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Biological molecular machines are proteins that operate under isothermal conditions and hence are referred to as
free energy transducers. They can be formally considered as enzymes that simultaneously catalyze two chemical
reactions: the free energy-donating (input) reaction and the free energy-accepting (output) one. Most if not all
biologically active proteins display a slow stochastic dynamics of transitions between a variety of conformational
substates composing their native state. This makes the description of the enzymatic reaction kinetics in terms of
conventional rate constants insufficient. In the steady state, upon taking advantage of the assumption that each
reaction proceeds through a single pair (the gate) of transition conformational substates of the enzyme-substrates
complex, the degree of coupling between the output and the input reaction fluxes has been expressed in terms
of the mean first-passage times on a conformational transition network between the distinguished substates. The
theory is confronted with the results of random-walk simulations on the five-dimensional hypercube. The formal
proof is given that, for single input and output gates, the output-input degree of coupling cannot exceed unity. As
some experiments suggest such exceeding, looking for the conditions for increasing the degree of coupling value
over unity challenges the theory. Performed simulations of random walks on several model networks involving
more extended gates indicate that the case of the degree of coupling value higher than 1 is realized in a natural
way on critical branching trees extended by long-range shortcuts. Such networks are scale-free and display
the property of the small world. For short-range shortcuts, the networks are scale-free and fractal, representing
a reasonable model for biomolecular machines displaying tight coupling, i.e., the degree of coupling equal
exactly to unity. A hypothesis is stated that the protein conformational transition networks, as just as higher-level
biological networks, the protein interaction network, and the metabolic network, have evolved in the process of
self-organized criticality.
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I. INTRODUCTION

The almost common conviction that biochemical processes
can be interpreted in terms of conventional chemical kinetics
is based on the assumption that the internal dynamics of
biomolecules is fast enough to ensure the partial equilibrium
state is reached before each kinetic step [1]. However, it has
been clear for many years that this assumption cannot be true,
as, in addition to fast vibrations, the dynamics of biomolecules
also comprises slower stochastic transitions between a variety
of conformational substates [2–5]. Research on biomolecular
dynamics is being developed faster and faster, and a paradigm
in which proteins need only a structure to function is more and
more frequently extended to also involve dynamics [6–12].
Today, even in the case of small, water-soluble proteins, the
“native state ensemble” [13–21] is talked about rather than a
single native state, earlier identified with the protein tertiary
structure, and, for very small proteins or protein fragments,
trials to reconstruct the actual networks of conformational
transitions are implemented [8,22–30]. Fischer’s lock and key
is presently replaced not by Koshland’s induced fit but by
the “conformational selection” concept [31–33]. The allosteric
regulation appears to have a dynamic rather than a structural
nature [31–37].

Because of the slow character of conformational dynamics,
both the chemical and conformational transitions in an enzy-
matic protein have to be treated on an equal footing [5,38–40]
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and jointly described by a system of coupled master equations,

ṗl(t) =
∑

l′
[wll′pl′(t) − wl′lpl(t)], (1)

determining the time variation of the occupation probabilities
pl(t) of the individual protein’s substates (Fig. 1). In Eq. (1),
wl′l is the transition probability per unit time from the substate
l to l′, and the dot denotes the time derivative. The confor-
mational transition probabilities satisfy the detailed balance
condition, which, however, can be broken for the chemical
transition probabilities controlled by the concentrations of the
enzyme substrates.

In the closed reactor, the possibility that a chemical
transformation will proceed before the conformational equi-
librium has been reached results in the presence of a
transient nonexponential stage of the process and in an
essential dynamical correction to the reaction rate constant
[1,2,16–18,38–40]. In the open reactor under stationary con-
ditions (the concentrations of reactants and products of the
reaction kept constant), the general situation is more complex.
An analytical theory was proposed [5,41] only for the reactions
gated by single pairs of transition conformational substates
[Fig. 1(c)]. A consequence of the slow conformational transi-
tion dynamics is that the steady-state kinetics, like the transient
stage kinetics, cannot be described in terms of usual rate con-
stants. This possibility was suggested 40 years ago by Blumen-
feld [42]. Later on still, we have shown that adequate physical
quantities that should be used are the mean first-passage times
between distinguished transition substates [5,41]. Thus, for
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FIG. 1. Development of kinetic schemes of the single enzymatic reaction R ↔ P. (a) Two-step Michaelis-Menten kinetics, involving one
enzyme-substrate intermediate M. (b) Three-step Haldene kinetics involving two intermediates. Here, M′ = ER and M′′ = EP. (c) Kinetics
studied in Ref. [41] where transitions between intermediates within E and M were expanded to networks of conformational transitions described
by equations like (1) and represented here by the gray boxes. The reactant and product binding-releasing reactions are assumed to be gated,
i.e., they take place only in certain conformational substates, represented here as black dots. (d) A simplified kinetic scheme including only
the conformational transition dynamics within the free enzyme E. Two reactant and product binding-releasing reactions and the kinetics of the
transitions within M are replaced by an effective single bimolecular reaction. (e) Simplified kinetic scheme including only the conformational
transition dynamics within the enzyme-substrate complex M. All the reactions are reversible; the arrows indicate the directions assumed to be
forward (the corresponding rate constants in the text are written with the subscript +).

the kinetic scheme shown in Fig. 1(c), the reciprocal forward
turnover number appears to be a sum of the three times,

k−1
+ = τM(0′ → 0′′) + (k′′

+)−1 + τE(0′′ → 0′) . (2)

The mean first passage time τM(0′ → 0′′) from the substate
0′ to 0′′ characterizes a process of reaching the transition
substate 0′′ in M, k′′

+ is the equilibrium (transition state
theory) reaction rate constant, and τE(0′′ → 0′) characterizes
a process of the free enzyme-substrate molecular recognition.

An application of the formalism to two coupled enzymatic
reactions was considered in the context of the free energy
transduction in biological molecular machines [41]. We
understand the word “machine” quite generally as denoting
any physical system that enables two other physical systems to
perform work one on each other. Under isothermal conditions,
the performance of work is equivalent to a transduction of free
energy. Thus, molecular machines that operate under such
conditions are referred to as free energy transducers [43].

From a theoretical point of view, it is convenient to
treat all biomolecular machines, also pumps and motors, as
chemochemical machines. Indeed, the molecules present on
either side of a biological membrane can be considered to
occupy different chemical states, whereas the external load
influences the free energy involved in binding the motor to
its track, which can be expressed as a change of an effective
concentration of this track [1]. The chemochemical machines
are enzymes that simultaneously catalyze two chemical reac-
tions: the free energy-donating (input) reaction and the free
energy-accepting (output) reaction. For the chemochemical
machines, the degree of coupling, i.e., the ratio of the output
reaction flux to the input reaction flux, was also found to
be determined by the mean first-passage times between the
transition conformational substates. As the mean first-passage
times are not the quantities that could be directly determined
in the experiment, no experimental verification of the theory
presented in Ref. [41] has been done as yet. The first goal of
the present paper is to check the correctness of the theory by
confronting it with the results of the Monte Carlo simulations,
performed on the simple model networks of conformational
transitions, and to introduce quantities that could be directly
determined experimentally.

