −0.16 ± 0.06
soc-Epinions [60] 75877 405739 10.69 − −0.39 −0.34 ± 0.02 −0.24 ± 0.01
Actors [55] 374511 1222908 6.53 −0.23 −0.37 −0.35 ± 0.02 −0.28 ± 0.06
wordnet [61] 75609 120473 3.18 −0.41 −0.30 −0.11 ± 0.02 −0.20 ± 0.05
www-NotreDame [62] 325729 1090108 6.69 −0.84 −0.29 −0.1 ± 0.05 −
www-Stanford [59] 255265 1941926 15.21 −0.72 −0.23 −0.23 ± 0.07 −0.25 ± 0.08
www-BerkStan [59] 654782 6581870 20.10 −0.84 −0.25 −0.29 ± 0.05 −
caida [56] 26475 53381 4.03 −0.50 −0.15 −0.12 ± 0.01 −0.15 ± 0.05
InternetAS [36] 11174 23409 4.19 −0.52 −0.14 −0.12 ± 0.01 −0.11 ± 0.01
USairport [63] 1572 17214 21.90 − −0.58 −0.55 ± 0.01 −0.6 ± 0.01
USairports500 [64] 500 2980 11.92 − −0.50 −0.42 −0.40
netscience.net [65] 379 914 4.82 − −0.67 −0.58 −0.20

correlations has a significant impact in the values of αR
min and,

consequently, on the performance of a biased random walk on
a graph in terms of exploration speed.

The relation between the degree-correlation exponent ν and
the value of αR

min is shown in Fig. 3. The values corresponding
to real-world networks lie almost exclusively in the top-left
and in the bottom-right quadrants, respectively, corresponding
to (αR

min < −0.5,ν > 0) and (αR
min > −0.5,ν < 0). Figure 3

shows very clearly that the value of αmin is always in the

interval [−1.0, − 0.5] for assortative networks and larger than
−0.5 for disassortative ones.

To further investigate the special role played by the
bias parameter α = −0.5 we have considered a large set
of synthetic networks in which we tuned the level and
sign of degree-degree correlations through the edge-swapping
procedure described in Ref. [43]. This procedure, discussed in
detail in the appendix, starts from an uncorrelated network and
artificially introduces a prescribed amount of either assortative
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FIG. 2. (Color online) The minimum value of the normalized
graph mean return time Rmin/N and the corresponding αR

min for all
the networks in the considered data set. Assortative networks (circles,
green labels) have −1 < αR

min < −0.5 and Rmin/N ∈ [1.0,1.5], while
for disassortative networks (triangles, red labels) −0.5 < αR

min < 0
and Rmin/N > 1.5. Black squares indicate those networks for which
knn(k) is not a power-law function of k.

or disassortative degree-degree correlations by rewiring the
edges of the graph without modifying the degree sequence.
As a result, this algorithm allows us to investigate the relation
between the value of ν and αR

min of a network by varying
continuously the correlation exponent ν while preserving the
degree sequence.

The black curve in Fig. 3 has been obtained by starting
with a configuration model scale-free network with N =
104 nodes, kmax = 300, and γ = 3 [44] and by running the
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FIG. 3. (Color online) The degree correlation exponent and the
value αR

min that minimizes the graph mean return time in real-world
networks (black points) and in synthetic networks with a tunable
value of ν (solid black line). Notice that assortative networks
(circles) are confined in −1 < αR

min < −0.5 while almost all the
disassortative networks (triangles) lie in the region −0.5 < αR

min < 0.
For comparison we also report the value of αR

min for an Erdös-Rényi
random graph with N = 104 and 〈k〉 = 40, which is equal to α = −1
as predicted by the theory for uncorrelated networks.
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FIG. 4. (Color online) The degree-correlation exponent ν and the
normalized graph mean return time Rmin/N for the same set of
synthetic networks in Fig. 3 (solid black line) and for real-world
assortative (circles) and disassortative (triangles) networks. Notice
that in the ν − Rmin/N plane all real-world networks lie on the right
of the curve, corresponding to synthetic correlated networks.

swapping procedure to introduce assortative or disassortative
correlations. We notice that by performing assortative swaps
the value of ν increases considerably, while αR

min remains
asymptotically confined below −0.5. Conversely, few dis-
assortative swaps are enough to determine a fast change on
αR

min, which enters the region α > −0.5 where the majority of
real-world disassortative networks lie.

In Fig. 4 we report as a solid line the values of Rmin

as a function of the degree-correlation exponent ν for the
same set of synthetic networks considered in Fig. 3. Filled
points represent the values obtained on real-world networks.
We observe that Rmin/N is considerably larger than 1 for
disassortative networks, while it is closer to 1 for assortative
networks. Notice that the MRT of the synthetic network with
tunable degree correlations (solid black line) is consistently
smaller than that of any real-world network, with the only
exception being the Caenorhabditis elegans neural network.

