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Self-organized vortices of circling self-propelled particles and curved active flagella
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Self-propelled pointlike particles move along circular trajectories when their translocation velocity is constant
and the angular velocity related to their orientation vector is also constant. We investigate the collective behavior
of ensembles of such circle swimmers by Brownian dynamics simulations. If the particles interact via a “velocity-
trajectory coordination” rule within neighboring particles, a self-organized vortex pattern emerges. This vortex
pattern is characterized by its particle-density correlation function Gρ , the density correlation function Gc of
trajectory centers, and an order parameter S representing the degree of the aggregation of the particles. Here
we systematically vary the system parameters, such as the particle density and the interaction range, in order to
reveal the transition of the system from a light-vortex-dominated to heavy-vortex-dominated state, where vortices
contain mainly a single and many self-propelled particles, respectively. We also study a semidilute solution of
curved, sinusoidal-beating flagella, as an example of circling self-propelled particles with explicit propulsion
mechanism and excluded-volume interactions. Our simulation results are compared with previous experimental
results for the vortices in sea-urchin sperm solutions near a wall. The properties of the vortices in simulations
and experiments are found to agree quantitatively.
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I. INTRODUCTION

Systems of self-propelled particles (SPPs), which consume
energy to maintain a persistent non-Brownian motion, ex-
hibit an abundance of fascinating nonequilibrium collective
behaviors—such as swarming, swirling, and clustering [1].
Examples are found in very different areas of physics and
biology and range from actin filaments and microtubules
in motility assays [2–4] through metallic nanorods [5,6]
to flocking of birds [7,8] and groups of people [9,10]. In
all of these examples, SPPs employ different propulsion
mechanisms and also interact with each other in different
ways, including direct physical contact [11,12], chemotaxis
[13], hydrodynamic interactions [14–16], and restricted visual
contact [17]. However, the collective behavior of SPPs sys-
tems is surprisingly similar, displaying phenomena such as
giant density fluctuations with anomalously slow relaxation
[18–20], order-disorder phase transition with increasing noise
and decreasing density [21–26], and so on.

Since the simplest model of interacting SPPs was intro-
duced by Vicsek et al. [21], nowadays widely referred as the
“Vicsek model” [22–27], collective behavior of SPP systems
has attracted much interest [1]. In the Vicsek model, point
particles moving with constant velocity align their directions
of motion with the average direction of other particles in a
prescribed interaction range, while internal or external noise
is taken into account by adding a random increment to their
orientation vectors. By a variation of the system parameters,
e.g., the particle density and the strength of the perturbation,

*yingzi_yang@fudan.edu.cn

such a simple system has been found to undergo an order-
disorder phase transition, whose nature (first or second order)
is related to the particle velocity and the way the perturbation
is introduced [22,28,29]. According to these studies, the initial
conditions, and the settings of the simulation, the type of
interaction and the boundary conditions play an important role
in the formation of certain collective patterns of motion [1].

A special, but not rare, class of patterns of collective motion
in SPPs systems are swirls or vortices, in which a group
of particles circle around a common center. In experiments,
swirls and vortices emerge both in nonliving particle systems
(vertically vibrated granular rods [30], motility assays of actin
filaments [2], or microtubules [4]) and in systems of living
micro-organisms (bacteria colonies [13], zoo-plankton under
optical stimulus [31], and sea-urchin sperm trapped near a
substrate [32]). In simulations, the emergence of swirls and
vortices was found to depend on the initial conditions and the
model settings, such as a circular boundary [33,34], alignment
with a “blind angle” of interaction behind each agent [17], a
harmonic attractive pair potential with a noise above a critical
value [35], and hydrodynamic interactions [14]. In most of
the computational models exhibiting vortices, a single SPP is
either assumed to perform a random walk [31] or to move with
constant magnitude of velocity [13,17,33,35].

In this paper, we consider a class of SPPs which move—in
the absence of noise—along curved trajectories rather than
straight lines, which we call circle SPPs. The driving force of a
circle SPP does not coincides with its propagation direction, so
its trajectory is a cycloid in three spatial dimensions or a circle
in two dimensions [36–38]. Artificial circle swimmers can be
constructed by introducing a tilted or bend structure to catalyti-
cally driven colloidal rods [6], giving thermophoretic colloidal
swimmers an L shape [39], or by designing micromachines of
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connected beads which are moved relative to each other in
a time-irreversible multistep cycle [40]. Examples of circle
swimmers in living systems include certain bacteria [41]
and spermatozoa [32,42,43]—when the micro-organisms are
attracted or confined in their motion to a surface or wall. The
most carefully analyzed experiment on the collective motion of
circle SPPs might be the self-organized vortices of sea-urchin
sperm [32]. The 50-μm-long sperm circle clockwise when
they gather at a substrate. With increasing surface density of
sperm, the system exhibits a transition from a disordered state
of randomly distributed sperm to a self-organized vortex-array
state with local hexagonal order, in which each vortex consists
of several sperm. In Ref. [32], the emergence of this structure is
attributed to the hydrodynamic interactions between individual
sperm and between sperm vortices. However, simulations
suggest that the steric interactions between rodlike SPPs
[11,12] and sinusoidal beating flagella [12] strongly contribute
to the collective motion and aggregation.

While the morphology and properties of swirls and vortices
in straight-trajectory SPPs systems have been studied inten-
sively in recent years [13,14,17,33–35,44], much less is known
theoretically about the collective motion of circle SPPs [4,45].
The understanding of the effect of the spontaneous circular
trajectory on the collective behavior of SPPs is essential
for the understanding of many biological phenomena and
for the design of microscopic machines. In addition to the
parameters of SPPs (like velocity, particle density, interaction
range, and noise amplitude), the circle SPP systems have at
least the spontaneous curvature of the particle trajectory as an
extra parameter. The larger parameter space suggests a more
complex behavior of these systems. In order to study such
systems, highly simplified models are often very useful, as
has been demonstrated by the success of the Vicsek model.
An example for circle swimmers is the simplified model of
Ref. [32], designed to interpret the formation of vortex arrays
of sea-urchin sperm. In this model, each sperm is described
by a point particle at its trajectory center, with a pairwise
short-range attraction arising from hydrodynamic forces and
a longer range repulsion due to steric or hydrodynamic origin.
Inspired by this model, we construct a model of circle SPPs by
pointlike particles with a constant propagation velocity, where
particles interact through a “velocity-trajectory coordination,”
which takes the trajectory centers of neighbor particles into
account. This algorithm of interaction differs from both the
“trajectory-center coordination” of Ref. [32] and the “velocity
coordination” of the Vicsek model [21] (which averages the
velocity of neighboring particles). We will analyze this model
in detail and show that it describes vortex formation and the
evolution of a stationary vortex pattern.

