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Anomalous fluctuation scaling laws in stochastic enzyme kinetics: Increase of noise strength with the

mean concentration
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It is commonly thought that if a rate constant is perturbed such that the intracellular concentration of a certain
species increases, then the fluctuations in the concentration will correspondingly decrease in strength. We here
test whether this conventional wisdom generally holds true. We study the dependence of the noise strength (the
coefficient of variation) in protein concentrations as a function of the mean protein concentration for a system
in which protein is transported in and out of an intracellular compartment and it is catalyzed into a product by
a multisubunit enzyme inside the compartment. The mean protein concentration is varied through perturbation
of one of the rate constants. For low protein concentrations, the noise strength scales as [P]1~'/2, where [P] is
the mean concentration; this is the conventional fluctuation scaling law. However, we show that over a wide
range of physiological concentrations, there are manifest anomalous fluctuation scaling laws proportional to [ P]°
and [P]™"~1/2 where N is the number of binding sites of the multisubunit enzyme. These laws are particularly
conspicuous when the rate of protein import into the compartment is much larger than its export rate out of the
compartment and when the enzyme exhibits positive cooperativity. The results imply that over a certain range of
physiological concentrations, noise strength remains the same or increases with the mean protein concentration.
This contradicts the popularly held notion that noise strength decreases with increasing concentration and suggests

that noise can be important even when the number of molecules is large.

DOI: 10.1103/PhysRevE.89.012710

I. INTRODUCTION

Molecular noise originates from the random timing of
the biochemical events of unimolecular dissociation and
bimolecular binding [1]. These events lead to fluctuations in
the number of molecules by one or two molecules and, hence,
an argument has frequently been made that the dynamics of
chemical systems with a small mean number of molecules
is stochastic. By this reasoning, noise is considered to be
of principal importance for gene regulatory networks (since
genes are present in few copies per cell) [2-6] and of
lesser importance for metabolic networks where the proteins
numbers can be of the order of thousands.

This intuitive understanding of noise is encapsulated in the
often-quoted, classical rule of thumb, namely that the size
of intrinsic noise (the coefficient of variation which is the
standard deviation of number fluctuations divided by the mean
number of molecules) is proportional to the inverse square
root of the mean concentration [7]. We shall refer to this as
the classical or conventional fluctuation scaling law. This law
implies that for a given cell, if a rate constant is perturbed
such that the concentration in a certain species increases,
then the fluctuations in the concentration will correspondingly
decrease.

In this article we show that deviations from this classical
scaling law are common and that in some instances noise
can even increase with protein concentration, which in turn
implies that noise can be highly relevant to the dynamics of
species characterized by a large copy number of molecules.
The paper is divided as follows. In Sec. II, we introduce a
stochastic model of enzyme-mediated protein catalysis and
develop a simple effective approximation of the chemical
master equation for this model. In Sec. III we utilize this
effective method to study the dependence of the coefficient
of variation of protein fluctuations on the mean protein
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concentration. We uncover several new anomalous scaling
laws proportional to [P]~!, [P]°, and [P]"V~V/2, where N
is the number of binding sites of the multisubunit enzyme and
[ P] is the protein concentration. These predictions are verified
by stochastic simulations. We conclude by a discussion of our
results in Sec. IV in the context of recent single-cell studies.

II. THE ENZYME MODEL

We start by considering the following model of protein
influx, outflux, and catalysis,

ko kii+1) m;
=P, P+C=—=Ciy, Ciyy—C+X, (1)

ki k—gi+1)

where i € (1,2,...,N), and P refers to the protein. The
protein is input into a compartment at a rate ko, leaves the
compartment at a rate k; and is catalyzed into another species
X by a multisubunit enzyme with N binding sites. The label
C; represents enzyme-protein complex species composed of an
enzyme molecule and i — 1 protein molecules (C; is the free
enzyme species). An illustration of the catalytic process for
the case of a two-subunit enzyme is shown in Fig. 1. Note that
the total concentration of enzyme molecules is a constant at all
times (denoted as Er), since enzyme species shuffle between
various complex states but are not degraded. Note also that
the case N =1 corresponds to catalysis via the Michaelis-
Menten mechanism while for larger N the catalysis can, for
certain parameter values, be cooperative with Hill coefficient
N [8]. Examples of multisubunit enzymes abound, e.g., the
mammalian TRiC enzyme (N = 16 subunits), which plays an
essential role in the folding of actin, tubulin, and a large number
of cell cycle regulators [9,10] and cytochrome P450 (N =2
subunits), a family of enzymes playing a prominent role in the
metabolism of a large number of substrates [11,12]. Hence, the
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FIG. 1. (Color online) Illustration of substrate catalysis mediated
by a two-subunit enzyme. This is the reaction scheme (1) for the
case N = 2. The rectangle represents the compartment in which the
reaction is confined.

proposed reaction scheme (1) can be thought of as a simple
generic means of modeling post-translational modification of
proteins via enzyme reactions.