The essential motive of our studies is a trial to answer the
intriguing question of whether it is possible for the degree of
coupling to have a value higher than unity. A dogma in the
physical theory of, e.g., biological molecular motors is the
assumption that to take a single step along its track, the motor
molecule has to hydrolyze at least one molecule of adenosine
triphosphate (ATP). Several years ago this assumption was
questioned by a group of Japanese biophysicists from the
Yanagida laboratory, who, joining a specific nanometry tech-
nique with the microscopy fluorescence spectroscopy, showed
that the myosin II head can take several steps along the
actin filament per ATP molecule hydrolyzed [44–46]. This
observation has been confirmed by other laboratories [47],
and also for the cytoplasmic dynein [48–51].

No conventional chemical kinetics approach is able to
explain such behavior. In Refs. [41] and [1], based on
approximations carried too far, we suggested that the degree
of coupling can exceed unity already for reactions proceeding
through single pairs of transition substates. Here, we formally
prove that it is not the case, and we show that the latter takes
place in a natural way for the scale-free critical branching trees
extended by long-range shortcuts, and with the output gates
involving more conformational substates.

II. GENERALIZED KINETIC SCHEME OF
CHEMOCHEMICAL MACHINE ACTION

The principle of the action of the chemochemical machine
is simple [43]. It is a protein enzyme that catalyzes simulta-
neously two chemical reactions [Fig. 2(a)]. Separately, each
reaction takes place in the direction determined by the second
law of thermodynamics stating that the energy dissipated,
determined by the product of flux and force, is positive.
However, if both reactions take place simultaneously in a
common cycle, they must proceed in the same direction,
and the direction of the first reaction can force a change of
direction in the second. As a consequence, the first reaction
transfers a part of its free energy, recovered from dissipation,
for performing work on the second reaction.

In formal terms, the chemochemical machine couples two
unimolecular reactions: the free energy-donating reaction
R1 ↔ P1 and the free energy-accepting reaction R2 ↔ P2.
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FIG. 2. Development of kinetic schemes of the chemochemical machine. (a) The principle of the chemochemical free energy transduction.
Due to proceeding on the same enzyme, reaction R1 ↔ P1 drives reaction R2 ↔ P2 against its conjugate force, determined by steady-state
concentrations of the product [P2] and the reactant [R2]. (b) Assumption of a possible short circuit or slippage of the input vs output reaction.
(c) Assumption of both the free energy-donating and the free energy-accepting reaction to participate in a kinetic scheme such as the one
shown in Fig. 1(d) or 1(e). τ1(A1) and τ2(A2) denote, respectively, the mean input and output external transition times in the forward direction,
dependent on the concentrations [Ri] and [Pi], and thus the forces Ai [cf. Eqs. (9) or (10)]. (d) Further generalization of the kinetic scheme to
involve more input and output gates.

Bimolecular reactions can be considered as effective unimolec-
ular reactions upon assuming a constant concentration of one
of the reagents, e.g., adenosine diphosphate (ADP) in the case
of ATP hydrolysis. The input and output fluxes Ji (i = 1 and
2, respectively) and the conjugate thermodynamic forces Ai

are defined as [43]

Ji = d[Pi]/dt

[E]0
(3)

and

βAi = ln Ki

[Ri]

[Pi]
, Ki ≡ [Pi]eq

[Ri]eq
. (4)

Here, the symbols of the chemical compounds in the square
brackets denote the molar concentrations in the steady state (no
superscript) or in the equilibrium (the superscript “eq”). [E]0

is the total concentration of the enzyme and β is proportional
to the reciprocal temperature, β ≡ (kBT )−1, where kB is the
Boltzmann constant.

The flux-force dependence is one-to-one only if some
constraints are put on the concentrations [Ri] and [Pi] for
each i. There are two options. Either the concentration of one
species, say Ri , in the open reactor under consideration, is kept
constant:

[Ri] = const (5)

as, e.g., in the case of ATP hydrolysis, or it is a total
concentration of the enzyme substrate:

[Ri] + [Pi] = const, (6)

as, e.g., in the case of a motor motion, where [Ri] and [Pi] are
interpreted as the effective concentrations of its track before
and after translation, respectively [1].

The free energy transduction is realized if the product J2A2,
representing the output power, is negative. The efficiency of
the machine is the ratio

η = −J2A2/J1A1 (7)

of the positive output power to the input power. In general, the
degree of coupling

ε = J2/J1, (8)

being itself a function of the forces A1 and A2, can be both
positive and negative.

Usually, the assumption of tight coupling between both
reactions is made [Fig. 2(a)]. It states that the flux of the first
reaction equals the flux of the second, J1 = J2, thus ε = 1.
However, an additional reaction can take place between the two
states E′ and E′′ of the enzyme [Fig. 2(b)]. The latter reaction
can be considered either as a short circuit (the nonproductive
realization of the first reaction not driving the second reaction)
or a slippage (the realization of the second reaction in the
direction dictated by its conjugate force).

The multiconformational counterpart of the scheme in
Fig. 2(b) is shown in Fig. 2(c). Here, as in the scheme in
Fig. 1(d), a network of conformational transitions within the
enzyme is represented by the gray box, and the assumption of
gating by single pairs of transition conformational substates is
made. The gray box in Fig. 2(c) can also represent a network
of conformational transitions within the enzyme-substrate or
enzyme-substrates complex, shown in the scheme in Fig. 1(e).
The only difference consists in the dependence of the mean
transition times τi in the forward direction, between the gate
substates i ′′ and i ′ (i = 1,2), on [Ri] and [Pi], thus the external
forces Ai . For the effective single bimolecular reaction in the
scheme in Fig. 1(d) (the interior of the gray box represents the
substates of E),

τ = 1

k+[R]
, (9)

whereas for the three successive effective reactions in the
scheme in Fig. 1(e) (the interior of the gray box represents
the substates of M),

τ = 1

k′′+
+ k′′

−[P]

k′′+

(
1

k+
+ k−

k+

1

k′+[R]

)
. (10)

Together with the equilibrium occupation probabilities of the
forward transition substates [doubly primed in Fig. 2(c)], the
mean transition times τi determine the external transition
probabilities per unit time,

vi ′i ′′ = (
τip

eq
i ′′

)−1
. (11)

We denote the external transition probabilities by v to
distinguish them from possible internal transition probabilities
between the same substates, denoted by w. The external
transition probabilities per unit time from the transition
substates in the reverse direction [singly primed in Fig. 2(c)]
must be multiplied by the factor breaking the detailed balance
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symmetry, determined by the external forces:

vi ′′i ′ = e−βAi
(
τip

eq
i ′

)−1
. (12)

In Ref. [41], using a technique of summing up the
directional diagrams proposed by Hill [43], who formalized
a former idea of Kirchhoff’s, we showed how the input and
the output reaction fluxes are related to the mean first-passage
times between the distinguished substates. In the next section,
we quote the most important results of Ref. [41] in the
essentially changed notation facilitating their experimental
verification. Further on, we compare them with the results of
the random-walk simulations on a simple model network. The
relations between the stationary fluxes and mean first-passage
times are explained briefly in the Appendix.