In addition to the pointlike circle SPPs model, we also
study curved, sinusoidal-beating flagella. Sinusoidal beating
of a filament or elongated body is a common self-propulsion
mechanism in biological systems with low-Reynolds-number
hydrodynamics, e.g., nematodes [46] and sperm of higher
animals [47,48]. The sinusoidal wave propagates from one
end to the other on the filament-like body and pushes the
surrounding fluid backwards to generate a forward force.
Thus, the cell or organism gains velocity in opposite di-
rection of wave propagation. As indicated by experiments
of biological systems [46,49–51] and simulations of model

systems [12], the sinusoidally undulating motion of the body
does not destroy the general collective behaviors of rodlike
SPPs. Our flagellum model is coarse grained as particles
connected by harmonic springs, and the hydrodynamics is
either approximated by anisotropic friction or calculated by
using multiparticle collision dynamics (MPC), a mesoscopic
particle-based simulation approach [52,53]. By introducing a
nonzero average curvature in the beating plane, the undulating
flagellum traces out a circular trajectory in two dimensions,
reminiscent of the trajectory of sea-urchin sperm at a substrate
[32,54]. The simplicity of the model allows us to analyze
the contribution of volume exclusion and hydrodynamic
interaction separately. The study provides insight into the
effect of flagellar properties, such as frequency distribution
and spontaneous curvature, on the collective motion and the
emerging vortex patterns.

The paper is organized as follows. Section II gives a brief
description of our models and simulation methods. In Sec. III,
we analyze the collective motion of pointlike circle SPPs
systems. Then we study the collective motion of curved,
sinusoidally beating flagella and compare the results with
circle SPPs models and sea-urchin sperm experiments in
Sec. IV. The results are summarized in Sec. V.

II. MODELS

A. Circle self-propelled particles

We consider N pointlike particles moving in a two-
dimensional system of size Lx × Ly . The number density of
the particles is ρ0 = N/LxLy . Each particle has a spontaneous
circular trajectory of diameter D0, which is traversed in
counterclockwise direction, and a circular interaction region
of diameter d, as illustrated in Fig. 1. At time t , the i-th particle
has position ri , velocity vi , and trajectory center position rc,i

FIG. 1. Schematic of the interaction of particles i and j . The
dashed lines denote the spontaneous circular trajectories of the i-th
and j -th particles. The gray area displays the neighbor region of
particle i. ej is the tangent unit vector to the trajectory of particle j

with vi · ej � 0.
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of its spontaneous circle trajectory determined by

rc,i(t) = ri(t) + D0

2
R

(
π

2

)
vi(t)

|vi(t)| , (2.1)

where R(θ ) is a rotation matrix which rotates a vector in two
dimensions counterclockwise through an angle θ . Note that
rc,i(t) is obtained from the instantaneous velocity and position
rather than from the full trajectory.

The equation of motion for the i-th particles is then given
by

ri(t + �t) = ri(t) + vi(t + �t)�t. (2.2)

Motivated by the nematic alignment of colliding rodlike
particles [26], we define a majority rule for the the redirection
of the velocity as

vi(t + �t) = v0R(ω0�t)

∑
j (i) ej∣∣∑
j (i) ej

∣∣ , (2.3)

where �t is the simulation time step, v0 is constant magnitude
of the velocity, ω0 = 2v0

D0
is the angular velocity of the

orientation of the particle velocity which enforces a circular
trajectory of diameter D0 in dilute suspension, and

∑
j (i) is

the sum of all particles within the interaction region of the i-th
particle—including the i-th particle itself. The tangential unit
vector ej is obtained at the intersection of the spontaneous
trajectory of j -th particle and the connect line between ri and
rc,j , as illustrated in Fig. 1. The direction of ej is chosen
to make vi · ej � 0. With such an interaction rule, a particle
tends to move parallel or antiparallel to the trajectories of its
neighbors. Therefore, the result of the interaction is a local
nematic alignment of trajectories.

In contrast to the Vicsek model [1,21], the change of the
velocity direction in our model is determined not by a polar
alignment of velocities (velocity coordination) but rather by a
nematic alignment of local trajectories, which are determined
by the instantaneous trajectory centers rc,j of the neighbor
particles (velocity-trajectory coordination). Here, the choice
of the alignment rule strongly depends on the interaction
range relative to the preferred swimming radius. Clearly, a
majority rule can only generate alignment if the number of
particles in the interaction range is sufficiently large. This
is very difficult to achieve for d � D0 when particles move
collectively in circular vortices. Therefore, we choose d � D0.
Our simulations show that in this case velocity coordination
as in the Vicsek model does not give rise to vortex patterns in
a circle SPP system, because neighboring particles align their
directions of motion but do not tend to generate vortices with
several particles circling around a common center. Note that
we omit noise terms in Eqs. (2.2) and (2.3), so our model is
deterministic once the initial state is given. This is a reasonable
description of microswimmers which are not too small, such
as sperm.

In the simulation, we use the diameter of spontaneous
trajectory D0 as length unit, �t as time unit, and v0 =
0.025D0/�t . This implies a period of rotation of an
interaction-free particle of T0 = πD0/v0. The interaction
range d is varied below but is typically on the order of
D0 (as explained above). The simulation box size is Lx =

Ly = 20D0 or 40D0. The simulation time for each system is
T = 5 × 105�t ≈ 4.0 × 103T0.

B. Circle-swimming flagella

We construct a two-dimensional flagellum model [16] from
a linear sequence of Nf beads, which are connected by
harmonic springs with rest length l0. The local spontaneous
curvature of such a filament is a function of time t and position
x along the flagellar contour, measured from the first bead,

c(x,t) = c0 + A sin(−2πf t + qx + ϕ0), (2.4)

where f is the beating frequency, q is the wave number,
ϕ0 is the initial phase chosen independently from a uniform
distribution on the interval [0,2π ) for each flagellum, and c0

is the average curvature. We denote a flagellum with nonzero
c0 a curved flagellum. The constant A controls the strength
of beating, which is related to the amplitude of the shape
undulations. Equation (2.4) generates a traveling wave, which
propagates from the front to the end of the flagellum. The
curvature elasticity of the flagellum is determined by a bending
potential, which depends on the deviations of the angles
between neighbor bonds from their preferred value c(x,t)l0.
Therefore, the elastic energy of flagellum j is given by

Vj =
Nf −1∑
i=1

1

2

k

l2
0

[|Ri,j | − l0]2

+
Nf −2∑
i=1

1

2

κ

l3
0

[Ri+1,j − R(cj (xi,t)l0)Ri,j ]2. (2.5)

Here Ri,j = ri+1,j − ri,j are bond vectors and ri,j denotes the
position of the i-th bead of the j th flagellum. R(cj l0) is an
operator rotating a two-dimensional vector counterclockwise
by an angle cj (xi,t)l0. k is the spring constant and κ the bending
rigidity [55]. The volume exclusion of beads on different
flagella is taken into account by a purely repulsive, truncated,
and shifted Lennard-Jones potential

VLJ(r) =
⎧⎨
⎩

4ε
[(

l0
r

)12 − (
l0
r

)6 + 1
4

]
, r � 21/6l0

0, otherwise
, (2.6)

where r is the distance between two beads belonging to
different flagella.