The stochastic description of this reaction system, as given
by the chemical master equation (CME) (a time-evolution
equation for the probability of the system being in its various
states [1]) cannot be exactly solved. Applying the linear-noise
approximation (LNA) to the CME [7] (excluding species X
from this description since it does not interact with any of the
other components) leads to a system of linear equations for
the (1/2)(N + 1)(N + 2) second moments of the noise. Given
that a large number of equations are obtained even for small
N, analytical insight is very difficult with such a method as
well.

To circumvent these difficulties we here propose an alter-
native approach: (i) We postulate an effective CME for just the
protein rather than the N + 2 species of the original reaction
scheme (1). (ii)) We apply the LNA to this effective CME
to obtain an expression for the protein fluctuations. (iii) The
scaling laws obtained by this method are then compared with
numerical results obtained using the standard LNA and also
using the stochastic simulation algorithm applied to reaction
scheme (1). As we shall see the good match between the
latter and our approach a posteriori justifies the use of the
effective method. The relevance of our results to biochemical
systems are guaranteed by use of physiological rate constants
in stochastic simulations (see Ref. [13] for details).

A. Effective approximation of the CME

We start our analysis by ignoring noise and solving the
deterministic rate equations of the concentrations of species
involved in reaction scheme (1). For the moment we shall
set the protein export rate k; to zero (later we will relax
this assumption). This is the case of unidirectional active
transport whereby the protein molecules are moved across
the compartment membrane in only one direction, i.e., an
energy-dependent process leading to a transport asymmetry
such that molecules accumulate on one side of a compartment
membrane. Such mechanisms are common inside cells; see,
for example, Ref. [17] for an introduction to such transport
systems.

‘We define the convenient set of constants g; =
Hljzl(k—(j-&-l) +mj)/kjq fori e(1,...,N). The N + 1 rate
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equations for the complex concentrations [C;] can be solved
in steady state and after substitution in the rate equation for
the protein concentration [ P] we obtain

Er YN mig ' [PT!
1+ 200 g ' [PY

The fluctuation analysis proceeds as follows. We start by
noting that Eq. (2) suggests an effective reaction (in steady-
state conditions) of the type

[Pl =0=ko—[P] @)

o p pPEg 3)

where k' is an effective rate constant equal to k'(n) =
[Er Y mig ' (n/ Q' 1/11+ 0L, 7 (n/ Q). n s the
discrete number of molecules of protein P, and 2 is the
compartment volume. The CME for the above effective
reaction scheme is

3, T1(n,1) = koQ(I1(n — 1,¢) — T(n,1))
+ 0+ DK+ DI + 1) — nk')I(n), (@)

where Il(n,t) is the probability that there are n proteins at
time 7. We proceed by applying the LNA to the above effective
CME [7]. We shall be exclusively working in the steady-state
regime. This leads to an equation for the rate of change of the
mean protein concentration which is precisely given by Eq. (2)
and to a linear Langevin equation for the fluctuations n about
this mean concentration,

dqnp, = Jn, +Q2Br (@), ®)

where I'(t) is Gaussian white noise with zero mean and
a time correlation function (D(HI'({)) =68 —1t), J =
—d/d[P)([P]K'(QLP]), and B = ko + [PIK'(QLP]). We
shall consider the case where the concentration is varied
through the protein influx rate ko and, hence, we can write
ko in terms of [P] using Eq. (2), which leads to B =
V2Pl (QLP])).

Justifiably, one may question the validity of this effective
CME approach (and the corresponding LNA) given that
the effective CME Eq. (4) was written down on purely
heuristic grounds. Nevertheless, it has been shown that such
effective approaches can be rigorously derived from the CME
under quasiequilibrium conditions [18-21], which for enzyme
systems is enforced whenever the turnover numbers, m;, are
much smaller than the rates at which complex decays back
into protein and enzyme, k_;41). In the absence of such
conditions, the effective CME will in some cases give the
correct qualitative description and in other cases not [20]; the
main plus of this approach is its simplicity. It is from the latter
perspective that we here utilize the effective CME approach:
We are not concerned with its rigorous derivation but rather
we want to use this CME to derive simple scaling relationships
between the size of the noise and the concentrations which will
be later checked via stochastic simulations.

