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The ability to design a transport network such that commodities are brought from suppliers to consumers in a
steady, optimal, and stable way is of great importance for distribution systems nowadays. In this work, by using the
circuit laws of Kirchhoff and Ohm, we provide the exact capacities of the edges that an optimal supply-demand
network should have to operate stably under perturbations, i.e., without overloading. The perturbations we
consider are the evolution of the connecting topology, the decentralization of hub sources or sinks, and the
intermittence of supplier and consumer characteristics. We analyze these conditions and the impact of our results,
both on the current United Kingdom power-grid structure and on numerically generated evolving archetypal
network topologies.
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Networks are ubiquitous in nature and in manmade systems.
Power and gas networks bring light and heat to our homes,
telecommunication networks allow us to be entertained and
to browse for information, and distribution networks allow
manufacturers to supply foodstock and other products to the
demand chain. In all of these cases, a basic problem needs
to be addressed: how to create a network that transports
the maximum load (messages, power, vehicles, consumer
products, etc.) that can be moved from one point in the network
to another by following optimal paths (for instance, making the
energy consumption minimal), without surpassing any edge or
node capacity (the maximum load that an edge or node can
handle), and generates a steady stable flow. Such problem is
dealt with in this work.

We understand that a supply-demand network is stable
when the system is not vulnerable to modifications in the
network’s connectivity, a switch from hub suppliers to de-
centralized smaller producers, or changes in the location of
suppliers and/or consumers that may cause overload failures to
occur. The network is vulnerable when any edge load exceeds
its edge capacity and, thus, a failure occurs. Such a distribution
network has a steady transport when flows (the time ratio that
commodities are transferred between nodes) are constant. It
is optimal when the transport is done such that the cost is
minimum.

Our problem is, in part, that which flow network theory [1–
4], a theory that roots back to Kirchhoff [1], tries to decipher,
i.e., answering what are the current flows in each edge of
an electrical circuit as a set of voltages are applied to some
nodes. The solution is then achieved by solving Kirchhoff’s
equations. It is related to the probability that a random
walker starts at the source and finishes at the sink [5] and
to first-passage times at each node [6]. In order to model a
supply-demand network, we solve the inverse problem. We
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calculate voltages (loads) when input-output currents (flows)
are given, using a conservative, steady, minimal cost transport
system: Kirchhoff’s flow network. This means loads are carried
optimally from the source (supplier) to the sink (consumer)
without losses. It is related to finding the shortest paths and
community structures on weighted networks [7,8].

In particular, Kirchhoff’s flow network model is used
not only to express electrical flow in circuits [9], but also
to establish systems ecology relationships [10], biologically
inspired steady-state transport systems [11], and fractures in
materials [12,13]. Although the relationship between flows and
loads in these models is restricted to be linear and conservative,
the complexity in the mathematical treatment of the equations
due to the topology structure is still demanding. Thus, most
flow network solutions are based on optimization schemes [3],
and the results are complex and not easy to relate to other
relevant parameters of the problem, such as node degrees.
Moreover, if the network evolves in time (the connecting
topology changes with nodes and/or edges appearing and/or
disappearing), then predictions, controlling cascade of failures,
and analytical solutions are scarce [14–17].

In this work, we provide analytical expressions for the
edge capacities that a steady optimal supply-demand network
should have to operate stably under perturbations by using
Kirchhoff’s flow network model. The perturbations we con-
sider constitute some possible evolution factors that supply-
demand networks are subjected to, such as the switching
from hub suppliers to multiple smaller producers, intermittent
supplying and consuming nodes, and node and edge additions
or removals.

We apply our edge capacity analytical results both to the
current United Kingdom (U.K.) power grid and to numerically
generated evolving archetypal network topologies. We discuss
the design of a modern steady-state stable power-grid system
and we find that most topology modifications have a power-
law behavior of the analytically derived edge capacities as
nodes or edges are added (or removed, which in our model
constitutes the inverse process of addition) to the network. Our
results and conclusions are general and applicable to any other
system that is modeled by the Kirchhoff flow network model
in its steady state. Furthermore, they are related to standard
network characteristics and allow the prediction of failures
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due to overloads by observing the load at any given edge and
comparing it to our edge capacity values [Eq. (3)].