The swimming of both nematodes and sperm is de-
termined by low-Reynolds-number hydrodynamics, where
viscous forces dominate over inertial forces. In this regime, the
dynamics of a rod can often be well described by resistive-force
theory [47], in which hydrodynamic interactions between
different segments of a rod are approximated by an anisotropic
friction (AF), so f‖ = −γ‖v‖l0, f⊥ = −γ⊥v⊥l0, where v‖ and
v⊥ are the velocity components of a flagellum segment
on the directions parallel and perpendicular to the local
tangent vector, respectively. γB is the friction coefficient for a
segment of unit length with B =‖ or ⊥ [56]. Hydrodynamic
interactions are not included in simulation employing AF,
so volume exclusion is the only interaction between the
flagella in this case. Considering the relatively large sizes
of flagella and nematodes of several 10 μm and a few
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millimeters, respectively, we neglect thermal fluctuations in
our AF simulations.

In simulations with full hydrodynamics, the flagellum
model is embedded in a two-dimensional fluid, and the
time evolution of the system is carried out by employing
a hybrid molecular dynamics approach—MPC for the fluid
[52,53] in combination with molecular dynamics (MD) for
the flagellum—as follows. During the streaming step, the
pointlike particles of the MPC fluid move ballistically during
a time interval �τ , while Newton’s equations of motion for
the flagellum particles are integrated by the Verlet algorithm
with a time step of �τ ′ = 0.02�τ . In the subsequent collision
step, the flagella exchange momentum with the neighboring
fluid particles. The collisions are performed by sorting all
fluid and flagellum particles into the cells of a cubic lattice
(with lattice constant a), which are labeled by an index ξ . A
rotation operator Rξ (α) is assigned to each box. If vc,ξ is the
precollisional center-of-mass velocity of all particles in box
ξ , the postcollisional velocity v′

i of a particle i in the box is
given by v′

i = vc,ξ + Rξ (α)(vi − vc,ξ ), where vi is its prec-
ollision velocity. This simple collision rule conserves mass,
momentum, and energy, which guarantees the emergence of
Navier-Stokes hydrodynamics on length scales larger than a.
Since the beating flagella perpetually inject energy into the
fluid, we apply a local thermostat after each collision step.

The simulation system contains N flagella of length Lfl =
Nf l0 = 50a in a simulation box of size Lx × Ly , where a is
size of a MPC collision box. The wave number q = 4π/(Nf l0)
implies the presence of two complete sinusoidal waves on the
flagellum. The number density of flagellum is ρ0 = N/LxLy .
Periodic boundary conditions are employed. During the simu-
lation, each flagellum has a constant frequency f chosen from
a Gaussian distribution with the average f0 = τ−1

0 /120 and
the variance 〈(f − f0)2〉 = σ 2f 2

0 , where σ is a dimensionless
number characterizing the width of the frequency distribution.
When the average spontaneous curvature c0 is positive, the
flagellum is curved and prefers a clockwise circular trajectory.
The trajectory diameter D0 depends approximately linearly on
(c0Lfl)−1 in AF simulations, and the center-of-mass velocity
vf,0 of the flagellum decreases approximately linearly with
c0Lfl from its value for c0 = 0, as shown in Fig. 2. Therefore,
for a flagellum beating with the average frequency f0, it takes
Lflf0/vf,0 ≈ (0.066 − 0.0057c0Lfl)−1 beats to move a one
body length. Equivalently, the swimming velocity is vf,0 ≈
(0.066 − 0.0057c0Lfl)Lflf0. The beats number for a flagellum
to complete a full circle trajectory is T0f0 = πD0f0/vf,0 ≈
π [−0.19 + 1.6/(c0Lfl)]/[0.066 − 0.0057c0Lfl]. For example,
in our AF simulations, the most strongly curved flagellum, with
c0Lfl = 3, takes T0f0 ≈ 20 beats to complete a circle, while
the least curved flagellum, with c0Lfl = 1, takes T0f0 ≈ 75
beats. Each simulation runs for at least 2500/f0. Therefore, the
flagella beat at least 2500 times on average in a simulation run
and complete about 35 to 110 full circles. The other parameters
of our flagellum simulations are listed in Ref. [57].

The collision of two particles with elongated structure in
a viscous fluid environment results in a cooperated motion
that the particles move together with close packing. If
the elongated particles are straight, the nematic interaction
results in velocity alignment of neighbor particles and cluster
formation [11,12,26]. When two elongated and curved flagella

FIG. 2. (Color online) The diameter D0 (black solid squares) of
the circular trajectory of a single flagellum as a function of (c0Lfl)−1

in AF simulations. The red line is a linear fit to the data with slope
of 1.6. The inset is the dimensionless velocity v0/(f0Lfl) of a single
flagellum (black solid squares) as a function of c0Lfl. The red line is
the linear fit to the data. In both (a) and (b), the beating frequency of
the flagellum is f0 = τ−1

0 /120.

encounter each other, they tend to get close and synchronize
their configuration via hydrodynamic interactions as well as
volume exclusion [12,16] and form an effective “extended
flagellum” with the same average curvature. The circular
motion of such an extended flagellum around a center is
equivalent to the motion of two flagella around the same center,
the first step towards the formation of a vortex.

III. COLLECTIVE MOTION OF CIRCLE SPPS

N circle SPPs are distributed in the simulation box with
random positions and random velocity directions at the initial
time t = 0. Shortly after the start, vortices emerge, which
are formed by one or several particles circling around a
common center, as illustrated in Fig. 3 and the movies in the
Supplemental Material [58]. The vortices distribute in space
with no obvious long-range order and displace vigorously if
the trajectory centers of the particles belonging to the same
vortex do not coincide precisely at the same point. When two
vortices overlap or collide, particles are exchanged between the
vortices until they either fuse or separate from each other far
enough. Therefore, the vortex mass, defined as the number
of circle SPPs forming it, changes during collisions. Note
that the system is deterministic due to the absence of noise,
and a noise-induced fission of vortices does not occur in the
simulation. We characterize the emergent vortex pattern of
circle SPPs by the particle density-correlation functions, the
trajectory-center density-correlation functions, and the order
parameter reflecting the degree of the particle aggregation. By
systematically changing the particle density ρ0 and the size of
the interaction region d, we then determine the dynamics state
diagram of this system.
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FIG. 3. (Color online) A snapshot of vortices in a circle SPPs
system at the end of the simulation time t = 4 × 103T0. Each black
dash is the trajectory of a particle in a time interval �T = 10�t ≈
0.08T0, and the red dots are the corresponding trajectory centers. The
inset shows a magnification of the area at the bottom left corner where
two vortices consists of groups of circle SPPs with equal distance
between neighboring groups. The number of particle groups of them
are five and six, respectively. The parameters are Lx = Ly = 40D0,
ρ0D

2
0 = 4, and d = 1.3D0.