Using the relations derived in the Appendix, we formally
prove that, for the scheme in Fig. 2(c), the degree of coupling
(8) cannot exceed unity. To obtain a higher value of this
coefficient, an extension of the transition gates is necessary,
which is schematically shown in Fig. 2(d). The rate of the
external transition within each component subgate can differ
one from another, so that such kinds of models are referred to as
models with “fluctuating barriers” [5]. The fact that extensions
of the output gates really result in exceeding the value of the
degree of coupling over unity is shown in the final section.

III. SINGLY GATED REACTIONS:
THEORETICAL RESULTS

For all the schemes shown in Figs. 2(a)–2(c), the flux-
force dependence for the two coupled reactions has a general
functional form [41],

Ji = 1 − e−β(Ai−Ast
i )

J−1
+i + J−1

−i e−β(Ai−Ast
i ) + J−1

0i (Ki + eβAi )−1
. (13)

The parameters J+i , J−i , J0i , and Ast
i depend on the other

force and are determined by a particular kinetic scheme. Ast
i

have the meaning of stalling forces for which the fluxes
Ji vanish: Ji(Ast

i ) = 0. The dependences Ji(Ai) are strictly
increasing with an inflection point, determined by J0i , and two
asymptotes, J+i and J−i (cf. Fig. 4). The asymptotic fluxes
J+i and J−i display the Michaelis-Menten dependence on the
substrate concentrations. Because of the high complexity, we
refrain from giving any formulas for the turnover numbers and
the apparent dissociation constants.

The degree of coupling dependence on the forces A1 and
A2 has a form

ε = 1 − e−β(A1+A2) + W1(A1)(1 − e−βA2 )

1 − e−β(A1+A2) + W2(A2)(1 − e−βA1 )
(14)

and the stalling force,

βAst
2 = ln

e−βA1 + W1(A1)

1 + W1(A1)
. (15)

The expression for Ast
1 is to be obtained after replacing the

index 1 with the index 2 and vice versa. The quantities Wi(Ai)
are measures of the slippage. To facilitate their interpretation
by the reader, we adduce the corresponding formulas for the
simple scheme shown in Fig. 2(b) [1]:

W1(A1) = k0−τ1, W2(A2) = k0+τ2, (16)

where τi are determined by Eq. (9) both for R1 and R2. To
express it more directly, Wi(Ai) can be considered as repre-
senting the ratios of nonproductive and productive transition
rates.

For the scheme in Fig. 2(c), the summation over diagrams
gives [41]

W1(A1)

= τM(1′′ ↔ {1′,2′}) + τM(1′ ↔ {1′′,2′′})e−βA1 + τ1(A1)

τM(1′ ↔ {1′′,2′}) − τM(1′ ↔ {1′′,2′′})
(17)

and the equivalent for W2(A2) after replacing 1 with 2 and vice
versa [note the 180◦ rotational symmetry of the kinetic scheme
in Fig. 2(c)].

The quantities τM in Eq. (17) denote the sums

τM(l0 ↔ {l,l′}) = τM(l0 → {l,l′}) + τM({l,l′} → l0) (18)

of the forward and reverse mean first-passage times that occur
in the summation formula for the mean first-passage time from
l0 to l in the network symbolized by the gray box M:

τM(l0 → l) = τM(l0 → {l,l′}) + τM({l0,l′} → l) (19)

for arbitrary l′ (cf. the Appendix). Equation (19) is a gen-
eralization of the obvious summation formula for a one-
dimensional random walk:

τ (l0 → l) = τ (l0 → l′) + τ (l′ → l), (20)

where l′ lies between l0 and l. The quantity τM(l0 → {l,l′}) has
a direct meaning of the mean first-passage time from l0 to l or

l′. The interpretation of τM({l0,l′} → l) is more troublesome,
but it can always be treated as a completion of τM(l0 → {l,l′})
to τM(l0 → l). On doing so, we find

τM(l0 ↔ {l,l′}) = τM(l0 → {l,l′})
− τM(l → {l0,l′}) + τM(l → l0). (21)

We get an alternative expression upon exchanging l with l′.
The highest value of the degree of coupling modulus |ε|

in the free energy transduction region is for βA2 = 0. Then,
Eq. (14) is simplified to

ε(0) = 1

1 + W2(0)
(22)

independently of βA1, and

βAst
1 (0) = 0. (23)

One could expect the value of |ε| to be higher than 1 if
W2(0) was negative, i.e., if the denominator in the equation
symmetrical to (17) was negative. However, this is not the
case. It is worth pointing out that the denominators in W1(A1)
and W2(A2) equal each other. This follows from the relation
(A12) derived in the Appendix. The consequence is that both
Wi(Ai) are always of the same sign, either positive or negative.
If both Wi are positive, the stalling force βAst

2 given by Eq. (15)
is negative and the free energy transduction takes place in the
region Ast

2 � A2 � 0 with the positive value of the degree of
coupling (22) always lower than unity.

If both Wi are negative, the stalling force βAst
2 given by

Eq. (15) is positive and the free energy transduction takes
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place in the region 0 � A2 � Ast
2 with the negative ε. For its

value to be lower than −1, an inequality

−2 < W2(0) < −1 (24)

should be fulfilled. Upon substituting the explicit expression
for W2(0) and using the relation (A10), also derived in the
Appendix, this inequality can be rewritten as

τM(2′ ↔ {1′,2′′}) + τM(2′′ ↔ {1′′,2′}) + τ2(0) < 0. (25)

Of course, neither τM nor τ2 can be negative, so the modulus
of the coupling ratio can never be higher than unity.

IV. SINGLY GATED REACTIONS: COMPARISON
WITH MONTE CARLO SIMULATIONS

The quantities τM(l0 ↔ {l,l′}) or their differences occurring
in Eq. (17) for W1(A1) and the equivalent for W2(A2) can be
considered as five independent parameters of the theory to be
fitted in future experiments. However, the mean first-passage
times are not the quantities that could be directly determined
experimentally. The choice of an appropriate network that
models the interior of the gray box in Fig. 2(c) and the positions
of the input and output gates is a question of the statement of
a more or less reasonable hypothesis. The simplest was stated
70 years ago by Kramers, who assumed that the slowly varying
intramolecular substates lie along a one-dimensional “reaction
coordinate” [1,2]. This way of reasoning has been continued in
the theory of molecular motors where the reaction coordinate
was identified with the position of the motor along its track
[43,52–54] or the rotation angle [55].

