
PHYSICAL REVIEW E 89, 012802 (2014)

Nonparametric resampling of random walks for spectral network clustering
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Parametric resampling schemes have been recently introduced in complex network analysis with the aim of
assessing the statistical significance of graph clustering and the robustness of community partitions. We propose
here a method to replicate structural features of complex networks based on the non-parametric resampling of
the transition matrix associated with an unbiased random walk on the graph. We test this bootstrapping technique
on synthetic and real-world modular networks and we show that the ensemble of replicates obtained through
resampling can be used to improve the performance of standard spectral algorithms for community detection.

DOI: 10.1103/PhysRevE.89.012802 PACS number(s): 89.75.Fb, 02.50.Ga, 05.10.Ln

In the past decade, network science has proven to be a
robust and comprehensive framework to investigate, model
and understand the structure and function of the complex
interaction patterns observed in diverse biological, physical,
social, and technological systems [1–4]. One of the most
intriguing characteristic of many real-world complex networks
is the presence of communities, i.e., tightly knit groups of
nodes which exhibit poor connectivity with the rest of the
graph [5]. As a matter of fact, many experimental evidences
have confirmed that communities are the mesoscale building
blocks of complex networks: they usually correspond to
functional modules in the brain [6,7], to topical clusters in
social and communication networks [8], to metabolic reac-
tions and functional domains in protein interaction networks
[9,10], to disciplines and research areas in collaboration
networks [5]. Consequently, a lot of effort has been devoted
to the identification of efficient algorithms for community
detection [11].

A typical problem in complex networks analysis is that a
real-world network is just a single observation drawn from an
unknown distribution of graphs having certain characteristics
[12]. As a consequence, there is no predefined way to assess
the statistical variability of any local, mesoscale of global
network property, including the presence and composition
of communities. A widely used approach to determine the
statistical significance of network observables consists in
considering random network ensembles, i.e., sets of graphs
obtained from the original network by keeping fixed some
structural properties (e.g., the degree sequence or the clustering
coefficient) and rewiring the edges at random [13–15]. In
the case of community detection, this approach led to the
definition of the modularity function, which quantifies the
significance of a given community partition of a graph as
the deviation from the average modularity expected in an
ensemble of random graphs having the same degree sequence
[8]. Another possibility is parametric bootstrapping, in which
the robustness of a network property is assessed against
small perturbations of the graph connectivity [16–18]. This
approach relies on the hypothesis that the observed network
is representative of a set of graphs (a model) having a certain
(a priori known) structure. Consequently, the variability of
any network observable can be estimated as the deviation

from the average of the corresponding model. Many different
parametric resampling schemes have been used to assess the
robustness of network communities against small connectivity
perturbations. However, all these methods require an a priori
hypothesis about the model to which the network belongs, so
that the unbiased statistical assessment of a network partition
remains an open challenge [19].

A possible solution to this problem is non-parametric
bootstrapping, a data-driven technique for providing the
statistical confidence of almost any statistical estimate [20,21],
based on the generation of repeated observations (replicates)
from an unknown population using the available data samples
(in our case, a single network) as a starting point. This
approach has been successfully employed for several different
applications, and in particular to improve the stability and
accuracy of clustering algorithms in metric spaces [22].

In this article we propose to use non-parametric boot-
strapping to improve the performance of spectral community
detection algorithms. The method is based on the construction
of replicates of the transition matrix of the network, and on
the estimation of an average distance matrix, whose elements
correspond to the expected spectral distances between pairs of
nodes of the graph, averaged over the ensemble of replicates.
Then, the obtained distance matrix is fed into a standard
hierarchical clustering algorithm. The idea is that the aggrega-
tion of information about different replicates, representative
of the unknown ensemble to which the network belongs,
should allow to obtain more accurate and robust partitions
than the one found from the original observed network [22].
This approach is in the same line of ensemble or consensus
clustering methods, which combine several partitions gener-
ated by different clustering algorithms—or by different runs
of the same algorithm—into a single, more robust partition
[17,18,23–25]. We analyze the community partitions obtained
by non-parametric bootstrapping in different synthetic and
real-world modular networks, and we show that this approach
can substantially improve the performances of existing spectral
clustering methods.