B. Analytical arguments

The numerical analysis of MRT suggests that, for uncorre-
lated networks, αmin = −1, so the deviations from this value
observed in real-world networks should be due to the presence
of degree-degree correlations. Here we provide an analytical
proof of the fact that αmin = −1 for uncorrelated graphs in
the mean-field approximation, and we compare this analytical
prediction with numerical results on real-world networks. In
the mean-field approximation a graph is described by the
annealed adjacency matrix,

〈a〉ij = kikj

2K
, (7)

where the value 〈a〉ij represents the probability to find an edge
connecting node i and node j , having degrees ki and kj , if
the nodes are connected uniformly at random. In fact, let us
imagine a network where each node i has ki stubs to be paired

012803-5



MORENO BONAVENTURA, VINCENZO NICOSIA, AND VITO LATORA PHYSICAL REVIEW E 89, 012803 (2014)

with some of the stubs of other nodes. If K is the total number
of links there are 2K of such free stubs. Among these 2K

stubs, only kj are incident on node j . Therefore, there are kj

ways a stub of node i can be connected with node j over a
total of 2K possible pairings with other nodes. One obtains
the expression for 〈a〉ij in Eq. (7) by observing that node i has
ki different stubs to connect with one of the stubs of j . If we
plug Eq. (7) into Eq. (3) we obtain

p∗
i = kα+1

i

N〈kα+1〉 , (8)

which gives

ri(ki) = N〈kα+1〉k−α−1
i (9)

and

R = N〈kα+1〉〈k−α−1〉, (10)

in agreement with the result found in Ref. [30].
It is straightforward to verify that R = N when α = −1.

Moreover, one can easily verify that for Erdös-Rényi graphs
the minimum value of R is obtained for α = αmin = −1. In
order to see this fact, we replace the average over nodes 〈. . .〉 in
Eq. (10) with an integral over degree classes

∫ ∞
1 . . . P (k) dk.

We denote with PER(k) the degree distribution of Erdös-Rényi
graphs (this distribution is binomial and can be approximated
by a Poisson distribution for large N ). Differentiating with
respect to α to find the minimum value of R we have the
following:

0 = dR

dα

= N
d

dα

[∫ ∞

1
PER(k)kα+1 dk

∫ ∞

1
PER(z)z−α−1 dz

]

= N

∫ ∞

1
PER(k)log(k)kα+1 dk

∫ ∞

1
PER(z)z−α−1 dz

+ − N

∫ ∞

1
PER(k)kα+1 dk

∫ ∞

1
PER(z)log(z)z−α−1 dz.

The latter expression is equal to 0 when α = −1, since we
have kα+1 = 1 = z−α−1 and the last two terms are equal and
opposite in sign. Analogously, we can derive the minimum
value of R also for uncorrelated networks with power-law
degree distribution P (k) ∼ k−γ ,

R ∼ N

∫ ∞

1
k−γ kα+1dk

∫ ∞

1
k−γ k−α−1dk

= N

[
1

γ − α − 2

][
1

γ + α

]
, (11)

where the integrability conditions are satisfied if α is in the
range [−2,0] and 2 < γ < 4, which is compatible with the
values of γ observed in real-world networks.

Differentiating Eq. (11) with respect to α we get again
the value αR

min = −1, while the second derivative is always
positive, as expected. It is worth noticing that the result αR

min =
−1 is independent from the value of the scaling exponent γ of
the degree distribution and from the maximum degree in the
network, kmax.

The quantity R is an average over all graph nodes. However,
Eq. (9) allows us also to compute the value αr

min(k) that

minimizes the return time r(k) for nodes having a certain
degree k. In the case of Erdös-Rényi graphs a large number of
nodes have the same degree because the degree distribution is
picked around 〈k〉 and, as a result, the values of return times are
very similar for most of the nodes. For real-world networks,
instead, the degree distribution is often heterogeneous and the
the return time sensibly depends on the degree of the starting
node. Differentiating Eq. (9) with respect to α we get

0 = d

dα
r(k) = C ′

αk−α−1 − Cαk−α−1 log(k), (12)

with Cα = N〈kα+1〉.
Replacing the average over nodes 〈. . .〉 with the integral

over degree classes, and considering networks with power-
law degree distributions P (k) ∼ k−γ and with minimum and
maximum degree km and kM , we get

Cα ∼ N

∫ kM

km

k−γ kα+1 dk. (13)

Integrating Eq. (13) and plugging in Eq. (12) we obtain[(
k

β

M ln kM − kβ
m ln km − (

k
β

M − kβ
m

)
ln k

)
β + k

β

M + kβ
m

]
k−α−1

= 0, (14)

where β = −γ + α + 2. The return time r(k) for nodes of a
given degree class k takes its minimum at the value of α, which
satisfies the previous equation. Excluding the indeterminate
case β = 0, Eq. (14) has only one solution for each value of k.

In the three top panels of Fig. 5 we report the return time
r(k) as a function of α for different degree classes (solid lines)
compared with the average return time R of the same graph
(black dotted lines). The three panels correspond, respectively,
to [Fig. 5(a)] a configuration model scale-free graph with γ =
3, [Fig. 5(b)] InternetAS, and [Fig. 5(c)] SCN. These plots
show that a wrong choice of the biased parameter can result
in a large increase of the return time. For instance, in Fig. 5(c)
the minimum return time rmin(17) for the degree class k = 17
occurs for α = 0.5 and is about 4 times smaller than the return
time r(17) obtained at α = −1 (refer to the vertical dashed
lines for guidance).