A. Particle density-correlation functions and trajectory-center
density-correlation functions

The correlation function of particle densities at time t is
given by

Gρ(|r − r′|) = ρ−2
0 〈ρ(r,t) · ρ(r′,t)〉t , (3.1)

and the correlation function of the trajectory-center density at
time t is

Gc(|r − r′|) = ρ−2
0 〈ρc(r,t) · ρc(r′,t)〉t , (3.2)

where ρ(r,t) and ρc(r,t) are the number densities of the
particles and the trajectory centers at position r and time t ,
respectively. We consider times t in the interval [T1,T2], where
T1 = 8 × 102T0 and T2 = 4 × 103T0. Most of the systems
have not yet reached a stationary state at t = T1, so the
correlation functions Gρ(x,t) and Gc(x,t) still contain some
averaging over different structures and spatial arrangements of
the vortices.

The particle density-correlation function Gρ(x) mainly
characterizes particle arrangement in a vortex, in particular for
x < D0 + d/2, as shown in Fig. 4. In the single-vortex region,
Gρ(x) displays a pronounced spatial dependence. There is a
pronounced peak at x � d/2, denoted as peak I, which arises
from the interaction range of our model. The displacement of
a particle in a simulation time step, v0�t , is much smaller
than d/2; therefore, during the very short time interval for
two particles to adjust their motion and form a vortex, their

FIG. 4. (Color online) The examples of the particle-density cor-
relation function Gρ . The inset is the density correlation function of
an annular region of evenly distributed particle density. The diameter
of the inner circle of the annular region is 0.75D0, and the diameter
of the outer circle is 1.25D0.

relative distance remains essentially constant. This distance
only changes when a third particle comes into play. If the
mass of a vortex is high, the multiparticle interaction affects
and disturbs the distances of other particles in a vortex. Thus,
a higher density ρ0 depresses peak I in Fig. 4. For example,
when d = 0.5D0, doubling ρ0 strongly depresses the height
of peak I. Similarly, increasing d enhances peak I when ρ0

is kept constant. Therefore, a vortex is composed of several
groups of particles with the constant distance d/2 between
neighbor groups, as illustrated in Fig. 3. If the tendency to
keep the distance d/2 is strong for the particle groups, a
second and third peak become evident, see Fig. 4. The position
of the n-th peak is approximately xn = Dv sin(nθ/2), where
θ = 2 arcsin(d/2Dv) and Dv is the diameter of the vortex. Note
that such periodic particle density modulation is a dynamic
temporary structure which breaks and reconstructs with time.

The peak of the vortex structure at x � D0, denoted as
peak II, indicates the diameter Dv of a vortex. According
to the definition of the density correlation function Gρ , this
diameter is weighted by the mass of the vortices, so the vortices
consisting of more particles contribute more to Dv . Thus, Dv

mainly reflects the diameter of the “heavy” vortices, containing
a large number of particles in the vortex. We define the width
of peak II as the distance between the peak position and the
position of the subsequent minimum. A larger peak width
indicates a wider band of particles in the vortex. Figure 5 shows
Dv changing with the particle density ρ0D

2
0 and the diameter

of the interaction region d. The “error bars” in Fig. 5 indicates
the width of peak II, i.e., the width of the particle band of
the vortices. In the low-density limit, the particles hardly meet
each other, and the vortices mainly contain a single SPP, which
is defined as a light-vortex-dominated state. In this state, Dv ≈
D0 and the width of peak II is narrow, as illustrated in Fig. 5(a)
for ρ0D

2
0 < 1. At high particle density, e.g., for ρ0D

2
0 � 4, a

majority of the particles belongs to vortices of mass larger than
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FIG. 5. (Color online) (a) The vortex diameter Dv as a function of
the particle density ρ0D

2
0 . The red dashed line is the guide to the eye at

value Dv = D0. (b) Dv as a function of the diameter of the interaction
region d . The open symbols and the solid symbols represent the light-
vortex-dominated systems and the heavy-vortex-dominated systems,
respectively. The “error bars” in (a) and (b) indicate the half width
of peak II as defined in Fig. 4 and therefore characterize the width of
the band of particle trajectories within a vortex.

10, which is defined as a heavy-vortex-dominated state. In this
state, Dv still approximately equals D0, but the width of peak
II is about twice as large as for ρ0D

2
0 < 1. An extraordinarily

large width at ρ0D
2
0 = 2 in Fig. 5(a) indicates a transition of

the system from a light-vortex-dominated state to a heavy-
vortices-dominated state.

The same transition from light to heavy vortices also
happens with increasing d at constant density ρ0. The vortex
diameters Dv for different ρ0D

2
0 coincide in the heavy-vortex-

dominated state but are slightly smaller in the light-vortex-
dominated state; see Fig. 5(b). Increasing d causes a systematic
increase of Dv . The small dip at d = 1.3D0, can be interpreted
as follows. Dv is not only determined by the spontaneous
trajectory diameter D0 of circle SPPs but also influenced by
the interaction range d, because the vortex prefers a dynamic
temporary state with an integral number of particle groups
with a constant neighboring distance d/2, as shown in Fig. 3.
Therefore, Dv can be estimated by Dv ≈ d/[2 sin(π/n)],

FIG. 6. The trajectory-center-density correlation function, Gc,
with d = 0.5D0 and ρ0D

2
0 = 2.

where n is the number of particle groups in a vortex; this
estimate provides qualitatively the correct trend for d � 1.1D0

but deviates a little quantitatively because n differs for different
vortices in the system. For example, heavy vortices with n = 5
are dominant when ρ0D

2
0 = 4 and d = 1.5D0, while there are

many heavy vortices of both n = 5 and n = 6 when ρ0D
2
0 = 4

and d = 1.3D0. For x > D0 + d, Gρ approaches unity due
to the loss of spatial correlations at large distances, which
indicates a liquidlike order of the vortices.

The correlation function of the trajectory-center density,
Gc, shown in Fig. 6, has a large peak at x = 0 because of
the aggregation of the trajectory centers. Gc decays rapidly
to zero for x � 0.5D0, indicating that the trajectory centers
aggregate in a small spot at the center of the vortex. Two heavy
vortices cannot overlap, otherwise they will fuse into one or
separate into several distinct vortices. Therefore, Gc displays
a depletion zone from D0 to D0 + d/2. For x � D0 + d/2,
Gc increases rapidly and displays a peak corresponding to the
the closest possible distance Dvv of two neighboring heavy
vortices. For larger distances x, Gc approaches a constant with
decaying oscillations, which reveals the absence of long-range
order and corresponds to a liquidlike spatial arrangement of
vortices.