Spectral clustering for community detection. Let G(V,E)
be a connected undirected and unweighted graph with N = |V |
nodes and K = |E| edges, and let A = {aij } be the adjacency
matrix of G, whose entry aij = 1 if there is an edge connecting
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node i and node j , while aij = 0 otherwise. We consider the
problem of finding communities of G, i.e., subsets of nodes
of G which are more connected internally than with the rest
of the graph [8]. Several community detection algorithms
are based on mapping each node of G into a point of an
appropriate metric space X, so that two nodes i and j having
similar structural properties (e.g., similar set of neighbors) are
mapped to two points xi and xj placed relatively close to each
other in X. Then, the nodes are clustered according to the
Euclidean distance between their corresponding images in X,
so that nodes whose projections are closer in X have a higher
probability to be put in the same cluster.

A widely adopted method to map the nodes of a graph into
a metric space makes use of spectral properties of matrices
associated to G, and in particular of the eigenvectors of the
adjacency matrix A or, more frequently, of the transition matrix
P = {Pij } associated to an unbiased random walk on the graph
(Pij = aij /ki , where ki = ∑

j aij is the degree of node i)
[6,26–28]. This choice is motivated by the observation that
both A and P carry information about the overall structure of
the graph. Here we consider the transition matrix P . This ma-
trix is characterized by a set of eigenvalues {λ0,λ1, . . . ,λN−1}
such that |λ0| � |λ1| � · · · � |λN−1|. Each eigenvalue λk is
associated to the left and right eigenvectors ϕk and ψk , which
satisfy ϕ

ᵀ
k P = λkϕ

ᵀ
k and Pψk = λkψk , respectively. Thus, it

is possible to map node i to the point xi ∈ RN whose kth
coordinate is equal to the the ith component of the kth right
eigenvector of P . The distance dij between two points xi and
xj , can be written in terms of eigenvectors and eigenvalues
of P [29], namely: dij = √∑

k�1 λ2
k(ψk(i) − ψk(j ))2, where

ψk(j ) denotes the j th component of the kth right eigenvector.
In general, this distance can be approximated by using only
the first β nontrivial eigenvectors and eigenvalues of P [30]:

dij �
√√√√ β∑

k=1

λ2
k(ψk(i) − ψk(j ))2. (1)

The elements {dij } of the matrix D obtained from Eq. (1)
represent the distances between each pair of points xi and xj

in the lower dimensional space X ≡ Rβ .
Since the terms {dij } represent distances in a metric space,

then we can use the matrix D to detect candidate community
partitions of G by means of hierarchical clustering, an iterative
aggregation algorithm which starts by considering each node
as a separate cluster, and successively merges the two clusters
having minimal distance according to D [31]. The algorithm
stops when all the nodes have been grouped in a single cluster.
The hierarchical clustering algorithm produces a dendrogram
H , i.e., a tree where each of the N − 1 internal nodes represents
the fusion of two clusters. A horizontal cut of H corresponds to
a partition of the graph into a certain number of communities.
The quality of each partition S can be quantified using the
modularity function [8], which compares the abundance of
edges lying inside each community with respect to a null
model. In formula,

Q(S) =
Ns∑
s=1

[
ms

K
−

(
ks

2K

)2]
, (2)

where Ns is the number of clusters in the partition S, K is the
total number of edges in the network, ms is the number of edges
between vertices in cluster s, and ks is the sum of the degrees
of the nodes in cluster s. We assume that the best partition in
communities of the graph G is the cut of the dendrogram H

having maximum modularity.
Clustering through non-parametric bootstrapping. One of

the possible limitations of community detection algorithms
based on the spectral properties of the transition matrix is
that the obtained partition could be sensitive to perturbations
of the adjacency matrix of the graph, especially in sparse
networks [32–35]. Therefore, we propose to improve the
quality of spectral clustering by using information about the
average spectral properties of transition matrices obtained by
a non-parametric bootstrapping of the observed matrix P .

The authors of Ref. [36] have proposed a generic bootstrap
scheme to resample the transition probabilities of a finite state
time-invariant Markov chain. Starting from a realization χ of
the Markov chain, one constructs the maximum likelihood
estimator of the associated transition matrix P as pij =
fij

fi
, where fij is the observed number of transitions from

state i to state j in χ and fi = ∑
j fij . Then, replicates

of the observed transition matrix are obtained by draw-
ing, for each state i, the random variables {f ∗

i1, . . . ,f
∗
iN } ∼

Multinomial(fi ; pi1, . . . ,piN ) according to P̃ij = f ∗
ij

fi
. The

distribution of P̃ is then obtained by Monte-Carlo sampling.
This approach was shown to be asymptotically valid for
approximating the sampling distribution of P [36], and has
been also used to assess the confidence intervals of transition
probabilities in disease modeling [37].