In the three bottom panels of Fig. 5 we report, as a
function of k, the value αr

min(k), which optimized the MRT for
nodes having degree k. The black crosses are the numerical
results, while the solid blue line is the prediction in mean
field obtained from the zeros of Eq. (14). We notice an
excellent agreement between the numerical results and the
mean-field solution in the case of the uncorrelated scale-free
graph [Fig. 5(d)], while for real-world networks [Figs. 5(e) and
5(f)] we observe considerable deviations from the analytical
prediction, evidently due to the presence of degree-degree
correlations. From the point of view of network exploration,
Eq. (14) turns out to be useful when an agent is sent through
the network in order to collect information and then has to
come back to its starting point [45]. In fact, this equation gives
insight about how to fine-tune the bias parameter in order to
increase or decrease the time required (on average) by the
agents to come back to the starting nodes with the collected
information. It is worth noting that small changes in α can
produce large variations in the return times, thus highlighting
the importance of a proper tuning of the motion bias.
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FIG. 5. (Color online) Top panels: return time r(k) for nodes of degree class k as a function of α (solid lines, each curve correspond to
a value of k), respectively, for (a) a configuration model scale-free graph with γ = 3 (blue), (b) Internet AS (red), and (c) SCN (green). The
dotted black line in each panel is the graph mean return time R in Eq. (6). Bottom panels: the value αr

min(k) which minimizes r(k) as a function
of k (crosses) for the three networks considered in the top panels. The solid blue line is the mean-field prediction of Eq. (14) where γ is chosen
equal to the exponent of the degree distribution of the corresponding network.

IV. MEAN FIRST PASSAGE TIME

In this section we focus on the mean first passage time,
showing that the interplay between degree correlations and
the dynamics of biased random walks produces qualitatively
similar results to those found for the mean return time.

We denote as tij the expected time needed for a random
walker to reach node j for the first time when starting from
node i. If the transition matrix � of the walker is primitive,
it is possible to determine tij by using the fundamental matrix
of the Markov chain associated to the random walk [39]. The
fundamental matrix Z is defined as

Z = (I − � + W )−1, (15)

where each row of W is equal to the stationary probability
distribution p∗ and I is the identity matrix. The mean first
passage time tij is then equal to

tij = zjj − zij

p∗
j

, (16)

where zjj and zij are the entries of the fundamental matrix Z.
Notice that, in general, tij �= tj i . We define the graph mean
first passage time T as the average of the first passage time
over all possible node pairs,

T = 1

N (N − 1)

∑
i,j

tij . (17)

Notice that, in general, the calculation of the fundamental
matrix in Eq. (15) is computationally intensive, since it
requires the inversion of a N × N matrix and is practically
unfeasible for large networks. For this reason, we used
the fundamental matrix Z only to compute the mean first

passage time for relatively small networks (N � 104), while
we resorted to agent-based simulation for larger networks (see
the appendix for a description of the employed agent-based
algorithm).

As found for the global mean return time R, T also is
a convex function of the bias parameter α with a single
minimum at αT

min. This is illustrated in Fig. 6(a). Again, the
position of the minimum is at α = −1 only for uncorrelated
networks (see Table I). We also notice that for disassortative
real-world networks −0.5 < αT

min < 0, as already found in
the case of the mean return time. Conversely, some assortative
networks can have a value αT

min, which is not in the range
[−1, − 0.5]. It is worth noting that the minimum value Tmin in
real-world networks is significantly smaller than the MFPT for
unbiased (α = 0) random walks or, for the case of uncorrelated
networks, (α = −1). In Fig. 6(b) we plot, for all the networks
in the data set, the minimum value of the graph first passage
time Tmin rescaled by the number of nodes N . Despite the
fact that there is no clear separation at α = −0.5 between
assortative and disassortative networks, as observed for the
MRT, the behavior is similar to that shown in Fig. 2: The
farther αT

min gets from −1, the more Tmin/N deviates from 1.
A comparison between the values of αmin for MFPT and

MRT is shown in Fig. 6(c). Excluding the network of the U.S.
power grid (indicated in the figure as USPower), the value of
the Pearson’s linear correlation coefficient between αR

min and
αT

min is r = 0.87. Despite the fact that the two values of αmin

are not equal for all networks, the strong positive correlation
we observe is quite remarkable. We notice that the U.S. power
grid is the only spatially embedded network in the data set, so
its exceptional values of αmin can be due to spatial constraints,
which are absent in the other networks studied. The existence
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FIG. 6. (Color online) (a) The graph mean first passage time T ,
rescaled by the number of nodes N , plotted as a function of α for SCN
(dotted green line), InternetAS (dashed red line), and an uncorrelated
scale-free graph with N = 104 and γ = 2.5 (solid blue line). (b) The
value αT

min and the corresponding minimum value of global mean first
passage time Tmin/N for all the networks in the data set. (c) There is a
strong positive correlation between the two values of the bias α which
minimize respectively MRT and MFPT. The solid line corresponds to
αR

min = αT
min. The value of the Pearson’s linear correlation coefficient

is r = 0.87 (the U.S. power-grid network is excluded).

of a relatively strong positive correlation between αR
min and

αT
min could have interesting practical applications. In fact, in

order to obtain a walk having a small graph MFPT on a large
network, it is possible to use αR

min as an approximation of αT
min,

so one can obtain a quasioptimal biased random walk with
respect to MFPT without the need to invert the fundamental
matrix of the graph, which is practically impossible for large
networks.

V. MEAN COVERAGE TIME

The last characteristic time under investigation is the mean
coverage time (MCT) ci , defined as the expected number of
time steps required for the walker to visit all the nodes of the
graph at least once when starting from node i. We also study
the graph mean coverage time C, defined as an average of ci

over all the graph nodes,

C = 1

N

N∑
i

ci . (18)

We have computed the graph mean coverage time C for all
but two networks in the data set by means of an agent-based
simulation and by averaging over many realizations of the walk
as described in the appendix. The asymptotic lower bound on
the coverage time for the unbiased (α = 0) random walk on a
generic graph is given by [46]

ci � (1 + O(1)) N ln(N ) (α = 0), (19)

where the equality is satisfied for the complete graph of N

nodes, i.e., the graph in which there is a link between each
pair of nodes. The inequality (19) implies the following lower
bound for the global mean coverage time,

C � (1 + o(1)) N ln(N ) (α = 0). (20)

We therefore normalize the obtained values of C by the
quantity N ln(N ).