The dependence of Dvv on the particle density is shown
in Fig. 7(a). Dvv is nearly independent of density, with
Dvv � 1.55D0 for d = 0.5D0 and ρ0D

2
0 � 3, when the system

is heavy-vortices dominated. Similarly, Dvv � 1.25D0 for
ρ0D

2
0 � 1, when the system is light-vortices dominated.

The transition between light-vortices-dominated and heavy-
vortices-dominated states occurs when 1 � ρ0D

2
0 � 3, which

agrees with the transition region extracted from Gρ [compare
Fig. 5(a)]. As shown in Fig. 7(b), the increase of Dvv with d

for constant density ρ0D
2
0 is somewhat faster than the linear

relation D0 + d. For ρ0D
2
0 = 1, Dvv displays a pronounced

increase by more than 1.5D0 when d is increased from 0.5D0

to 1.5D0. When ρ0D
2
0 = 2,4, Dvv exhibits an unexpected

decrease for d = 1.5D0; we interpret this as the absence
of a second vortex-mass-increasing time period due to the
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FIG. 7. (Color online) (a) The distance between vortices Dvv as
a function of the particle density ρ0D

2
0 . (b) Dvv as a function of the

diameter of the interaction region d with different particle densities.
The red dashed line is y = D0 + d . The inset is the order parameter S

as a function of time t/T0 when d = 1.5D0. The red, blue, and black
lines represent the particle densities ρ0D

2
0 = 1, 2, and 4, respectively.

inadequate simulation time, as will be explained in Sec. III B
below.

B. Order parameter

In the initial state, all particles are randomly distributed
in space, so the number of the particles and the number of
the trajectory centers in a defined area assumes a binomial
distribution. When the particles form vortices, the aggregation
of the trajectory centers causes a large deviation of the number
of trajectory centers in a defined area from its average value. A
stronger aggregation leads to a larger center-density deviation.
Therefore, we define an order parameter S as

S = �2

�2
0

− 1, (3.3)

where

�2
0 = ND2

0

LxLy

(
1 − D2

0

/
LxLy

)
(3.4)

is the variance of a binomial distribution of point particles
and �2 is the variance of the trajectory center numbers in an
area D2

0. If the center positions are randomly distributed in the
space, S vanishes. S increases with the degree of the aggre-
gation of centers, which indicates the formation of vortices. If
all particles circle around a common center, S = N − 1.

Suppose N particles form Nv vortices in the two-
dimensional space Lx × Ly . The number of the vortices
consisting of n particles is P (n), and∑

n

P (n) = Nv,
∑

n

nP (n) = N. (3.5)

In order to elucidate the relation between the weight average
of the vortex mass and the order parameter, we assume that
the trajectory centers of all particles in a vortex collapse
into one point, the vortex center, although they always have
some narrow distribution around the center in the simulations.
According to the trajectory-center density correlation function
Gc [Fig. 6(a)], the distance between two vortices in our systems
is usually larger than 1.5D0 in the systems dominated by heavy
vortices, except when two vortices are colliding and merging.
Therefore, the possibility to find two heavy vortex center in
an area D2

0 is low. Thus, we assume that the probability to
find two vortex centers in D2

0 is zero. We divide our system
of size Lx × Ly into boxes of size D2

0 and fill the boxes with
at most one vortex. Then the variance of the center-number
distribution in D2

0 is

�2 = D2
0

LxLy

(∑
n

n2P (n) − ρ0D
2
0N

)
. (3.6)

Note that the weight average of the vortex mass is

w =
∑

n

n2P (n)

/ ∑
n

nP (n). (3.7)

Thus, �2 can be written in terms of w as

�2 = ND2
0

LxLy

(
w − ρ0D

2
0

)
. (3.8)

Substituting Eqs. (3.4) and (3.8) into Eq. (3.3), we find

S = w − ρ0D
2
0

1 − D2
0

/
LxLy

− 1. (3.9)

In our simulations, D2
0/LxLy � 1/400 � 1 is negligible, so

S ≈ w − ρ0D
2
0 − 1. (3.10)

This result reveals a simple linear relation between our order
parameter S and the weight average of vortex mass. Thus, S is
a proper order parameter to characterize the degree of vortex
formation.

The order parameter S increases with time once the particle
start to move and the trajectory centers aggregate, as shown in
Fig. 8. S first undergoes a fast increase during a time interval
which we call period I. The increase of S with time during
period I occurs faster for larger ρ0 but is not sensitive to d,
as indicated by the dashed lines in Fig. 8. During this period,
the vortices are formed mainly by particles which are close
to each other in the initial state; therefore, S depends roughly
linearly on the particle density, as shown in Fig. 9(b). Period
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FIG. 8. (Color online) Time evolution of the order parameter S

for (a) various diameters d of the interaction region and (b) various
particle densities ρ0. The dashed lines are power laws with different
exponents, as indicated.

II is defined as the time period after period I, during which S

increases only very slowly and approaches a plateau, as shown
in Fig. 8. The plateau has a higher value for larger ρ0 and d.

For high densities [ρ0D
2
0 � 2 when d = 0.5D0 in Fig. 8(b)]

or large d [d � 0.9D0 when ρ0D
2
0 = 1 in Fig. 8(a)], there is

another dynamical evolution after period II, denoted period III,
in which S displays another pronounced increase. The increase
of S in period III indicates the formation of heavy vortices by
vortex fusion—not seen for some low ρ or small d systems.
However, in our simulation time scale, some systems with high
ρ and large d also do not display period III [see the inset of
Fig. 7(b)], in this case because the simulation time is not long
enough for vortex fusion to occur.

By analyzing the order parameter S at a given time t for
different systems, we can also determine the transition from the
light-vortex-dominated state to the heavy-vortex-dominated
state, as shown in Fig. 9. The transition happens when 0.8 �
d/D0 � 1.0, for ρ0D

2
0 = 1, and when 1 � ρ0D

2
0 � 3 for d =

0.5D0. S assumes a small value near zero in the light-vortex-

FIG. 9. (Color online) Order parameter S at times t/T0 = 100,
101, 102, 103, and 4 × 103 (a) as a function of d when ρ0D

2
0 = 1.0

and (b) as a function of ρ0D
2
0 when d = 0.5D0. The dashed lines in

(b) are linear fits of S at t/T0 = 100, 101, and 102.

dominated systems and then increases rapidly with increasing
d and ρ0D

2
0 in the heavy-vortex-dominated systems.