To achieve an analytical solution to our problem, we
initially assume that the network structure, the location of
the supplier(s) and consumer(s), and the total amount of
commodities produced and consumed are known, but loads
and flows in every edge need to be calculated. We let loads be
linearly related to the flows by

l
(st)
ij = Rij f

(st)
ij . (1)

The left-hand side of Eq. (1) is the load being transferred
across the edge connecting nodes i and j of the network given
a source located at node s and a sink located at node t . The
extension to many sources and sinks adds more upper indexes
to the equation (see Supplemental Material [18]). In our model,
Eq. (1) is Ohm’s law, and l

(st)
ij = V

(st)
i − V

(st)
j represents the

voltage difference between nodes i and j in an electric circuit,
where a given current enters the circuit at node s and leaves at
node t [9]. However, it can also represent the altitude difference
in a river channel network where the highest place is located at
point s and the lowest place is located at point t . The right-hand
side of Eq. (1) is composed of the resistance Rij of the edge
to transport and the unknown flow f

(st)
ij , which the edge has

for that particular location of the supply-demand nodes. In
our model, it is the edge’s electrical resistance Rij times the
electrical current f (st)

ij = I
(st)
ij . For the river channel, it could be

the channel resistance of a Poiseuille flow times the mass flow
velocity transported by the ij th river channel. For example, in
systems ecology, Eq. (1) relates the storage quantities Q with
the outflows J via time constants T [10].

Because we assume the model to be conservative, the net
flow at any node i in the network is null (

∑N
j=1 f

(st)
ij = 0), with

the exception of the source (whose net flow is represented by I )
and the sink (whose net flow is represented by −I ) nodes. This
guarantees that flows are carried optimally from the source(s)
to the sink(s). Then, the net flow at node i is modeled by
Kirchhoff’s first law,

N∑

j=1

f
(st)
ij = I (δis − δit ) =

N∑

j=1

Wij l
(st)
ij , (2)

where δis is the Kronecker delta function (δis = 1 if i = s)
and Wij = 1/Rij is the matrix representation of the network
structure, where Rij = Rji . In particular, Rij = ∞ if nodes
i and j are not directly connected, and in an unweighted
network, Rij = 1 for all the connected nodes. Thus, Wij is
a weighted adjacency matrix with entries that are either >0
(nodes i and j are adjacent, i.e., Aij = 1) or 0 (i and j are
disjoint, i.e., Aij = 0).

We also make use of the equivalent resistance ρij (W),
which is a network structure characteristic [9,19–21]. It is
found analytically from the weighted Laplacian matrix G
eigenvalues and eigenvectors (G = D − W, with Dij = δij kj ,
and ki = ∑N

i=1 Wij , with N being the number of nodes in the
network). This quantity allows one to express any connected
arbitrary topology (defined with or without weighted edges)
to an effective weighted complete network. In other words,
the complexity of the topology is transformed into a complex
distribution of weights of an all-to-all complete graph.

Our first analytical result is the exact derivation of the edge
capacity C

(st)
ij that a supply-demand network must have in order

to operate stably and avoid overloads, namely, |l(st)
ij | � C

(st)
ij .

We obtain that C
(st)
ij is a function of the equivalent resistance

ρij of the edge and is proportional to the total amount
of commodities per unit of time that are produced by the
suppliers, namely, the total input I . Consequently, the value
of C

(st)
ij is independent of where the suppliers and consumers

are located within the network (C(st)
ij = Cij ). Specifically, we

derive that the exact value for the edge capacity is

Cij ≡ I ρij , (3)

where the functional ρij (W) is the equivalent resistance
between nodes i and j [9].

The edge capacity in Eq. (3) is the maximum load that
each existing edge of the supply-demand network must be
able to handle to secure a steady-state stable distribution,
regardless of the location of the producer and consumer
and regardless of whether, instead of a single supplier and
consumer, there are many with arbitrary spatial distributions
[the demonstration of Eq. (3) from Eq. (2) is given in the
Supplemental Material [18]]. To derive the exact values for
node capacity Ci , we perform a summation over all edge
capacities Ci = ∑N

j=1 Cij , which is feasible because our
model of flow network is conservative. Hence, the node and
edge capacities are not independent quantities.

A cascade of failures on networks is often studied by analyz-
ing how attacks and/or overloads occur when a load surpasses
the node capacity. Such a node capacity is conjectured to have,
with some tuning parameters, a linear relationship with the
initial load distribution [16,17]. This assumption allows one
to draw conclusions on how the network structure should be
designed to avoid failures due to overloads. Here, we show that
the capacity-load relationship is given by ρij [Eq. (3)], and it
is derived from finding the edge’s maximum loads for any of
the discussed network evolution processes. In the cases where
the physical edge capacity is preassigned, such as in a fuse
network (a model that explains fractures in materials [12,13]),
Eq. (3) predicts exactly which edges will overload due to the
perturbations. This can still aid in the prevention of a cascade
of failures, as it detects the vulnerable edges exactly.