In Fig. 7(a) we report such normalized quantity as a function
of the bias parameter for a configuration model scale-free
network, SCN and InternetAS. The mean coverage time is
a convex function of α with a single minimum at αC

min. As
for MRT and MFPT we notice that the minimum of the
global mean coverage time for the uncorrelated scale-free
graph occurs at αC

min = −1 and that the minimum value Cmin

is very close to the lower bound given by Eq. (20). Real-world
networks have instead values of Cmin that are significantly
higher than the lower bound.

We notice that the MCT is more sensitive to α than MRT and
MFPT [the typical concavity of MCT in Fig. 7(a) is narrower
than the ones observed for MRT and MFPT, respectively, in
Fig. 1 and Fig. 6(a)]. For instance, in SCN the minimum
mean coverage time, Cmin � 7Nln(N ), is about 1.7 times
smaller than the mean coverage time obtained for α = 0.0 or
for α = −1 on the same graph, which is C(α=0) � C(α=−1) �
12Nln(N ). Instead, disassortative networks like InternetAS
have a minimum value of the coverage time that is similar to
that for the unbiased case, while differing markedly from the
value at α = −1.

In Fig. 7(b) we report the values of αC
min and Cmin for

all the networks in the considered data set. The results are
qualitatively similar to those reported in Fig. 2 and Fig. 6(b).
Although for a given network the minimum of C occurs at
αC

min �= αR
min, it is evident from Fig. 7(c) that the two values

are positively correlated (the Pearson’s linear correlation
coefficient is r = 0.77).

We have investigated the differences between the optimal
values of α for the three characteristic times comparing αR

min,
αT

min, and αC
min for a set of synthetic networks generated through

the swapping procedure (the starting network in this case is a
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FIG. 7. (Color online) (a) The graph mean coverage time C,
rescaled by the lower bound N ln(N ), plotted as a function of α

for the same networks as in Fig. 6(a). (b) The minimum value αC
min

and the corresponding coverage time Cmin for all the networks in the
data set. (c) There is a positive correlation between the two values
of the bias α which minimize respectively MRT and MCT. The solid
line corresponds to αR

min = αC
min. The value of the Pearson’s linear

correlation coefficient is r = 0.77 (the U.S. power-grid network is
excluded).

configuration model with γ = 2, N = 1000 and 〈k〉 = 14.6).
The results (figure not shown) suggest that synthetic assortative
networks have equal optimal bias values (αR

min = αT
min = αC

min),
so the deviations from the bisector in Figs. 6(c) and 7(c)
might be due only to fluctuations in the pattern of degree
correlations of real-world networks. Instead, in the case of
synthetic disassortative networks, we observe deviations from
the bisector of the same order of those observed in real-world
networks.

VI. DISCUSSION

In this section we discuss in detail some of the results
reported in the paper, we provide a mechanistic explanation
of the variations of αmin observed in real-world networks, and
we outline possible applications to practical problems.

A. Deviations from αmin = −1

The results reported in Fig. 2 confirmed that the value
of α which minimizes the MRT in real-world networks
sensibly deviates from the value αmin = −1 predicted for the
uncorrelated graph and that this deviation seems to depend
on the sign and magnitude of degree-degree correlations.
We notice that, in the absence of degree correlations, the
stationary distribution of walkers is given by Eq. (8), which
for α = −1 corresponds to a uniform distribution of walkers
across the nodes of the network, i.e., p∗

i = 1/N . Consequently,
the minimum value of MRT for uncorrelated graphs is obtained
for a uniform distribution of walkers and is equal to Rmin = N

[see Eq. (10)]. We argue that the minimum of MRT in a generic
network is always obtained for a value of α which induces the
distribution of walker that is the closest possible to a uniform
one.

We start by noticing that, according to Eq. (6), R is the
harmonic mean of the stationary distribution p∗. By using
Jensen’s inequality [47], it is possible to prove that any
stationary distribution p∗ which is not uniform produces a
value of the mean return time which is larger than (or at most
equal to) that obtained from a uniform p∗ (which is equal to
N ),

R = 1

N

∑
i

φ(p∗
i ) � φ

(∑
i p

∗
i

N

)
= N, (21)

where φ(x) = 1/x. We observe that if a graph is not uncor-
related, and especially if the graph has assortative degree
correlations, then the stationary distribution of the biased
random walk obtained for α = −1 is generally far from being
uniform, while the stationary distribution corresponding to
α = αmin is usually very close to a uniform one. And in fact,
Fig. 2 confirms that for assortative networks the value of Rmin

is very close to N , despite the fact that larger deviations are
observed for disassortative networks. Thus we assume that, for
a given network, the discrepancy between the observed value
of αmin and the prediction α = −1 for uncorrelated networks
is indeed due to the necessity to obtain a stationary distribution
as close as possible to a uniform one.