According to the different shapes of S(t) for different
systems, compare Fig. 8, we obtain the state diagram of circle
SPPs at t = 4 × 103T0, as shown in Fig. 10. The state diagram
is divided into four regimes. For systems locating in regime
A, S has completed the first growth period I, and reached the
plateau of period II, i.e., the final state of these systems (at
t/T0 = 4 × 103) is dominated by light vortices. In regime B,
the systems have passed the stationary period II, and at the end
of the simulation time are just undergoing the fusion of light
vortices (period III); thus, these systems are in the crossover
between regimes A and C. In regime C, the systems have come
to the second stationary state after the pronounced increase of
S in period III. Finally, in regime D, which occupies the high
ρ and high d section of the state diagram, the evolution of the
fusion of heavy vortices is still in progress at t/T0 = 4 × 103;
the end state is characterized in this case by heavy vortices of
similar weight.

Note that the division of the regimes according to the
temporal evolution of S(t) resembles but does not coincide
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FIG. 10. State diagram of the circle SPPs system. The color from
black to white shows the value of S at t/T0 = 4 × 103 from 0 to 102.
The white lines divide the state diagram into four regimes according
to the shape of S(t). For the definition of regimes A to D see main
text.

with a classification according to the value of S in the final
state state. For example, S does not have the highest value
in regime D. The reason is that the characteristic time scale
of the evolution strongly depends on particle density, so at
the chosen final simulation time, the systems in regime D has
only been able to complete the initial collection of neighbor
particles [see inset of Fig. 7(b)].

Our simulations are performed without noise. Therefore,
the vortex mobility only depends on multiparticle interactions.
Increasing vortex mass leads to an increasing complexity of
these interactions and can result in a high mobility of vortices.
The light-vortex-dominated systems cannot increase the vortex
mass via collision because all vortices do not move after
formation. In contrast, systems which form heavier vortices
during period I can continue to increase the vortex mass
via the collision of vigorous heavy vortices until a limit is
reached, which is determined by the particle density. At the
boundary between regimes A and B in Fig. 10, the value of
S is between 1 and 3, indicating the weighted vortex mass
less than 5. Moreover, the position of the line agrees well with
the transition between light-vortex-dominated state and heavy-
vortex-dominated state indicated by the variation of Dv and
Dvv shown in Figs. 5 and 7. Therefore, the boundary between
regimes A and B can be identified with the transition from the
light-vortex-dominated to the heavy-vortex-dominated state.

IV. COLLECTIVE MOTION OF CURVED, SINUSOIDALLY
BEATING FLAGELLA

The flagella are initially distributed randomly in space,
with random orientations. After an initial “relaxation time”,
which coresponds to the time a single flagellum needs to
move several circles (�T = 10πD0/vf,0), the system reaches
a stationary state in which the curved flagella spontaneously
organize into rotating vortices [58], as illustrated in Figs. 11(a)
and 11(b). We start to gather data for averaging at tf0 = 800,
when the flagella have completed more than 10 full circles
even in the system with largest D0. The flagella are moving

FIG. 11. (Color online) Snapshots of self-organized vortices of
flagella (a) in a MPC fluid with D0 = 0.614Lfl, ρ0D

2
0 = 2.36, and

σ = 0%; (b) in AF with D0 = 0.614Lfl, ρ0D
2
0 = 2.36, and σ = 0%;

and (c) in AF with D0 = 0.328Lfl, ρ0D
2
0 = 0.67, and σ = 0%. The

dashed lines in (c) shows the local hexagonal order. (d) Normalized
flagellum density ρf (r) averaged over a time interval of �T = 30/f0

of the system in (b). See also movie S1 in the Supplemental Material
[58].

clockwise and the waves on the flagella are propagating
counterclockwise. In AF simulations, the flagella only have
hard-core interactions, while in a MPC fluid, the hydrodynamic
interactions synchronize the flagellar beat in the same vortex
and packs flagella tightly due to hydrodynamic attraction [16].
The mass of each vortex changes dynamically due to the
collision with flagella in neighboring vortices [58].

A. Angular swimming velocities

Figure 12 shows the angular velocity ω = vf /R, where
vf is the center-of-mass velocity of a flagellum and R is the
distance between the mass center of the flagellum and the
vortex center to which the flagellum belongs, as a function
of R. In AF simulations, ω approaches vf,0/R for large R,
where vf,0 is the velocity of a freely swimming flagellum.
At small radii, the volume exclusion between the propagating
sinusoidal configurations of neighboring flagella reduces the
angular velocity. Thus, although ω still slowly increases
with decreasing R for R < 0.5D0, it is much lower than
expected from the relation ω = vf,0/R. On the other hand, at
large radius (R > 0.5D0), in some AF systems (for example,
D0 = 0.614Lfl and D0 = 0.328Lfl in Fig. 12), ω is larger than
vf,0/R due to the repulsive interaction between two flagella
belonging to different vortices. In conclusion, the volume
exclusion between the flagella depresses ω due to interactions
between flagella in the same vortex but enhances ω due to
interactions between neighboring vortices.
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FIG. 12. (Color online) Angular velocity ω of the vortex as
a function of the radius position in AF simulations with ρ0 =
0.0025a−2 and σ = 0%. The dashed lines are the functions ω =
vf,0R

−1. The inset shows ω as a function of R in a MPC fluid with
ρ0D

2
0 = 2.36 and D0 = 0.614Lfl; the dashed line is a guide to the eye

to indicate a plateau.

In a MPC fluid, ω also approximately obeys the power law
ω ∼ R−1 at large R. However, at radii 0.2 < R/D0 < 0.5, ω is
nearly independent of R, as shown in inset of Fig. 12. Here, the
synchronized flagella form a closed ring with integer numbers
of waves and rotate with same angular velocity, as shown in
movie S2 in the Supplemental Material [58].

Although ωR is not exactly equal to vf,0 in systems with
MPC fluid or with AF, an assumption of a unique swimming
velocity is still a good approximation for comparison of the
flagella system with the circle SPPs system.

B. Correlation functions

We define a normalized density of flagellar segments as

ρf (r,t) = 1

�T

∫ t+�T/2

t−�T/2
dt

ρf (r,t)
ρf,0

, (4.1)

where ρf (r,t) is the number density of monomer beads
averaged in a square box of area (Lx/100) × (Ly/100) at the
position r at time t . In order to gain better statistics of the
vortex structures, ρf is the average over time �T , with �T

is chosen to be 30/f0. An example of an image of ρf (r,t) is
shown in Fig. 11(d).