More complex modeling can be grounded on statistical
analyses of the time series found in molecular-dynamics
simulations [8,22–30] or single-molecule experiments
[56–64]. Unfortunately, the present-day understanding of this
matter is still rather poor, so we decided, first, to test our
theory by resorting to Monte Carlo simulations of random
walks on simple but not quite real networks. Various networks
differ from one another by the geometry of links that
determines an entropic contribution to the kinetics, and by
the variety and asymmetry of the transition probabilities wll′

that, following the detailed balance condition, determine an
energetic contribution.

To start with, for more detailed studies, we chose the most
regular isoenergetic network, the n-dimensional hypercube,
the vertexes of which are labeled by sequences of the bits
(s1,s2, . . . ,sn), si = 0,1, and all possible transitions are related
to changes of one bit and have the same probability w. The
distance between vertexes is determined by the minimum
number of edges a random walker has to pass in a walk between
these vertexes. Such a determined distance equals the number
of necessary bit changes. In the n-dimensional hypercube,
there are N = 2n vertexes. Each vertex has n neighbors, and
no boundary conditions are necessary. To obtain the results of
simulations in a reasonable amount of time, we assumed the
dimension to be n = 5.

We chose the input and output gates so as to make the
free energy transduction the most effective. It is realized when
moduli of both the degree of coupling (14) and the stalling
force (15) are maximum, i.e., the values of W2(0) and W1(∞)
are minimum. A detailed analysis indicated that it takes place

when the pairs of sites 1′ and 2′′ as well as 2′ and 1′′ lie closest,
at a distance equal to 1. On the contrary, the diameters of the
input and output gates should be the largest, equal to 5 so as
to lie along the diagonal of the hypercube.

For such determined geometry of the gates, only the values
of the three types of mean first-passage times have to be
known, enabling one to calculate, following Eq. (21), all the
quantities occurring in Eq. (17) for W1(A1) and the equavalent
for W2(A2). These are mean first-passage times of the type

τM(1′′ → {1′,2′}) = 16,

τM(1′ → {1′′,2′}) = 80/3 ≈ 26.667,

τM(1′ → 1′′) = 128/3 ≈ 42.667

(note that for the hypercube, the mean first-passage times
depend only on the distances between the initial, final, and
the intermediate, if any, states). All the quoted values, counted
in the number of random-walk steps with the transition prob-
ability between the nearest neighbors w = 1/n = 1/5, were
determined by simple though time-consuming combinatorics
and checked in numerical simulations.

The reciprocal external transition times equal the equilib-
rium occupation probabilities of the transition gates 1/N =
1/2n = 1/32 multiplied by appropriate external transition
rates, Eq. (11). We assumed the simplest, constant external
transition rates and chose τ−1

1 = 50 w/N = 5/16 and τ−1
2 =

30 w/N = 3/16. The times τ1 = 3.200 and τ2 = 5.333 are
one order of magnitude shorter than the maximum mean
first-passage time τM(1′ → 1′′), being a measure of the
intramolecular relaxation time. Thus, both reactions 1 and
2 are controlled, though not completely, by intramolecular
dynamics. In fact, shortening the times τ1 and τ2 does not
change the values of W1 and W2 considerably. Following
Eq. (12), the reciprocal reverse external transition times
equal τ−1

1 and τ−1
2 multiplied by the detailed equilibrium

condition-breaking exponents exp(−βA1) and exp(−βA2),
respectively. We chose βA1 = 10, which is a physically
reasonable condition of the free energy donating reaction 1
to proceed sufficiently far from the equilibrium. In actual
simulations, to preserve the equal probabilities of the forward
and reverse internal transitions in the presence of additional
external transitions, w had to be chosen much lower than 1/n,
and a high probability of waiting at all but one vertex had to
be added.

A typical result of a simulation of the time course of the
net number of external transitions through the input and the
output gates is shown in Fig. 3(a). It is clearly seen that, even
for such a small lattice studied, consisting of 32 vertexes, large
fluctuations make the determination of the input and the output
fluxes in 104 iteration steps impossible. Only by increasing the
number of iteration steps to 109 [Fig. 3(b)] can one determine
the fluxes with the error lower than 0.3%.

The theory presented in the previous section, in particular its
main Eqs. (14), (15), and (17), does not use any approximation
and is exact. For simple networks of conformational transitions
such as the one considered here, we know the values of
appropriate mean first-passage times and we can directly
compute the slippage functions Wi(Ai), and thus the force
dependences of the degree of coupling (14) and the stalling
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FIG. 3. Simulated time course of the net number of the input
(R1 ↔ P1) and the output (R2 ↔ P2) external transitions for the five-
dimensional hypercube with the gates and the parameters described
in the text. (a) The snapshots made every step. (b) The snapshots
made every 105 steps.

force (15). Figures 4 and 5 show the confrontations of such
obtained dependences with the results of the Monte Carlo
simulations, which, in the present context, can be treated as
experimental data. Note that ε(0) = 0.28. Taking into account
that in Figs. 4 and 5 no fitting procedures were applied, the
agreement is excellent, but it only points to the correctness of
the conditions under which our Monte Carlo simulations were
performed. Being sure of such correctness, we can use similar
simulations to study more extended networks for which no
exact theory exists.

V. MULTIPLY GATED REACTIONS: ISOENERGETIC
NETWORK MODELS

We proved the theorem that the value of the degree of
coupling was lower than, or at the most equal to, unity, but only
when the input and output reactions proceeded through single
pairs of transition conformational substates. It is reasonable
to suppose that the chance of a higher degree of coupling is
possible if the output gate is extended to two or more pairs of
transition substates. In fact, it is obvious that, upon replacing
the single output gate in the scheme in Fig. 2(a) by n gates
succeeding each other, we get the degree of coupling ε = n.
Such reasoning has already been proposed in order to explain

-1

-0.5

0

 0.5

1

-6 -4 -2 0 2 4 6

ε

β A2

FIG. 4. Dependence of the degree of coupling ε on the output
force A2 for the model and the parameters described in the text.
The black dots denote the results of the Monte Carlo simulations
and the continuous line is calculated following Eqs. (14), (17) and
the equivalent for W2(A2). No fit has been performed between the
experiment and the theory, as the latter has no free parameters. As
for the very high value of the input force βA1 = 10, the input flux
J1 remains practically constant, the figure simultaneously represents
the dependence of the output flux J2 = εJ1 on the output force A2. In
fact, the results of our Monte Carlo experiment fit the more general
theoretical prediction, Eq. (13), very well.

the multiple stepping of the myosin molecule along the actin
filament [45]. One can also imagine an incorporation of a
system of additional nonreactive transitions [65].