If this hypothesis is correct, it should be possible to
determine the value of αmin by imposing that the resulting
stationary occupation probability distribution is as close as
possible to pi = 1/N . Let us consider the case of assortative
networks and assume that the expected degree of the first
neighbors of a node having degree k is a power law, i.e.,

knn(k) = Dkν, ν > 0, (22)

where D is a normalization constant. Let us also make the
assumption that the fluctuations in the degree of the neighbors
of a node with degree k are negligible, so if j is a first neighbor
of node i we can write

kj � knn(ki) = Dkν
i .
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By plugging Eq. (22) in Eq. (3) we get

ci ∼ kαν
i

∑
j

aij = kαν+1
i , p∗

i ∼ kαν+α+1
i∑
� kαν+α+1

�

. (23)

Imposing that p∗ is a uniform distribution, i.e., that p∗
i =

p∗
j , ∀ i,j = 1, . . . ,N , we obtain that α should satisfy the

following equation:

αν + α + 1 = 0, ν > 0. (24)

In Fig. 8 we show the curve αν + α + 1 = 0 (solid blue line)
together with the values (αmin,ν) corresponding to real-world
networks. Notice that for uncorrelated networks, i.e., when
ν = 0, we obtain the analytical prediction αmin = −1, while
for maximally assortative networks, i.e., for ν = 1, we get
αmin = −0.5. Also, the values of (αmin,ν) for real-world
assortative networks are close—but admittedly not identical—
to the prediction of Eq. (24). The observed discrepancies
between theory and observations are due to the fact that in
real-world networks the fluctuations in the degree of the nearest
neighbors of a node with degree k are not negligible, despite
the fact that we usually have knn(k) ∼ kν . Therefore, if j is
a neighbor of i, then kj �= knn(ki) ∼ kν

i , and, consequently,
the second of the two assumptions used in the derivation of
Eq. (23) and Eq. (24) does not hold.

The case of disassortative networks is a bit more cumber-
some, due to the constraints introduced by a discrete degree
sequence (namely a node cannot have a degree smaller than 1
or larger than kmax). In particular, it is possible to define

knn(k) ∼ kνkmax, ν < 0, (25)

obtaining an equation similar to Eq. (24). Unfortunately, such
an equation has a discontinuity at ν = −1 and does not match
the values of (αmin,ν) observed in real-world disassortative
networks.
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FIG. 9. (Color online) The value α

min of the motion bias whose

corresponding stationary distribution is the closest one to a uniform
distribution is correlated with αR

min. In particular, in assortative
networks (circles) the two values are positively correlated (αR

min �
α


min), while in disassortative (triangles) networks we have α

min �

−1 − αR
min.

In the absence of an analytical argument for disassortative
networks, we computed numerically the value of α which
minimizes the variance 
 = 〈p∗

i
2〉 − 〈p∗

i 〉2 of the stationary
occupation probability distribution. In fact, 
 provides a rough
estimation of how far the distribution is from a uniform one
(for which 
 = 0). The results are reported in Fig. 9, in which
we show, for each network in the considered data set, the
value of αR

min which minimizes the MRT and the value α

min

which minimizes the variance of p∗. Notice that for assortative
networks we have a strong positive correlation between αR

min
and α


min, with α

min � αR

min. Conversely, for disassortative
networks the two values are negatively correlated and seem to
be connected by the relation α


min � −1 − αR
min. These results

confirm that there is indeed an intimate relation between the
variance of the stationary probability distribution obtained for
a given value α of the motion bias and the corresponding MRT
and suggest that the optimization of the mean return time
for assortative networks is obtained for a value of α which
guarantees a stationary distribution as close as possible to the
uniform one.

B. Applications

The results shown in this paper can have interesting
applications in several different contexts, from the control of
diffusion processes to the successful advertisement of products
and services on online social networks. A typical example is
that of congestion control in communication and transport
systems, such as the Internet, the WWW, P2P networks, and
road networks. In these systems traffic is usually modeled
through simple packet generation and routing algorithms. At
each time step, a certain number R of new packets is introduced
in the system, and each packet is assigned a source and a
destination node. The nodes of the network route packets
according to a certain policy (which might be a biased random
walk), and have a fixed delivery capacity D. When a packet
arrives at its destination node, it is removed from the system.
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An interesting quantity that characterizes the emergence of
congestion is the critical packet generation rate Rc, defined
as the number of new packets above which the number of
packets removed from the system per unit time is smaller than
the number of new packets per unit time introduced in the
network. Under the condition R > Rc the number of packets
flowing in the network keeps increasing with time, leading to
congestion. In Ref. [48] it has been shown that, for a routing
strategy based on biased random walk, Rc and the graph mean
first passage time T are related by the following equations:

Rc(i) = D

p∗
i T

, (26)

Rc = min
i

{Rc(i)} , (27)

where D is the delivering capacity. Equation (26) shows that
the value of Rc depends on α through both T and p∗

i . This
implies that in order to maximize Rc one has to minimize the
product maxi{p∗

i } T . By noticing that, in assortative networks,
for α = αR

min we obtain a p∗ which is the closest possible to a
uniform distribution (according to the results shown in Fig. 9)
and, at the same time, we get an almost minimal value of T

(due to the strong positive correlation between αR
min and αT

min);
therefore we can conclude that a good approximation for the
value of the bias which maximizes Rc can be obtained by
setting α = α


min � αR
min � αT

min. Unfortunately, this reasoning
does not work in disassortative networks, for which the value
of α that minimizes maxi{p∗

i } does not coincide with the value
of α which minimizes T . In this case, the optimal critical
packet rate depends on the trade-off between the homogeneity
of the stationary occupation probability distribution and the
corresponding value of T . This is an example of how the
correlation between the optimal values of αmin and the sign
and magnitude of degree-degree correlations can be used to
avoid congestion and improve transport performance on a
given network.