The second analytical result we find is that all Cij defined
by Eq. (3) are bounded by the inverse of the largest [λN−1(G)]
and the smallest nonzero [λ1(G), also known as spectral
gap] weighted Laplacian matrix Gij eigenvalues [22,23]. In
particular, we find that

2I

λN−1
(1 − δij ) � Cij � 2I

λ1
(1 − δij ). (4)

Moreover, these eigenvalues are related to the minimal and
maximal degrees of the network. Equation (4) provides a way
to modify the network topology (adding or removing nodes and
edges), keeping the capacity values bounded by considering
simple rules from minimal information about the topology [the
derivation of Eq. (4) and the relationship of these bounds to the
node degrees is provided in the Supplemental Material [18].

As a practical proof of concept and a way to illus-
trate these analytical results, we apply them both to the

012801-2



RESILIENTLY EVOLVING SUPPLY-DEMAND NETWORKS PHYSICAL REVIEW E 89, 012801 (2014)

U.K. power-grid structure [24] and numerically generated
random [25] and small-world [26] topologies. In addition,
we discuss the following perturbations: (i) power genera-
tor decentralization (changing from centralized high-power
generators to distributed smaller generators), (ii) source-sink
intermittency (the inclusion of suppliers and consumers, such
as renewable sources, storage systems, and electric cars,
all possibly changing locations within the network), and
(iii) connectivity modifications. These are some of the most
important perturbations that modern power-grid systems are
having to deal with. We address cases (i) and (ii) using the real
U.K. power-grid structure. For case (iii), we focus the ana-
lysis on how the connectivity modifications affect the
edge’s capacity by deriving them for numerically generated
networks.

Since the capacity is linearly related to ρij [Eq. (3)], to
obtain the influence of the topology on the loads we first
calculate the U.K. power grid ρij by assuming Rij = 1 for
all connected nodes, i.e., Wij = Aij . The resultant set of
ρij is represented by ρ(A) in Fig. 1. We then calculate
ρij considering the edge’s resistance in MVA units (mega
Volt-Ampere) [24], i.e., Wij = 1/Rij . This set is represented
by ρ(W ) in Fig. 1. The bounds in terms of the maximum
and minimum eigenvalues [Eq. (4)] are shown by the vertical
dashed lines in each case.

From an engineering point of view, the steady-state stability
of a power network is the capability of the system to maintain
the power transmitted between any two nodes below the edge
capacity (namely, the maximal load that the connecting power
line can handle) when perturbations are applied to the network.
Figure 1 shows the U.K.’s power-grid equivalent resistance
distribution, i.e., our theoretical edge capacity distribution,
from taking into account only its connecting topology (A)
or its resistive properties (W ). If we neglect the reactance and
inductance characteristics of the real power lines and we model
the power grid by a conservative linear flow network model
such as Eq. (1), then assigning edge capacities to the edges in
the power grid drawn from the ρ distribution guarantees the
steady-state stability of the system. Such a power-grid system

FIG. 1. (Color online) The probability density functions of the
equivalent resistance ρij (stairlike lines) for the U.K. power-grid
adjacency (green) and resistance structure (black). The respective
bounds [Eq. (4)] are shown by vertical dashed lines. The units of
ρij are in MVA (as the power-line resistances found from [24]) and
include all three of the U.K.’s major transmission companies (SHETL,
SPT, and NGET).

is resilient to changing from hub generators to distributed
sources [case (i)] or having intermittent sources and sinks
[case (ii)].

In case (i), a single source is substituted by multiple sources
while maintaining the same inflow of power and keeping the
same network connectivity. Specifically, the transformation
that leads from a single source-sink problem to one of many
sources and sinks does not change the topology. No node or
edge is added to the topology to account for new sources or
sinks. The transformation identifies nodes that were junctions
(where the net flow was conserved, i.e., the inflow is equal
to the outflow) in the original single source-sink problem as
new sources or sinks in the many source-sink problem. In
summary, I is kept constant in the transformation, some nodes
of the network are now identified as sources and sinks which
were previously junctions, and the connectivity between nodes
does not change. In that case, our first analytical result for
Cij [Eq. (3)] predicts that the new maximum loads are always
less than the capacity value, |l(s1,s2,...,t1,t2,...)

ij | < |l(st)
ij | � I ρij . In

case (ii), given the intermittency property of renewable sources
and electric car power stations, the supply-demand network
behaves as if sources and sinks keep changing locations
with time. In other words, the system explores various
configurations of the many source-sink problems for a fixed
topology and total input I . This situation is also contemplated
in our Eq. (3). For a single-source single-single network, the
given capacity value for edges is robust and remains unchanged
for any source-sink configuration, predicting that overloads
will be avoided.