In Fig. 6, a scheme is shown with one input and two output
gates, being an extension of the kinetic scheme in Fig. 2(c).
Unfortunately, even in the case of only two output gates, the
analytical formulas are so complex and not transparent that
serious approximations must be made from the very beginning.
Not being able presently to formulate such approximations,
we decided to apply a computer experiment for a preliminary
study of the problem. We performed Monte Carlo simulations
starting from the five-dimensional hypercube. For the most

0

 0.1

 0.2

 0.3

 0.4

 0.5

0 5  10  15  20

-β
 A

2st

β A1

FIG. 5. Dependence of the stalling force Ast
2 on the input force A1

for the model and the parameters described in the text. The black dots
denote the results of the Monte Carlo simulations and the continuous
line is calculated following Eqs. (15) and (17).
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FIG. 6. Extension of the kinetic scheme in Fig. 2(c) to one input
and two output gates. The obligatory transitions are drawn by arrows.
If no other transitions occur, the degree of coupling between the
second and the first reaction equals 2. Otherwise, it is lower than 2,
but possibly higher than 1.

optimal geometry of one input and two output gates, we
obtained the degree of coupling ε(0) not higher than 0.36.
Also, simulations on the nine-dimensional hypercube with
512 states were not successful. We suppose that the input and
output steady-state fluxes on the isoenergetic hypercubes of an
arbitrary dimension and with an arbitrary number of gates are
always equal to the steady-state fluxes through the single input
and output gates on some equivalent nonisoenergetic networks.
Such systems are described by the theory given above, and the
whole discussion already performed applies to them.

Still restricting ourselves to isoenergetic networks, we
considered systems with a more complex topology. We focused
our attention on networks with a hierarchy of bottlenecks or
dead ends, the diffusion on which displays long-time tiles [66].
As an example of a network with a hierarchy of bottlenecks, we
considered the Sierpinski gasket; as an example of a network
with a hierarchy of dead ends, we considered the Bethe lattice.
As in Sec. IV, we assumed short external transition times
and the large input force βA1 = 10. For the Sierpinski gasket
of the fourth order with the most optimal system of three
successive gates, we obtained ε(0) = 1.27. For the Bethe
lattice with five shells and the most optimal system of three
successive gates, we obtained ε(0) = 1.19. We conclude that
for protein machines with stochastic dynamics described by an
appropriate network of conformational transitions, the degree
of coupling can, in principle, be higher than unity.

The most optimal geometry of gates is the one with a bias
against unfavorable short circuits and, simultaneously, long
wandering between transitions through successive gates. How-
ever, this goal was achieved in an evidently artificial way due
to entropic obstacles and shortcuts. The values of ε obtained
were much lower than the maximal possible value 3. Similarly,
the value ε(0) = 0.28, obtained for the five-dimensional cube
with the most optimal single output gate, was much lower
than the maximal possible value 1 detected experimentally
for numerous tightly coupled biomolecular machines. The
conclusion follows that the isoenergetic networks considered
up to now are not good models of conformational transition
networks in real native proteins, and there is a need to look for
more realistic models.

VI. MULTIPLY GATED REACTIONS: CRITICAL
BRANCHING TREE MODELS

Since the formulation by Bak and Sneppen of the cellular
automaton model of the Eldredge and Gould punctuated
equilibriums [67], biological evolution is more and more

often considered to be a self-organized criticality phenomenon
[68,69]. An evolving network model of self-organized criti-
cality was proposed by Barabási and Albert [70,71]. It soon
appeared that two networks of the systems biology, namely
the protein interaction network and the metabolic network, to
a good approximation, not only have a scale-free structure like
that of the Barabási-Albert networks [72,73], but they also
display a fractal scaling [74,75].

There are grounds to also suppose that the conformational
transition networks in proteins are both scale-free and fractal.
The former feature is suggested by the results of the molecular
dynamics simulations for small atomic clusters [76] and
proteins as well [77], and by a specific spatial organization
of proteins [78,79]. The latter has already been shown in
the pioneering papers from the Hans Frauenfelder laboratory
[2,6] and confirmed in early molecular dynamics simulations
[3,4]. Thus, it is a reasonable hypothesis that the protein
conformational transition networks have also evolved in a
process of self-organized criticality.

However, the above speculations are somewhat incomplete.
The evolving scale-free Barabási-Albert networks evidently
have small-world character rather than fractal character [71].
And indeed, such a character was also suggested both for the
protein interaction network and the metabolic network [80],
as well as for the conformational transition networks [76,77].
Only recently has an apparent contradiction between fractality
and small-worldness been explained by the application of the
renormalization-group technique [81]. It appears that, upon
adding shortcuts with the distance r distribution fulfilling the
power law r−α to an original fractal network, a transition to
the small-world network occurs below some critical value of
the exponent α. Close to this critical value, the network can
be fractal in a small length-scale while simultaneously having
small-world features in a large length-scale, and this is the case
of the protein interaction network and the metabolic network.
The small-world properties of the conformational transition
network have been shown for a protein that has experienced
a folding transition [77], whereas the fractal hierarchy char-
acterizes the well-folded proteins [3,4,29]. We can suppose
that for partly unfolded proteins, the conformational transition
network also displays fractal properties on a small length-scale
and small-world properties on a large length-scale [82].

The topological structure of a flow (of probability, metabo-
lites, energy, or information) through a network is charac-
terized by a spatial spanning tree composed of the most
conducting links not involved in cycles. It is referred to as
the skeleton [83] or the backbone [84] of the network, all the
rejected links being considered as shortcuts. The skeleton of
the scale-free and fractal network is also scale-free and fractal.
For the scale-free fractal trees, a criticality feature appears
important that denotes the presence of a plateau equal to unity
in the mean branching number dependence on the distance
from the skeleton root. The critical trees can be completed for
self-similar scale-free networks, and such is the case of the
protein interaction and metabolic networks [83,85].

Figure 7(a) shows a tree with N = 200 nodes constructed
following the algorithm described in Ref. [83]. It is too small
to prove its scale-free and fractal properties, but the same
algorithm applied to N = 105 nodes resulted in a tree being
actually critical, scale-free, and fractal. The important feature
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FIG. 7. (a) Exemplifying realization of a scale-free fractal tree
with N = 200 nodes constructed following the algorithm described
in Ref. [83]. The single input and output gates are distinguished,
chosen for the Monte Carlo simulations. For notation of the gates, see
Fig. 2(c). (b) Tree from the upper figure, extended by three randomly
chosen shortcuts between pairs of nodes equally distanced from the
two main hubs. The four output gates a, b, c, and d are chosen
tendentiously to lie one after the other as in Fig. 6, hence to obtain
the highest value of the degree of coupling ε.

of the scale-free fractal trees is the repulsion of the hubs (the
nodes with a large number of links) [83]. And, indeed, for
most protein conformational networks, a tree joining two main
states, e.g., closed and open ones, is characteristic [27–30].

Figure 7(b) shows an extension of the tree from Fig. 7(a)
by three randomly chosen shortcuts between pairs of nodes
equally distanced from the two main hubs. And again, this
network is too small to determine its scaling properties, but a
similar procedure applied to the scale-free and fractal tree with
N = 105 nodes results in a network that is fractal in a small
length-scale and small-world in a large length-scale.