The results of this paper might also find application in the
field of optimal network crawling, i.e., the exploration of the
structure of a graph by means of agents performing random
walks over it. Examples include the sampling of online social
networks (e.g., Facebook and copurchasing networks) and
online communication networks (e.g., the World Wide Web
and Twitter). In particular, exploring the network at the fastest
possible speed corresponds to minimizing the MCT. As we
have seen, this is achievable by using a degree-biased random
walk with α = αR

min, since there is a pretty strong correlation
between αR

min and αC
min. If the network is assortative, which

is actually the case for the majority online social networks,
the value of αR

min which optimizes the coverage time will
lie in [−1,0.5] and can be obtained using Eq. (24), where
the correlation exponent ν can be measured from a relatively
small sample of the graph of interest. If, instead, the network
is disassortative, as usually happens for online communication
networks, then the value of α should be chosen in the range
[−0.5,0] and a good hint is provided by the value −1 − α


min
(see Fig. 9). Such a value can be computed taking into
account a small representative sample of the degree sequence
of the graph. In both cases, an appropriate tuning of the bias

parameter α will outperform the standard unbiased random
walk.

Another interesting application of the relationship between
assortativity and optimal graph traversal could be that of
information retrieval. In a recent work [49] it has been shown
that the biased random walk on the directed network of
Wikipedia pages can be used to implement an algorithm
able to retrieve professional skills from an arbitrary text
(e.g., a curriculum vitae). The authors have shown that the
performance of the system can be optimized by means of an
appropriate tuning of the motion bias α. The results reported
in Table 2 of Ref. [49] show that the best performance of the
retrieval system are achieved for α between −1 and 0 and in
particular for α � −0.4, which is a reasonable optimal value
of the motion bias considering that the undirected version of
the network of Wikipedia pages is known to be disassortative.
Therefore, the generalization of the present study to the case
of directed networks could provide theoretical insights and
guidelines for the optimal choice of the bias parameter in skill
retrieval systems.

Finally, another possible application of these results con-
cerns social-marketing campaigns. At present the advertising
of products and services is more often conveyed through
online social networking platforms. Customers are promised
a reward if they promote a certain range of products to
their online friends, and usually they get an equal reward
for each friend who adopts the product or service. If we
assume that the diffusion of the advertising can be regarded
as a random motion, then promising equal rewards is not the
best diffusion strategy, because customers will not have any
reason to preferentially advertise the product to any of their
neighbors in particular and will therefore choose one of their
friends at random with equal probability. If we look to the
advertisement as a walker which jumps from one customer to
another, this strategy would correspond to an unbiased random
walk (α = 0). Our results about mean coverage time suggest
instead that the diffusion speed (i.e., the number of advertised
users per unit time) can be increased if the customer is
rewarded proportionally to a biased transition probability, i.e.,
if the customer receives a reward proportional to the α power
of the degree of the friend who has adopted the suggested
product or service. The optimal bias parameter can be directly
computed if the network topology is entirely known or, given
that social networks are often assortative, it can be guessed
using Eq. (24). This also disproves the intuitive idea that
the best strategy is to always advertise the highly connected
users.

VII. CONCLUSIONS

Random walks are the simplest way to visit a network, and
degree-biased random walks, which make use of information
about the degree of destination nodes, are particularly suited
to highlight the presence of degree-degree correlations. In this
paper we have focused on the typical times of biased-random
walks, namely on the expected time that a walker needs to come
back to its starting node (MRT), to hit a given node (MFPT), or
to visit all the nodes of the network (MCT). We have studied
how such characteristic times depend on the value of the mo-
tion bias α. We have proved analytically that, in the mean-field
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approximation, the value αmin that minimizes the characteristic
times in uncorrelated networks is equal to −1. This corre-
sponds to a walk in which the probability to move to a node
is inversely proportional to its degree. As shown by numerical
simulations, the mean-field approximation works pretty well
for uncorrelated networks. However, real-world networks are
characterized by nontrivial degree-degree correlations and,
as a result, the characteristic times of degree-biased random
walks on real-world networks deviate from those obtained by
using the mean-field approach, as we have shown in the paper
by studying a large data set of medium to large real-world
networks.

In particular, the value of αmin sensibly differs from −1
in a way that depends on the sign of the degree-degree
correlations. We have found that optimal values of the bias
parameter α lie between −1 and 0 for a large number of
real-world networks. In addition to this, we have shown
that the minimum characteristic times occur preferentially
for α in the range [−1, − 0.5] for assortative network and
for α in the range [−0.5,0] for disassortative ones. We have
derived an approximate analytical relation between αmin and
the degree-correlation exponent ν, which might be useful to
refine the choice of the optimal bias for assortative networks,
and we have shown numerically that the value of the mean
return time obtained for a given value of α is related with
the heterogeneity of the corresponding stationary probability
distribution of the walk.

By discussing several different possible applications of
these results, we have stressed the fact that the minimization
of characteristic times may be useful in many domains,
from mitigation of network congestion to successful product
advertisement in online social networks. In general, when only
local information is available, degree-biased random walks
can achieve better exploration performance than unbiased
random walks by appropriately tuning the bias parameter α

according to the global structural properties of the graph at
hand.
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APPENDIX

We describe here the algorithm we have used to generate
graphs with tunable degree-degree correlations and the agent-
based approach used to estimate the mean coverage time and
the mean first passage time in large graphs.