The correlation function of flagellum density is then defined
as

Gf,ρ(|r − r′|) = 〈ρf (r,t) · ρf (r′,t)〉t . (4.2)

Similarly, the correlation function of flagellum trajectory-
center density is

Gf,c(|r − r′|) = 〈ρf,c(r,t) · ρf,c(r′,t)〉t . (4.3)

where ρ̄f,c(r,t) = ρf,c(r,t)/ρf,0 and ρf,c(r) is the number
density of the centers of flagellum trajectories at r and time
t . Figures 13(a) and 13(b) show examples of Gf,ρ and Gf,c,

FIG. 13. (Color online) Correlation functions of (a) the normal-
ized flagellum density ρf (r) and (b) the normalized trajectory center
density ρf,c(r). Both densities ρf (r) and ρf,c(r) are averaged over
a time interval �T = 30/f0. The parameters are D0 = 0.614Lfl,
ρ0D

2
0 = 2.36, and σ = 0%. The symbols indicate the results of

MPC-fluid (red bullets) and of AF (black squares) simulations.

respectively. Both correlation functions approach a constant
at large distances, indicating the absence of long-range order
and a liquidlike arrangement of vortices, similarly as discussed
for circle SPPs in Sec. III A. Long-range order of vortices,
such as a hexagonal arrangement, is not observed even for
large flagellum densities. However, a local hexagonal order is
still possible due to the volume exclusion between vortices,
as indicated by the higher-order peaks of Gf,c and shown in
real-space snapshots in Fig. 11(c).

The interpretation of the correlation function is of course
very similar as for correlation functions of circle SPPs in
Sec. III A. The first local maximum of Gf,ρ corresponds to
the average vortex diameter and the first local maximum of
Gf,c to the average distance between neighbor vortices. A
comparison of AF and MPC simulations clearly shows that
structures in the vortices in the AF model are considerably
more ordered, which leads to pronounced oscillations of the
correlation functions. In the AF simulations, Gf,c nearly
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FIG. 14. (Color online) Vortex diameter Dv and average distance between vortices Dvv as a function of (a) the flagellum density ρ0, (b) the
spontaneous trajectory diameter D0, and (c) the variance σ of frequency distribution in AF simulations.

vanishes at x � D0, indicating that the area occupied by the
trajectory centers in a vortex is significantly smaller than D0,
in agreement with our circle SPPs observations. In the MPC
simulations, the weaker correlations indicate a larger diversity
of vortex sizes but also a larger mobility of the vortices.

A comparison of the snapshots and correlation functions in
Figs. 11 and 13(b) with those of sea-urchin sperm vortices
in Ref. [32] shows that the phenomena observed in AF
simulations are more similar to the experimental behavior
than those in MPC simulations. Furthermore, the results of
our AF simulations agree much better with those of our
circle SPPs simulations. We attribute the deviations of the
MPC-simulation results from those of the experiments to the
very strong hydrodynamic interactions in the two-dimensional
model system. Indeed, the flow field around a dragged point
particle in two spatial dimensions decays only logarithmically
with distance r , while in three dimensions it decays much
faster, like 1/r , and even faster in the presence of a wall. In the
experiments, the motion of sperm near a wall is governed
by three-dimensional hydrodynamics. Thus, we conclude
that a detailed numerical investigation of the importance of
hydrodynamic interactions for the formation of sperm vortices
requires full three-dimensional hydrodynamic simulations.
The two-dimensional MPC simulation still provide the im-
portant information that the synchronized flagellum beating of
the sea-urchin sperms in a vortex is the result of hydrodynamic
interactions between the beating tails, as indicated by the
snapshot in Fig. 11(a) (see also Refs. [12,16]). In the remainder
of this section, we focus on the analysis of the systems with
anisotropic friction.

C. Vortices of flagella in the anisotropic-friction model

Figure 14 shows the average vortex diameter Dv and the
average vortex distance Dvv as functions of ρ0, D0, and σ . In
the low-density limit, the flagella move without touching each
other. Thus Dv must approach D0 and Dvv must approach the
average distance between flagella. As the density increases,
Dv and Dvv increase slowly, as shown in Fig. 14(a). As in
the circle SPPs systems, compare Figs. 5 and 7, Dv and Dvv

also increase and level off when 2 � ρ0D
2
0 � 4. However, the

drop of Dv and Dvv near ρ0D
2
0 = 2 for circle SPPs systems,

which indicates the transition from the light-vortex-dominated
to the heavy-vortex-dominated state, is not seen in the curved-
flagella system. On the other hand, the increase of Dv can

also partially be attributed to the volume exclusion between
flagella, so the orbit at radius R in the vortex can be occupied
only by a limited number of flagella. Similarly, Dvv increases
with ρ0D

2
0 due to volume exclusion, which generates an

effective repulsion between the neighboring vortices.
When we change the preferred trajectory diameter D0 of the

curved flagella, the diameter of a vortex varies as Dv ≈ D0, as
shown in Fig. 14(b), in good agreement with the behavior
of the circle SPPs systems. However, over a wide range
of ρ0 or D0, Dvv/D0 remains nearly independent of these
parameters and fluctuates around a value 1.9 ± 0.2. This value
of Dvv/D0 is found for the interaction range d/D0 = 0.9 to
1.0 in circle SPPs systems [Fig. 7(b)]. Thus, we conclude
that the effective size of the interaction region of a curved
flagellum is approximately the same as the diameter of its
circular trajectory.

In the sea-urchin sperm vortex experiment [32], the radius
of the sperm vortex is Dv/2 = 13.2 ± 2.8 μm, and the average
vortex distance is Dvv = 49 ± 9 μm. Therefore, Dvv/Dv =
1.86 ± 0.52 in the experiment, in excellent agreement with
Dvv/Dv = 1.8 ± 0.2 in our AF simulations. In our circle
SPPs simulations, Dvv/Dv = 1.83 ± 0.10 for systems with
d = 0.9D0 in the heavy-vortex-dominated state.

The vortex formation is not sensitive to the width of the
beating-frequency distribution of the flagella, as shown in
Fig. 14(c), although it leads to a range of flagellar velocities.
This insensitivity explains the emergency of the vortices in the
sea-urchin sperm experiment even though there is a spread of
beating frequency of about 9% [32].

Figure 15 shows that the order parameter S, which repre-
sents the degree of aggregation and is closely related to the
weight average of vortex mass, grows with increasing ρ0 and
D0. Interestingly, in the stationary state of the flagella system,
S increases linearly with flagellum density when ρ0D

2
0 � 3,

which is reminiscent of the linear relation between S and ρ0D
2
0

for t/T0 � 100 in circle SPPs systems [Fig. 9(b)]. However, in
circle SPPs systems, S continues to increase after t/T0 = 100.
We attribute the linear relation of S and ρ0 in the flagella system
to the effect of volume exclusion. The linear dependence of S

on the flagellum density agrees very well with the experimental
observations for sea-urchin sperm. On the other hand, S is
found to increase as S ∼ D3

0, see Fig. 15(b), indicating the
importance of a second length scale, which should be related
to the flagellum length.
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FIG. 15. Order parameter S as a function of (a) the scaled density ρ0D
2
0 , with D0 = 0.614Lfl and σ = 0%; (b) the scaled circle area ρD2

0 ,
with ρ0 = 0.0025a−2 and σ = 0%; and (c) the width σ of the frequency distribution, with ρ0D

2
0 = 2.36.