To provide both networks with stochastic dynamics de-
scribed by Eq. (1), we assume the probability of changing
a node to any of its neighbors to be the same in each
random-walk step. Consequently, the transition probability
from the node l to the neighboring node l′ is

wl′l = 1/kl, (26)

where kl is the number of links (the degree) of the node
l. A network with such dynamics cannot be isoenergetic,
and, following the detailed balance principle, the equilibrium
occupation probability of the node l is

p
eq
l = kl

/ ∑
l′

kl′ . (27)

The larger the number of links, the higher the equilibrium
occupation probability of the node, thus the lower its free
energy. The most stable conformational substates are the hubs.

As in Secs. IV and V, we choose the simplest, constant
external transition times τ1 and τ2 for the input and output
gates, respectively, related to Eq. (9) and the constraint (5).
We also choose βA1 = 10, which makes the exit probability
from the transition substate 1′ negligible. Following Eq. (27),
the internal transition probabilities per unit time (26) can be
rewritten in a form similar to (11):

wl′l = (
τrxp

eq
l

)−1
, (28)

where

τrx =
∑

l

kl (29)

denotes the intramolecular relaxation time.
To ensure that the sum of all transition probabilities from

a given node will be 1 in the actual simulation step, all the
discussed transition probabilities were appropriately renormal-
ized with a probability of waiting at all but one nodes added.

The repulsion of the main hubs results in the long mean first-
passage times between them. As a consequence, intramolecu-
lar dynamics of this type can easily explain the tight coupling
between the output and input reaction for most protein
machines. For the system of chosen gates as shown in Fig. 7(a),
we performed a series of Monte Carlo simulations and found
ε(0) = 0.988 for τ1 = τ2 = 40, those times being one order
of the magnitude shorter than τrx = 400, and ε(0) = 0.998 for
τ1 = τ2 = 4. This means that the times τ1 = τ2 = 40 are short
enough to almost reach the maximum degree of coupling.

The case of multiple output gates requires more systematic
studies. Upon tendentiously choosing the four output gates a,
b, c, and d as shown in Fig. 7(b) and assuming τ1 = τ2 = 40,
we found ε(0) = 2.27, a value much closer to the the maximum
value possible ε(0) = 4 than in the case of isoenergetic
networks. We also performed simulations for nonzero values
of the force A2, and we obtained a dependence ε(A2) shown in
Fig. 8. We tried to fit the results of the Monte Carlo simulations
to Eq. (13), but our success does not necessarily mean that this
equation is universal and applies also to the multiply gated
reactions. It simply contains a sufficient number of parameters.

The curve in Fig. 8 is concave. Upon changing the geometry
of the gates and, possibly, taking into account a variation of τ2

with A2 and with a particular index of the output gate (the “fluc-
tuating barrier”), one can obtain the convex dependences ε(A2)
or J2(A2), well known in the case of the actomyosin motor [41].

A more serious limitation of the present model is the
assumption of constancy of transition probabilities for a given
degree of the node, Eq. (26). It gives only a trivial dependence
on temperature and does not provide a funnel-like change of
the network architecture, characterizing the process of protein
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FIG. 8. Dependence of the degree of coupling ε on the output
force A2 for the model with four gates, presented in Fig. 7(b). The
black dots denote the results of the Monte Carlo simulations and
the continuous line represents the fit to Eq. (13). The free energy
transduction region is characterized by the parameters ε(0) = 2.27
and βAst

2 = −0.21.

folding [23]. Because of the number of parameters needed for
a more systematic analysis, we leave the problem of possible
model extensions to a separate paper devoted to a particular
theory of the actomyosin motor.

VII. CONCLUDING REMARKS

Only recently have some trials been undertaken to deter-
mine the conformational transition networks in native proteins.
That is why in the present paper we restricted our attention to
model networks. Our goal was to calculate and simulate the
degree of coupling between the free energy-accepting and the
free energy-donating reaction flux in the protein molecular
machines. Exact theoretical formulas could be obtained only
for the reactions proceeding through single pairs (the gates)
of conformational transition substates. The theory predicts
the value of the degree of coupling not exceeding unity.
However, in Monte Carlo simulations on simple scale-free
treelike networks extended by long-range shortcuts, we show
that, upon increasing the number of output gates, one can easily
obtain the degree of coupling much higher than unity. In other
words, “biomolecular gears” are possible, and more than one
step taken per ATP molecule hydrolized, observed in the case
of the myosin II, is not an artefact.

The long-range shortcuts give the network small-world
properties, characteristic for the dynamics of partly unfolded
proteins. The structure of the myosin II is similar to that of
small G proteins, e.g., the protein Ras (rat sarcoma) p21, both
classes of proteins having a common ancestor [86]. Both in
the Ras protein [15,87] and in the myosin II [88–91], one of
the α helices unwinds in part after binding the nucleoside
triphosphate, which makes the neighboring region partly
disordered, and thus fluctuating and flexible. The detachment
of the motor molecule from its track corresponds to the
attachment of the signal transducting G protein to its effector.
As a consequence, taking several steps per ATP molecule
hydrolyzed by myosin II could correspond to the activation of
many effectors per GTP molecule hydrolyzed by a malignantly

mutated oncogene Ras protein. Also, in the transcription factor
p53, the DNA binding core domain is partly disordered [92].
The commonly assumed model of facilitated, alternating three-
and one-dimensional passive diffusion does not explain all the
known facts concerning the search for a proper binding site on
the DNA [93], so a hypothesis that this search can be active,
using the free energy of a single ATP molecule hydrolysis
many times, seems reasonable.

Nevertheless, the degree of coupling for most protein
machines is lower than or equal to unity. Simultaneously, most
protein enzymes display the Michaelis-Menten dependence of
the asymptotic fluxes on the substrate concentration. Gating the
reactions by single pairs of conformational transition substates
is a sufficient condition for the conformationally fluctuating
enzymes to obey the Michaelis-Menten kinetics [5,41]. There
are, thus, solid grounds to suppose that the theory presented
in Sec. III is applicable in the description of action of most
biological machines. Doubts can be settled via an analysis
of the time correlation functions of the noise, observed in
appropriate single-molecule experiments [56,64].

Of course, networks with gates comprising single transition
substates should only be treated as effective. The actual
networks of conformational transitions are certainly much
more complex. Various networks and systems of gates lead
to the same or similar values of the quantities τM(l0 ↔ {l,l′})
in the expressions for the slippage functions Wi(Ai). Similarly,
various networks make identical predictions of the statistical
properties of the dichotomous noise observed [60,61]. It is a
task for theoreticians to propose an algorithm of constructing
the minimum effective networks that interpret the flux-force
characteristics of the particular classes of protein machines.