1. Swapping algorithm

In Fig. 3 and Fig. 4 we have reported the values of the
degree-correlations exponent ν and the motion bias which
minimizes the return time αR

min for a set of graphs with
the same degree sequence of a chosen starting graph and
tunable degree-degree correlations. An increasing amount
of assortative or disassortative correlations is introduced by
repeatedly applying the edge swapping procedure described

FIG. 10. Assortative swap.

in Ref. [43] to an initially uncorrelated graph. Each swap is
performed as follows. Two edges connecting four different
nodes are randomly selected and the nodes at the ends are
ordered according to their degree k1 � k2 � k3 � k4. The two
edges are then removed. Positive assortative correlations are
introduced by connecting the two nodes with the smaller
degrees and the two nodes with the larger degrees. Instead,
disassortative correlations are introduced by connecting the
node with the smallest degree with the node with the largest
degree and the two remaining nodes with intermediate degrees.
In order to preserve the degree sequence, all swaps that produce
parallel edges are not allowed. Figure 10 and Fig. 11 illustrate
the two types of swaps.

2. Agent-based simulation for MFPT and MCT

The MFPT and MCT are estimated by means of an
agent-based simulation. In both cases we simulated a walker
which moves across the nodes of the network according to
the transition probability given in Eq. (1). The simplest way
to compute the characteristic times is to wait until the walker,
started at a randomly selected node, explores all the nodes
at least once. At that point the value of ci is given by the
total number of time steps spent by the walker to visit all the
nodes, while tij can be obtained by storing in memory the
first passage times to all other nodes during the simulation.
However, despite the fact that this procedure is pretty simple
to implement, it is not suitable to obtain robust results in a
reasonable amount of time. In fact, in order to have an estimate
of ci and ti , we need to average over a sufficiently large
number of walks starting at node i, and the same procedure
should be repeated for all the starting nodes. However, the
heterogeneity of the degree distribution of real-world networks
induces heterogeneity in the number of visits on nodes with
different degree. Just to make an example, in the unbiased
case (α = 0) the walker visits a node with degree 1 only once
every kmax visits on the node with the maximum degree. As
a result, most of the computation time is wasted by repeated
visits to highly connected nodes. A value of α �= 0 can either
accentuate or mitigate the disproportion in the number of visits.
To overcome this problem, we implemented a smarter strategy.
The key point of our method is to consider each hop as the
starting point of a new walk and to store the entire sequence
of node labels in an array we call Tape. As soon as all nodes

FIG. 11. Disassortative swap.
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have been visited at least once, both tij and ci can be calculated
(here i is the node label at the beginning of Tape). Then the
first entry of Tape is removed, and the computation of the mean
first passage and coverage time is performed for the new node
which now occupies the first entry of Tape. If, after a removal of
the first entry, a node label is no longer contained in Tape, new
walker hops are simulated until all missing nodes are visited.

Here we describe separately the two algorithms for MCT
and MFPT despite the fact that the simulation could in principle
be performed simultaneously.

3. Algorithm for the mean coverage time

We randomly select a starting node and we simulate the
walk according to the transition probability of Eq. (1) for a
given value of α. We dynamically add the labels of the nodes
visited at the end of an array referred to as Tape. An array
number-of-visits[i] of length N keeps track of the number of
visits on each node i. A counter stores the number of unique
nodes visited: When all nodes have been visited at least once
the counter is equal to N . Finally, a variable L stores the
number of hops between the node at the first entry of Tape and
the node at the end, i.e., the length of Tape minus 1. The steps
of the algorithm are reported in the following:

(0) Initialize all variables to zero and choose a node i at
random. Set number-of-visits[i] and counter equal to 1.

(1) Jump to a successive node, say node j , and add the
node label j as new element at the end of Tape (push-back
operation). Increase L and number-of-visits[j ] by 1. If the new
value of number-of-visits[j ] is equal to 1, also increase counter
by 1.

(2) If counter is equal to N proceed to step (3), otherwise
go to step (1).

(3) The current vale of L is the estimate of the coverage
time ci relative to the node in the first entry of Tape (say, i).
Store the value ci and the corresponding node label i.

(4) Consider again the first entry i of Tape and decrease L
and number-of-visits[i] by 1. If the new value of number-of-
visits[i] is equal to zero, also decrease counter by 1.

(5) Remove the first entry i of Tape and free the memory
(pop-front operation) and then go to step (2).

The simulation ends when the estimated values of ci

are averaged over at least 1000 realizations for each node
i. Consequently, in the unbiased case the value cj for a
node j with degree kj will be averaged over 1000 ∗ kj/kmin

realizations. In Fig. 12 we illustrate the basic principle of the
algorithm. The loop (1)–(2) performs the walker motion and
adds the node labels in Tape. When all nodes have been visited
at least once the algorithm enters the (3)–(5) loop, where the
estimates of the coverage time are calculated and stored. If the
number-of-visits[i] for a certain node i is equal to zero, then
this node i is no longer contained in Tape and the algorithm
goes back to the (1)–(2) loop.

4. Algorithm for the mean first passage time

We notice that the estimation of the mean first passage time
does not require the computation of each entry of the matrix

FIG. 12. The flowchart illustrates the core principle of the
algorithm for the estimation of the mean coverage time. Tape is an
array whose length changes dynamically. In steps (1)–(2) new node
labels are written at the end of Tape, while in steps (3)–(5) nodes are
removed from the beginning of Tape.