On the contrary, the modifications to the connecting
topology [case (iii)] change the value of the edge capacities.
This is a consequence of the change in the structure of the
network, which, in turn, changes the value of ρij in every
edge and redistributes the flows. In this case, in order to draw
conclusions about edge capacities for a power grid such as the
U.K., one needs a dynamic picture of the network topology as
it evolves.

We find that to design edge capacities with fixed margins as
the supply-demand network topology changes, the minimum
and maximum eigenvalues of the weighted Laplacian matrix
[Eq. (4)] must be kept fixed or, at least, the minimal and
maximal node degrees must be fixed (see Supplemental
Material [18]). In this sense, the changes in the topology are
contained within the bounds of the initial edge capacities. For
the U.K. power grid, this corresponds to modifications in the
topology or resistance such that the vertical dashed lines in
Fig. 1 remain fixed. Resilience is then enforced by using the
upper bound of Eq. (4) for every edge. This approach requires
the use of equal capacity lines for the entire network, namely,
2I/λ1.

In general, we find that if a supply-demand network needs
to be designed with similar edge capacities, the topology
has to be set such that it resembles as much as possible a
complete graph (which has all its non-null eigenvalues equal
to the node degrees). This narrows the values that ρij can
take. On the other hand, if the range of Cij values sought
needs to be as broad as possible, the network should be
designed to include nodes with high node degree (this increases
the largest eigenvalue, thus diminishing the lower bound for
the edge capacity) and well-defined communities or nodes
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FIG. 2. (Color online) (a) [(b)] depicts how we modify random
networks by adding edges [nodes]. Simulations initiate with a ring
graph with N = 29 nodes. Then, every pair of disjoint nodes is
separately considered and linked with probability p ∈ [0,1]. The node
addition is done by growing the ring graph (from N = 26 to 212) and
then linking nodes as in the previous case with probability p = 10−1.
The bottom panels show the resultant ρij PDF for both cases [edge
addition in (c) and node addition in (d)] as it evolves when the control
parameter (p or N , respectively) is increased as a function of the ρij

values. The color scale corresponds to the logarithm of the ρij PDF.
The analytical bounds derived in Eq. (4) are shown with dashed lines
(see insets).

with low node degree (which lowers the magnitude of the
spectral gap, hence increasing the upper bound for the edge
capacity).

We particularize now the analysis of the effect of connec-
tivity modifications (changes to Aij ) to the ρij probability
distribution function (PDF) for two types of numerically
generated networks: random (Fig. 2) [25] and small world
(Fig. 3) [26]. In both cases, two growth protocols are carried
out. The protocols and their effect on the ρij PDFs are shown
in Figs. 2 and 3.

For random networks (RNs), the first protocol performs
edge additions to a fixed ring network of N = 29 nodes,
namely, every pair of disjoint nodes in the ring is separately
considered and linked with probability p [Fig. 2(a)]. The
second protocol for RNs grows the ring graph from N = 26

to 212 and, for each ring, disjoint nodes are linked as before
with probability p = 10−1 [Fig. 2(b)]. Consequently, the first

FIG. 3. (Color online) (a) depicts how we modify small-world
networks by rewiring edges. Simulations initiate with a regular
network of N = 29 nodes with node degree k = N/4. Then, each
edge is rewired with probability p ∈ [0,1]. The node addition is done
by growing the regular graph from N = 26 to 212 and then rewiring
the edges with probability p = 10−1. The bottom panels show the
resultant ρij PDF for both cases [edge rewiring in (b) and node
addition in (c)] as it evolves when the control parameter is increased
(p or N ) as a function of the ρij values. The color scale and lines
follow the same criteria as in Fig. 2.

protocol for RNs keeps the number of nodes fixed and increases
the number of edges, hence increasing the edge density
[the ratio between the existing number of edges to the total

possible edges, i.e., �[pN (N − 3) + 2N ]/N (N − 1)
p−→ 1].