We stated a hypothesis that the protein conformational
transition networks, as just as higher-level biological networks,
the protein interaction network, and the metabolic network,
have evolved in a process of self-organized criticality. A
proposal follows from this to adopt evolving scale-free trees
as universal models of conformational transition networks in
biomolecular machines. To reconstruct the funnel-like temper-
ature dependence of the network architecture, an appropriately
chosen temperature variation of transition probabilities has
to be considered. We assumed that the free energy-donating
reaction (usually the ATP hydrolysis) is singly gated and
proceeds through the main hubs. In fact, the dependence of
both the input and the output fluxes on the ATP concentration
found in our simulations is of Michaelis-Menten form, which
agrees with many experiments. The universality of the ATP
hydrolysis is to be confronted with the fact that the main
hubs are very stable and evolve slowly. On the other hand,
nodes with low connectivity evolve faster and can be fitted
evolutionarily, being good candidates for, if need be, either
single or multiple exit gates of the free energy-accepting
process.
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APPENDIX: STATIONARY FLUXES AND MEAN
FIRST-PASSAGE TIMES

Let S be an arbitrary set of states of a certain system
with stochastic dynamics determined by a system of master
equations such as (1). The set S can be considered as a network
(diagram or graph): the states are the nodes (vertexes) and the
nonzero transitions correspond to the links (edges). Following
Hill’s algorithm [43], the stationary occupation probability of
a state l is

pl = Dl(S)

D(S)
, (A1)

where Dl(S) denotes the sum of products of transition prob-
abilities in all appropriately constructed directional diagrams
for the state l, and

D(S) =
∑
l∈S

Dl(S). (A2)

Knowing the stationary occupation probabilities of distin-
guished substates in the kinetic schemes presented in Figs. 1
and 2, we can determine all the stationary fluxes in which we
are interested. These appear to be related to the appropriate
mean first-passage times.

To find the mean first-passage time from some initial to
some final state of the diagram S, one has to put a statistical
ensemble of the systems into the initial state, observe the times
needed by them to reach the final state, and average the result.
But one can also consider some equivalent infinite process
for a single system, assuming that each time a given system
reaches the final state, the same system appears anew at the
initial state. This corresponds to a modification of the diagram
S, consisting in a redirection of the final transition to the initial
state combined with a simultaneous elimination of the final
state. After a long enough time, this will be the reciprocal
stationary flux in the modified diagram, which determines the
presumed mean first-passage time. This stationary flux can be
calculated with the help of the Hill algorithm.

In the case of equilibrium diagrams, with the detailed
balance condition satisfied for all states, a cut out of any
subdiagram M in S does not change the probability fluxes,
so that using the notion of the conditional probability, one can
replace Eq. (A1) by a more general equation

pl = Dl(M)

D(M)
P eq(M), (A3)

where P eq(M) is the equilibrium occupation probability of the
subset of states M. In Ref. [41], we showed that the mean
first-passage time from the state l0 to l in the equilibrium
diagram M can be expressed with the help of only the quantities
Dl(M) for the unmodified diagram M:

τM(l0 → l) =
∑

Ml0 ∪Ml

Dl(Ml)D(Ml0 )

Dl(M)
. (A4)

Above, the summation runs over all the possible dissections
Ml0 ∪ Ml of M, the subdiagram Ml0 containing the site l0 and
the subdiagram Ml containing the site l.

The formula (A4) is very useful in making it possible to
decompose any mean first-passage time into two components:

τM(l0 → l) =
∑

Ml0 ∪Mll′

Dl(Mll′)D(Ml0 )

Dl(M)

+
∑

Ml0 l′ ∪Ml

Dl(Ml)D(Ml0l′)

Dl(M)
(A5)

for an arbitrary state l′ ∈ M different both from l0 and l. In the
dissection Ml0 ∪ Mll′ , the subdiagram Ml0 contains l0 but not
l and l′, and the subdiagram Mll′ contains l and l′ but not l0.
Conversely, in the dissection Ml0l′ ∪ Ml , the subdiagram Ml0l′

contains l0 and l′ but not l, and the subdiagram Ml contains l

but not l0 and l′. Note that in the first component in Eq. (A5), l′
can be exchanged with l, whereas in the second component, l′
can be exchanged with l0. Consequently, it is worth rewriting
Eq. (A5) in the form

τM(l0 → l) = τM(l0 → {l,l′}) + τM({l0,l′} → l). (A6)

Here, τM(l0 → {l,l′}) has a direct meaning of the mean
first-passage time from l0 to l or l′. The interpretation of
τM({l0,l′} → l) is more troublesome and was imprecise in
Ref. [41]. However, we can always treat τM({l0,l′} → l) as
a completion of τM(l0 → {l,l′}) to τM(l0 → l).

Let us define the sum of the forward and reverse mean
first-passage times:

τM(l0 ↔ l) = τM(l0 → l) + τM(l → l0). (A7)

With the help of Eq. (A3), it can be expressed as

τM(l0 ↔ l) = D(M)
∑

Ml0 ∪Ml

Dl(Ml)Dl0 (Ml0 )

Dl(M)Dl0 (M)
. (A8)

The symmetrical counterpart of Eq. (A6) reads

τM(l0 ↔ l) = τM(l ↔ {l0,l′}) + τM(l0 ↔ {l,l′}). (A9)

From the symmetry enabling us to write Eq. (21) in an
alternative form, a useful relation can be derived:

τM(l0 ↔ {l,l′}) − τM(l0 ↔ {l,l′′})
= τM(l ↔ {l0,l′′}) − τM(l ↔ {l0,l′}). (A10)

It ensures that the expression under the logarithm in Eq. (15)
will be positive irrespective of the sign of Wi , and it appears to
be important in the proof that for single input and output gates
the modulus of the degree of coupling can never exceed unity.

The continuation of the reasoning applied in the derivation
of Eq. (A6) results in the relation

τM(l0 → {l,l′}) = τM({l0,l′′} → {l,l′}) + τM(l0 → {l,l′,l′′})
(A11)

and its symmetrical counterpart. From that, another useful
relation follows:

τM(l0 ↔ {l,l′}) − τM(l0 ↔ {l,l′′})
= τM(l′ ↔ {l′′,l0}) − τM(l′ ↔ {l′′l}), (A12)

which is important in the discussion of Eq. (17) in the main
text.
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[79] C. Böde, I. A. Kovács, M. S. Szalay, R. Palotai, T. Korcsmáros,

and P. Csermely, FEBS Lett. 581, 2776 (2007).

[80] D.-C. Ma, Y.-B. Diao, Y.-Z. Li, Y.-Z Guo, J. Wu, and M.-L. Li,
Nat. Sci. 2, 998 (2010).

[81] H. D. Rozenfeld, C. Song, and H. A. Makse, Phys. Rev. Lett.
104, 025701 (2010).

[82] P. I. Zhuravlev and G. A. Papoian, Curr. Opin. Struct. Biol. 20,
16 (2010).

[83] K.-I. Goh, G. Salvi, B. Kahng, and D. Kim, Phys. Rev. Lett. 96,
018701 (2006).

[84] L. K. Gallos, C. Song, S. Havlin, and H. A. Makse, Proc. Natl.
Acad. Sci. (USA) 104, 7746 (2007).