Z but just the average of its rows,

ti = 1

(N − 1)

∑
j �=i

tij , (A1)

that is, the average MFPT from node i to all the other nodes.
We randomly select the starting node and we simulate the
walk according to the transition probability of Eq. (1) for a
given value of α. As before, we add the labels of visited nodes
at the end of Tape. An array of dimension N keeps track of
the number-of-visits[i] on each node i, and a counter stores
the number of unique nodes visited. We use the variable L
to keep track of the total number of hops during the entire
walk and in this case this value will not be reduced when we
pull off nodes from the beginning of Tape. Indeed, we use a
second variable Lold to store the number of nodes pulled off
from Tape. Moreover, for each node i we initialize an array
not-first-passage[i] that stores the times, i.e., the values of L,
at which the walker visits a node already previously visited.
At later stages of the algorithm these values will be used to
rapidly compute the first passage time for a given walker path.
Finally, a variable FPTs temporarily accumulates the sum of
the values of the first passages times tij in order to calculate ti
in Eq. (A1). Its role will be clear later. The algorithm consists
of the following steps:

(0) Initialize all variables to zero and choose a
node i at random. Set number-of-visits[i] and counter
equal to 1.

(1) Jump to a successive node (say, j ), add the node label j

as new element at the end of Tape (push-back operation), and
increase L by 1.

(2) If number-of-visits[j ] is equal to zero, go to step (3) and
otherwise go to step (4).

(3) Add the value (L -Lold) to the variable FPTs. Increase
the counter and number-of-visits[j ] by 1. Then go to step (5).
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Node Sequence (Tape) A E B D B C ...
Time Passages (L) 0 1 2 3 4 5 ...

FIG. 13. (Color online) A walk on a network of N = 5 nodes.
The passage on node B at time L = 2 is a genuine first passage
relative to the walk starting at nodes A and E. The passage on node
B at time L = 4 is a genuine first passage only when the first three
nodes are removed from Tape and we consider the walk starting on
node D.

(4) Add the current value of L as new element at the end of
the not-first-passage[j ] array and increase number-of-visits[j ]
by 1. Then go to step (5).

(5) If counter is equal to N go to step (6) and otherwise go
to step (1).

(6) Consider the first entry of Tape (let us say it is node i).
The current vale of FPTs divided by N − 1 is the first passage
time ti of Eq. (A1) relative to node i.

Store ti and the corresponding the node label i. Remove the
first entry of Tape (but keep in memory the label i). Decrease
the number-of-visits[i] and Lold by 1.

(7) If number-of-visits[i] is equal to zero go to step (8) and
otherwise go to step (9).

(8) Decrease counter by 1 and FPTs by (N − 1). Then go
to step (5).

(9) Select the value L∗ in the first entry of the array not-
first-passage[i]. Set

FPTs = FPTs − (N − 1) + (L∗ − Lold).

Remove the first entry of the array not-first-passage[i]. Go to
step (5).

Steps (1)–(4) perform the walk motion and add the sequence
of visited nodes in Tape. In step (2) we check if the node j

has not yet been visited and, if so, in step (3) we store the
first passage time tij = L − Lold in the variable FPTs. When
all nodes have been visited at least once the algorithm enters
the loop (5)–(9). Steps (5)–(9) repeatedly remove the entries
at the beginning of Tape and compute, after each removal, the
mean first passage time ti of Eq. (A1) relative to each removed
node i. If a node label is no longer contained in Tape, the
algorithm goes back to the (1)–(4) loop until all nodes have
been visited at least once. The advantage of this strategy is that
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FIG. 14. The value of the graph mean first passage time T

normalized by the number of nodes N as a function of α for the
InternetAS network. The agent-based simulation (crosses) provides
a very good approximation of the exact values obtained using the
fundamental matrix Z (solid line).

the estimated mean first passage time ti for a certain node i can
be computed using the mean first passage time t� of the node �

that precedes the node i in Tape as described by the recursive
equation in step (9). The numerical simulation is left running
until the estimate of ti is averaged over 1000 realizations for
each node i.

To further clarify the key strategy used in the algorithm, let
us give an example on a small graph with N = 5 nodes and a
walker path illustrated in Fig. 13.

The second passage on node B at time L = 4 is excluded
in the computation of tA because the first passage on node
B has already occurred at the second hop (L = 2). However,
the value L = 4 is added at the end of the array not-first-
passage[B] to be used later (let us call this value L∗ = 4).
Indeed, when the first three entries of Tape are removed [step
(6)] and we consider the walk starting on node D, the second
passage in node B that occurred at L = 4 is now a genuine first
passage. At this time, because we have removed three entries
from Tape, we have Lold = 3 and the correct number of hops
between node D and the first passage on node B is given by
L∗ − Lold = 4 − 3 = 1. The value L∗ − Lold is then used in
the computation of tD.

In Fig. 14 we show a validation of our agent-based
simulation by comparing it with the result of the inversion
of the Z matrix for a medium-sized network.
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[27] V. Zlatić, A. Gabrielli, and G. Caldarelli, Phys. Rev. E 82,

066109 (2010).
[28] S. Lee, S. H. Yook, and Y. Kim, Eur. Phys. J. B 68, 277 (2009).
[29] J.-C. Delvenne and A.-S. Libert, Phys. Rev. E 83, 046117

(2011).
[30] A. Fronczak and P. Fronczak, Phys. Rev. E 80, 016107

(2009).
[31] A. Baronchelli and R. Pastor-Satorras, Phys. Rev. E 82, 011111

(2010).
[32] Z. Burda, J. Duda, J. M. Luck, and B. Waclaw, Phys. Rev. Lett.

102, 160602 (2009).
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