Since the unbiased random walk on the graph G defined by
the transition matrix P is a finite-state time-invariant Markov
chain, we can construct a similar resampling scheme in which
replicates of the transition matrix P are obtained by randomly
drawing the variables {f ∗

i1, . . . ,f
∗
iN } from a multinomial

distribution with probabilities {pi1, . . . ,piN }, conditional on
the observed degree sequence {ki} of G. It is worth noticing
that, in contrast to previous approaches where each link was
resampled independently from the others [16,18], here the
replicas of the transition probabilities for each node i are drawn
from a multinomial distribution, accounting for the observed
transitions to other nodes {pi1, . . . ,piN }.

Given the transition matrix P of G, we generate B bootstrap
transition matrices {P ∗

1 ,P ∗
2 , . . . ,P ∗

B}. Then, we project each
matrix P ∗

b into Rβ (where β is a tunable parameter), and we
estimate the corresponding bootstrap distance matrices D∗

b ,
whose entry db

ij is the Euclidean distance between xi and xj

in Rβ according to the mapping induced by P ∗
b . Then, we

compute the average distance matrix D̃∗ = 1
B

∑
b D∗

b , which
is expected to be the most consistent (similar) with the central
tendency of the population of replicates. The matrix D̃∗ =
{d̃∗

i,j } effectively quantifies the dissimilarity between any pair
of vertices of G (the smaller the distance d̃∗

i,j the more similar
are i and j ), in terms of the average distance between their
projections in Rβ across several replicas of P .

We notice that, in principle, the spectral network decom-
position based on non-parametric bootstrapping does not rely
on modularity, so that any quality function can be used to
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FIG. 1. Benchmark networks. The variation of information V I as a function of the proportion of inter-modules links μ in GN graphs (a)
and as a function of the mixing parameter μ in LFR500 (b) and LFR2000 (c) graphs. The region inside each curve includes the fifth and the
95th percentiles of V I across R different runs. The four curves in each panel correspond to the optimal partitions obtained using, respectively,
the distance matrix D induced by P for β = 1 (light gray) and β = 10 (checked pattern), the average distance matrix D̃∗ over the population of
replicates P ∗ for β = 1 (black), and modularity optimization on the adjacency matrix A, as described in Refs. [8,40] (dark gray). The network
order N , the number of runs R, and the number B of bootstrap realizations for each run are (a) N = 128, R = 100, and B = 100; (b) N = 500,
R = 100, and B = 100; and (c) N = 2000, R = 50, B = 50.

determine the best partition in the dendrogram. We also would
like to stress that the partitions obtained with resampling-based
clustering methods do not necessarily provide the absolute
optimum of a given quality function. Instead, non-parametric
bootstrapping yields partitions that are the most consistent with
the central tendency across different replicates drawn from the
same population.

Synthetic networks. We have tested the performance of
our approach on two classes of synthetic graphs with tunable
modular structure. In the first benchmark (GN), proposed by
Girvan and Newman [5], each network consists of N = 128
nodes divided into 4 modules of equal size. Pairs of nodes in the
same module are connected with probability pin, while nodes
belonging to different modules are linked with a probability
pout. Parameters are set such that the average degree is kept
constant 〈k〉 = 16. By appropriately tuning pin and pout one
can set the percentage μ of edges lying between communities.
The second class of modular graphs (LFR), proposed by
Lancichinetti, Fortunato, and Radicchi [38], accounts for the
heterogeneity in the distributions of node degrees and com-
munity sizes. In this case, we generated modular graphs with
scale-free degree distribution P (k) ∼ k−γ and community
size distribution P (s) ∼ s−η, where γ = 2 and η = 1. An
appropriate tuning of the model parameters allows to create
graphs with a prescribed fraction μ of inter-community edges.
We considered graphs having N = 500 and 〈k〉 = 7 (LFR500)
and graphs with N = 2000 nodes and 〈k〉 = 28 (LFR2000).

Since the real partition in communities of these synthetic
networks is a-priori known, we can compare the best partition
obtained through spectral clustering with the reference one.
A widely used measure to compare two different partitions
is the variation of information (V I ) [39]. In a nutshell, this
non-negative metric quantifies how much information is lost
and gained in changing from a partition A to a partition B. It

can be estimated by V I (A,B) = −∑cA

i

∑cB

j (
nAB

ij

N
) log

nAB
ij

N
+

nAB
ij

N
log ABij /N

nA
i nB

j /N2 , where cA (cB) is the total number of clusters

in the partition A (B), nA
i (nB

j ) is the number of nodes in the
ith (j th) cluster of partition A (B), and nAB

ij is the number
of nodes shared by the ith cluster of partition A and the j th

cluster of partition B. Values of V I range from 0, when A and
B are identical partitions, to log N when both A and B are
randomly drawn.