[85] J. S. Kim, K.-I. Goh, G. Salvi, E. Oh, B. Kahng, and D. Kim,
Phys. Rev. E 75, 016110 (2007).

[86] F. J. Kull, R. D. Vale, and R. J. Fletterick, J. Muscle Res. Cell
Motil. 19, 877 (1998).

[87] I. Kosztin, R. Bruinsma, P. O’Lague, and K. Schulten,
Proc. Natl. Acad. Sci. (USA) 99, 3575 (2002).

[88] J. Xu and D. D. Root, Biophys. J. 79, 1498 (2000).
[89] A. Houdussse and H. L. Sweeney, Curr. Opin. Struct. Biol. 11,

182 (2001).
[90] L. K. Nitao, T. O. Yeates, and E. Reisler, Biophys. J. 83, 2733

(2002).
[91] A. R. Thompson, N. Naber, C. Wilson, R. Cooke, and D. D.

Thomas, Biophys. J. 95, 5238 (2008).
[92] A. C. Joerger and A. R. Fersht, Annu. Rev. Biochem. 77, 557

(2008).
[93] A. B. Kolomeisky, Phys. Chem. Chem. Phys. 13, 2088 (2011).

012722-12

http://dx.doi.org/10.1103/PhysRevLett.71.4083
http://dx.doi.org/10.1103/PhysRevLett.71.4083
http://dx.doi.org/10.1103/PhysRevLett.71.4083
http://dx.doi.org/10.1103/PhysRevLett.71.4083
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1038/35036627
http://dx.doi.org/10.1038/35036627
http://dx.doi.org/10.1038/35036627
http://dx.doi.org/10.1038/35036627
http://dx.doi.org/10.1038/35075138
http://dx.doi.org/10.1038/35075138
http://dx.doi.org/10.1038/35075138
http://dx.doi.org/10.1038/35075138
http://dx.doi.org/10.1126/science.1073374
http://dx.doi.org/10.1126/science.1073374
http://dx.doi.org/10.1126/science.1073374
http://dx.doi.org/10.1126/science.1073374
http://dx.doi.org/10.1038/nature03248
http://dx.doi.org/10.1038/nature03248
http://dx.doi.org/10.1038/nature03248
http://dx.doi.org/10.1038/nature03248
http://dx.doi.org/10.1103/PhysRevLett.88.238701
http://dx.doi.org/10.1103/PhysRevLett.88.238701
http://dx.doi.org/10.1103/PhysRevLett.88.238701
http://dx.doi.org/10.1103/PhysRevLett.88.238701
http://dx.doi.org/10.1073/pnas.0811560106
http://dx.doi.org/10.1073/pnas.0811560106
http://dx.doi.org/10.1073/pnas.0811560106
http://dx.doi.org/10.1073/pnas.0811560106
http://dx.doi.org/10.1016/j.febslet.2005.03.056
http://dx.doi.org/10.1016/j.febslet.2005.03.056
http://dx.doi.org/10.1016/j.febslet.2005.03.056
http://dx.doi.org/10.1016/j.febslet.2005.03.056
http://dx.doi.org/10.1016/j.febslet.2005.03.056
http://dx.doi.org/10.1016/j.febslet.2005.03.056
http://dx.doi.org/10.1016/j.febslet.2005.03.056
http://dx.doi.org/10.1016/j.febslet.2005.03.056
http://dx.doi.org/10.4236/ns.2010.29122
http://dx.doi.org/10.4236/ns.2010.29122
http://dx.doi.org/10.4236/ns.2010.29122
http://dx.doi.org/10.4236/ns.2010.29122
http://dx.doi.org/10.1103/PhysRevLett.104.025701
http://dx.doi.org/10.1103/PhysRevLett.104.025701
http://dx.doi.org/10.1103/PhysRevLett.104.025701
http://dx.doi.org/10.1103/PhysRevLett.104.025701
http://dx.doi.org/10.1016/j.sbi.2009.12.010
http://dx.doi.org/10.1016/j.sbi.2009.12.010
http://dx.doi.org/10.1016/j.sbi.2009.12.010
http://dx.doi.org/10.1016/j.sbi.2009.12.010
http://dx.doi.org/10.1103/PhysRevLett.96.018701
http://dx.doi.org/10.1103/PhysRevLett.96.018701
http://dx.doi.org/10.1103/PhysRevLett.96.018701
http://dx.doi.org/10.1103/PhysRevLett.96.018701
http://dx.doi.org/10.1073/pnas.0700250104
http://dx.doi.org/10.1073/pnas.0700250104
http://dx.doi.org/10.1073/pnas.0700250104
http://dx.doi.org/10.1073/pnas.0700250104
http://dx.doi.org/10.1103/PhysRevE.75.016110
http://dx.doi.org/10.1103/PhysRevE.75.016110
http://dx.doi.org/10.1103/PhysRevE.75.016110
http://dx.doi.org/10.1103/PhysRevE.75.016110
http://dx.doi.org/10.1023/A:1005489907021
http://dx.doi.org/10.1023/A:1005489907021
http://dx.doi.org/10.1023/A:1005489907021
http://dx.doi.org/10.1023/A:1005489907021
http://dx.doi.org/10.1073/pnas.052209199
http://dx.doi.org/10.1073/pnas.052209199
http://dx.doi.org/10.1073/pnas.052209199
http://dx.doi.org/10.1073/pnas.052209199
http://dx.doi.org/10.1016/S0006-3495(00)76401-0
http://dx.doi.org/10.1016/S0006-3495(00)76401-0
http://dx.doi.org/10.1016/S0006-3495(00)76401-0
http://dx.doi.org/10.1016/S0006-3495(00)76401-0
http://dx.doi.org/10.1016/S0959-440X(00)00188-3
http://dx.doi.org/10.1016/S0959-440X(00)00188-3
http://dx.doi.org/10.1016/S0959-440X(00)00188-3
http://dx.doi.org/10.1016/S0959-440X(00)00188-3
http://dx.doi.org/10.1016/S0006-3495(02)75283-1
http://dx.doi.org/10.1016/S0006-3495(02)75283-1
http://dx.doi.org/10.1016/S0006-3495(02)75283-1
http://dx.doi.org/10.1016/S0006-3495(02)75283-1
http://dx.doi.org/10.1529/biophysj.108.138982
http://dx.doi.org/10.1529/biophysj.108.138982
http://dx.doi.org/10.1529/biophysj.108.138982
http://dx.doi.org/10.1529/biophysj.108.138982
http://dx.doi.org/10.1146/annurev.biochem.77.060806.091238
http://dx.doi.org/10.1146/annurev.biochem.77.060806.091238
http://dx.doi.org/10.1146/annurev.biochem.77.060806.091238
http://dx.doi.org/10.1146/annurev.biochem.77.060806.091238
http://dx.doi.org/10.1039/c0cp01966f
http://dx.doi.org/10.1039/c0cp01966f
http://dx.doi.org/10.1039/c0cp01966f
http://dx.doi.org/10.1039/c0cp01966f