D. Discussion

The effect of volume exclusion and synchronization of
the flagellar beat manifests itself in the following three main
aspects.

First, as shown in Figs. 11(b) and 11(c), the flagellum
vortices are closed rings composed of synchronized flagella.
This closed structure makes the fusion of large vortices happen
very infrequently, because the necessary force to open such a
structure to fuse two neighboring vortices is very large. There-
fore, as suggested by our circle SPPs simulations, the flagellum
system experiences vortex formation and reorganization only
during the early stages of structure formation, corresponding
to period I in the circle SPP system, which leads to vortices
described by an order parameter S which depends linearly
on the particle density. The next step to raise the aggregation
number, corresponding to period III in the circle SPP system,
which requires the fusion of heavy vortices, is prevented by
their nearly impenetrable closed structure.

Second, an extraordinary heavy vortex cannot exist for long,
because the maximum mass of a vortex is determined by the
balance of forces between flagella. For a flagellum swimming
at a distance R from the center, the prevalent trajectory
curvature is 1/R, while the preferred trajectory curvature of a
flagellum is 2/D0. When R < D0/2, the flagellum at R pushes
outwards and exerts an outward force on other flagella in outer
layers; similarly, when R > D0/2, a flagellum at R pushes
inwards and exerts an inward force on other flagella in inner
layers. When R exceeds D0, an instability should develop,
which leads to a breakup into smaller vortices of radius D0/2.
For systems with larger D0, the region R < D0/2 is larger and
the typical difference between 1/R and 2/D0 is smaller, so the
maximum vortex mass is larger than for systems with smaller
D0. Therefore, S increases with increasing D0 for fixed ρ0, as
shown in Fig. 15(b).

Third, consider now a large flagellum density, for which the
system is already full of vortices of similar mass, frequently
colliding with each other (see movie S3 in the Supplemental
Material [58]). A further increase of ρ0 starts to destroy the
vortex structure and the order parameter S decreases, as shown
in Fig. 15(a) for ρ0D

2
0 > 3. Such a decrease of S was not

observed in the sea-urchin sperm experiment [32] because
the experimental system was not strictly two-dimensional.
We conjecture that at a certain surface density of sperm, the

substrate is completely packed with vortices and cannot absorb
any more cells. The local hexagonal order of the sperm vortex
array [32] is a clue for this close packing. A further increase
of the surface density of sperm is not possible because higher
density will cause more frequent collision and, consequently,
expel some sperm from the near-substrate layer. It seems
impossible [59] to obtain a higher surface density of sperm than
6000/mm2, the largest density investigated in Ref. [32]. For
higher densities in the experiments, multiple layers of sperm
developed, and the layers on top were neither ordered nor
destroying the pattern below [59]. A possibility to increase the
density further in experiments might be to restrict the sperm in
a narrow slit of one layer thickness between two flat substrates.

The variance σ of the frequency distribution also influence
the order parameter, as shown in Fig. 15(c). S is not sensitive to
σ when σ � 5% but decreases with increasing σ for σ > 5%.
When there are large differences between the frequencies of
flagella in a vortex, the collisions between the undulating
shapes increase the short-range repulsion, separate the flagella,
and cause a looser vortex structure, so vortex break up more
easily in collisions with other vortices. At small σ < 5%,
this effect is small. Note that even for σ = 30%, vortices
still exist, as indicated by the density correlation functions.
However, stable structures hardly exist for a long time. The
frequent fission and fusion of vortices make S small, although
the system is not completely disordered.

V. SUMMARY AND CONCLUSIONS

We have simulated systems of self-propelled particles with
preferred circular trajectories (circle SPPs) interacting via a
velocity-trajectory coordination rule and systems of curved
flagella propelled by a sinusoidal beating motion. In both
systems, we observe the formation of vortex arrays, controlled
by particle density, interaction range, and diameter of the
preferred circular trajectory.

For the circle-SPP systems, the vortex array shows liq-
uidlike rather than hexagonal spatial order. The diameter of
the vortices, Dv , is about the diameter of a single particle
trajectory D0 with a slight increase with the diameter of the
interaction region d but is not sensitive to the particle density
ρ0. The average distance between neighbor vortices, Dvv , is
also not sensitive to ρ0 but increases quickly with increasing
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d. A transition from a light-vortex-dominated state (at low ρ0

and small d) to a heavy-vortex-dominated state (at high ρ0 or
large d) is observed.

We use an order parameter S to characterize the degree of
the vortex formation. By comparing the time evolution of S,
we find that the vortex formation can be divided into three
time periods. During period I, the particles collect neighbor
ones to form vortices and S increase quickly with time. The
increase of S(t) during period I is slightly elevated with ρ0 but
is not sensitive to d. In the subsequent period II, S(t) increases
very slowly. In period III, the vortex mass increases again
more rapidly through vortex collision and fusion. Note that
environmental noise is not described in our model. Therefore
the fission, fusion, and displacement of vortices is purely the
result of multiparticle interactions of circle SPPs.

In order to compare with the experiments of sperm
cells near surfaces, we have also studied a more detailed
model of curved, sinusoidally beating flagella. Vortex patterns
in this system emerge from the hard-core repulsion of
the curved body of the elongated self-propelled particles
moving in a viscous environment. In the simulations with
anisotropic frictions, the collective motion of the curved
flagella system agrees very well with the behavior of the
circle SPPs system, as well as the phenomenon observed
in the sea-urchin sperm experiments [32]. As in the circle
SPPs system, the average size of the vortices Dv equals
approximately D0 and slightly increases with the flagellum
density. By comparing Dvv with the circle SPPs systems, we

find that the size of the effective interaction region of a curved
flagellum can be approximately identified with 0.9∼1.0D0.
The order parameter S increases with ρ0 as well as D0. The
fraction Dvv/Dv = 1.8 ± 0.2 coincides the value 1.86 ± 0.52
calculated by using the data from [32] for sea-urchin sperm
system.

In conclusion, the collective motion of self-propelled
particles, which leads to the formation of vortex arrays, can
be well reproduced by circle SPPs with a velocity-trajectory
coupling interaction. The velocity-trajectory coordination rule
is a different interaction type than the velocity coordination
rules employed since the Vicsek model [21] for the simulations
of collective motion. Such an interaction mimics, for example,
the hard-core interaction of curved, sinusoidal beating flagella.
The analysis of a more specific model of beating flagella
allows to elucidate the features related to an explicit propulsion
mechanism and physical interactions.
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