Figure 1 shows the variation of information between
the reference partition and the best one obtained through
bootstrap-based spectral clustering, as a function of the
fraction of inter-community edges μ. The reported results
suggest that even when the graphs do not have any more
a strong community structure, i.e., when for each node the
number of neighbours outside its community is similar with
the number of neighbours inside its community, the accuracy
of the proposed bootstrap-based method remains pretty high.
For GN networks, the accuracy of the bootstrap-based method
is comparable to that of a standard modularity optimization al-
gorithm [8,40]. For LFR500 and LFR2000, the non-parametric
bootstrap method outperforms the other algorithms, even when
we consider an embedding with β = 1, and exhibits a smaller
value of V I up to relatively large values of μ.

The Zachary’s karate club network. Figure 2(a) shows
the best partition found by the bootstrap-based algorithm
(B = 20000, β = 1) in the Zachary’s karate club network
[41], a paradigmatic example of graph with a strong modular
structure. The partition consists of three main modules (black
circles, white circles and grey diamonds, respectively) and a
small interface community which contains nodes {3,9,10,31}
(grey ellipses). The distribution of the V I between the
partitions obtained through spectral clustering on each single
replicate and the one found using D̃∗ [reported in Fig. 2(b),
solid black line] shows that the latter one indeed represents the
central tendency of the population of replicates. However, the
typical V I between the partition of a single replicate and the
one with maximum modularity [Fig. 2(b), grey curve] is higher
than that obtained by averaging over all replicates [indicated
in Fig. 2(b) by the vertical line]. Notice also that the typical
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FIG. 2. (a) The best partition of the Zachary Karate club network obtained through non-parametric bootstrap (B = 20000 replicas) gives a
value of modularity Q = 0.389; (b) the distribution of V I across the replicates with respect to the partition induced by D̃∗ (solid black line)
and the partition with maximum modularity (solid grey line); the vertical dotted line indicates the V I between the partition with maximum
modularity and the one induced by D̃∗ (V I = 0.952). Dashed lines indicate the distribution of V I for B = 20000 random partitions, with
respect to the partition induced by D̃∗ (dashed black line) and the one with maximum modularity (dashed grey line). (c) Spectral distance
between node i = 1, (top) i = 3 (middle), i = 34 (bottom), and the rest of the nodes. Gray regions indicate the 0.05th–95th percentiles interval
of the bootstrap distribution.

V I between random partitions of the graph and, respectively,
the one obtained averaging over all replicates or the one with
maximum modularity [respectively the dashed black line and
the dashed grey line in Fig. 2(b)] is much larger than that
obtained through spectral clustering.

Despite the partition of Fig. 2(a) is not the one with
maximum modularity [42], it is worth noticing that most
of the nodes put in the interface community (namely, 3, 9,

and 10) have been ambiguously classified by many different
community detection algorithms [43,44], mostly because
assigning them to either the black or the white module has
negligible effects on modularity [16]. A more in-depth analysis
of the dissimilarity matrix D̃∗ provides a possible explanation
for this fact. In Fig. 2(c) we report the average spectral distance
d̃∗

ij between node 1 (top panel), node 3 (middle panel), and
node 34 (bottom panel) and all the other nodes in the graph.
As expected, both node 1 and node 34 exhibit a sensibly
smaller distance towards the other nodes in their respective
natural communities, which is consistent with the fact that
1 and 34 are known to be the centers of these two groups.
Conversely, the distance between node 3 and the nodes in the

white community is comparable to that between three and the
nodes in the black community. This explains why the central
tendency of the population of replicates is to place node 3 in a
separate community, together with other three nodes having a
similar spectral distance pattern.

Concluding remarks. In this work we have shown how the
generation of replicates of the transition matrix associated to
a graph allows to improve the performance of community
detection algorithms based on spectral clustering. In general,
we believe that non-parametric bootstrapping techniques,
which do not require any assumption about the ensemble
of graphs to which a given network belongs, might be
successfully employed also to assess the significance of the
variability of nodes attributes defined by different random
walk parameters (e.g., hitting times or return times), and for
the statistical validation of other structural properties defined
on different flavors of random walks [45,46].
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