On the other hand, the second protocol adds nodes and edges,
but decreases the edge density [�[pN (N − 3) + 2N ]/N (N −
1)

N−→ p]. For small-world (SW) networks, the first protocol
rewires the edges existing in a regular graph of N = 29 nodes
and node degree k = N/4 with probability p [Fig. 3(a)]. The
second protocol increases the number of nodes in the regular
graph from N = 26 to 212, and for each N , rewires the edges
with probability p = 10−1. This means that for SW networks,
the first protocol keeps the number of nodes, edges, and edge
density (2k/N = 1/2) fixed. On the other hand, the second
protocol maintains the edge density fixed, but increases the
number of nodes and edges.

Figures 2(c) and 2(d), and Figs. 3(b) and 3(c), show the
probability distribution of ρij in logarithmic scale (color scale)
as a function of the values at the edges (ρij ) and the control
parameter (either p or N ) for each topology evolution protocol.
RNs and SW networks exhibit power-law behavior of the ρij

PDFs for both growth protocols, with the exception of the edge
rewiring protocol for a fixed number of nodes in SW networks
[Fig. 3(b)]. In other words, most growth processes lead to a
power-law distribution of the edge capacities as a function
of the control parameter (either p or N ), as it also happens in
scalefree networks [14]. Such topology modification protocols
are the inverse of edge or node removals. In particular, if
Q nodes are added to a network of N nodes following
some protocol, it is the same as starting with a network of
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N + Q nodes and removing Q nodes following the same
protocol. Thus, no different behavior in the ρij PDFs is
expected.

This power-law behavior is very advantageous when de-
signing an invariant flow distribution for an evolving supply-
demand network as it allows one to predict the evolution of
the capacities. Moreover, we find that at every step of the
growth process, the edge capacity distribution is mainly given
by the behavior of the most probable ρ̄ value. Thus, its evolved
magnitude can be predicted from the power-law exponents at
any step. The evolution of ρ̄ is derived from

ρ̄(r) � e−β/α r1/α, (5)

where α < 0 and β are the scaling exponents [log(r) �
α log(ρ̄) + β] and the protocol control parameter r is either
p or N . Furthermore, as can be seen from the insets of
these figures, we find that α ∼ −1 for all of the power-law
cases.

We interpret the power-law behavior in the following way.
Any addition of edges to the topology results in a decrease
of the equivalent resistance between nodes, hence a decrease
in our theoretical edge capacity value. This phenomenon is a
consequence of having more paths between nodes. In basic
circuit theory, parallel paths are added as inverse summations,
i.e., 1/ρij = 1/Rij + ∑

k>2 1/R
(k)
ij < 1/Rij , where R

(k)
ij is the

resistance of a path of length k > 2 that joins nodes i and
j . This is why the edge and node addition protocols for RNs
and the node addition protocol for SW networks result in a
power-law PDF evolution and a decrease of the ρij values.
When the connectivity modification protocol fixes the number

of nodes, edges, and edge density [such as the protocol in
Fig. 3(b)], then the ρij ’s PDF remains invariant.

Any real supply-demand network operates by using man-
ageable margins for their edge capacity values to avoid failures
due to unpredictable fluctuations. Such fluctuations can be
due to the switch from hub sources to distributed smaller
producer [case (i)], the change in the location of suppliers and
consumers [case (ii)], topology intended modifications [case
(iii)], or directed attacks. Using Eq. (3), we provide a robust
quantity that is not surpassed in either case (i) or case (ii).

In the cases where the knowledge of the full network
structure is missing, we also obtain manageable bounds for
the exact capacity values in terms of minimal information
of the network structure, e.g., eigenvalues of the weighted
Laplacian matrix [Eq. (4)] and minimum and maximum
degrees (see Supplemental Material [18]). Our margins give
simple engineering strategies for modifying the network’s
topology while bounding the capacities and maintaining a
stable distribution.

To summarize, by analytically providing exact edge capac-
ity values (plus bounds) of conservative linear flow problems,
we are able to show how to design resilient supply-demand
networks. In particular, we analyze the DC power-grid bounds
for maximum load values and give a direct explanation of
how to grow a numerically generated network by preserving
its distribution stability, namely, by adding nodes and/or edges
such that no cascade of failures occurs. In other words, we give
exact [Eq. (3)] and approximate [Eq. (4)] protocols to evolve
a network by maintaining the supply-demand flow stable.

The authors acknowledge the Scottish University Physics
Alliance (SUPA).
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