In what follows we shall use the effective CME approach
to study fluctuations in the protein concentration. Fluctuation
scaling laws in the enzyme and product concentrations are
not available for the following reasons. The effective method
we use throws away any information about the enzyme
fluctuations, as can be seen from the fact that only the protein
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species features in the effective reaction scheme (3). As for
the product X, in our model it accumulates with time and thus
is not amenable to the steady-state treatment presented in this
article. Of course in reality this product would be feeding into
some downstream reactions which would then ensue into a
steady state for the product; however, explicit details of this
connectivity would be needed before one can explicitly analyze
its fluctuations.

III. SCALING ANALYSIS OF THE COEFFICIENT
OF VARIATION

It can be shown by taking moments of Eq. (5) that the
variance of the noise in steady-state conditions is given by
0?2 = B?/2|J|Q. Hence, it follows that the coefficient of
variation is given by

o

[P]

where s = ([P]/x)(dx/d[ P]) is the susceptibility [22] which
in this context is defined as the relative change in the effective
protein removal flux x = [P]k'(2[ P]) following a change in
the protein concentration [P]. Next we consider the limit of
small and large concentrations of s from which we can deduce
the scaling of Cy in the same limits.

In the limit of small protein concentrations, we have

s =14+ O([P]). (7

In contrast there are two distinct large [ P] limits depending
on the values of the turnover numbers m;. If they are all equal
to each other, then we have

s = Ngy[P1™V + O([P]"V D), (8)

Cy (QLP1s)~"2, (6)

whereas if m; all differ from each other, then we have
o — gn(my —my_y)
EN-1MN
with my = 0 and go = 1.
We can now deduce the following scaling laws for the
coefficient of variation, Cy with protein concentrations.

Substituting Eq. (7) in Eq. (6) we find that for small protein
concentrations we have the standard scaling law:

Cy = Q7 V2 p1712 (10)

Substituting Eq. (8) and Eq. (9) in Eq. (6), we find the
surprising result that for large protein concentrations we have
two possible anomalous scaling laws,

(P17 + O(P]?), ©)

Cy x Q7 V2(PIN=D2 " i =m;_, Vi (11)

Cy o« Q'2[P1°. m; £mi_y Vi (12)

Hence, our effective theory predicts a transition in the
exponent of the fluctuation scaling power law as the protein
concentrations change from small to large. These theoretical
predictions are confirmed by stochastic simulations using the
stochastic simulation algorithm and by numerically solving
the LNA of the full scheme (1); the results are shown in
Fig. 2 and Fig. 3. Note that for values of m; which are close
together in Fig. 3, the power law shows characteristics of
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FIG. 2. (Color online) Plot of the coefficient of variation of
fluctuations in protein concentration Cy versus the mean protein
concentration [P] for the catalytic reaction scheme (1) with N =
1,2,3 with equal turnover numbers m; and in the absence of protein
outflux. The lines show the predictions of the LNA (solid for N =1,
dashed for N =2, and dot dashed for N = 3) while the circular
points are obtained from stochastic simulations of the CME using
the stochastic simulation algorithm (the moments are calculated by
time averaging over long trajectories; error bars are not visible on
this plot). Note that both the LNA and the stochastic simulations
of the CME are for the full reaction scheme (1). The parameters
are ky =0, m =my =m3 = ]0571,k2=k3=k4= 1 x 10" M™!
s and k_, =k_3=4k_4 =1 s~! where the units of time and
concentration respectively are seconds (s) and mol/L or molar (M).
The total enzyme concentration is fixed to 1.7 x 107® M and the
compartment volume to 1 fl (corresponding to roughly 1000 enzyme
molecules in the compartment). The protein concentration is varied by
changing the protein production rate ko over the range 0—1.7 x 1073
M s~!. These results confirm the anomalous scaling law Eq. (11).
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FIG. 3. (Color online) Plot of the coefficient of variation of
fluctuations in protein concentration Cy versus the mean protein
concentration [ P] for the catalytic reaction scheme (1) with N =3
and unequal turnover numbers in the absence of protein outflux.
Note that both the LNA (lines) and the stochastic simulations of
the CME (points) are for the full reaction scheme (1). The turnover
numbers are shown in the figure while the rest of the parameters are
as in Fig. 2. The results confirm the anomalous scaling law Eq. (12).
Note that for unequal but closely separated turnover numbers, the
scaling law shares characteristics of the scaling laws for unequal and
equal turnover numbers: it roughly follows Eq. (11) for intermediate
concentrations and Eq. (12) for large concentrations.
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both anomalous scaling laws predicted above: at intermediate
concentrations the law is roughly [P]*/4, which is close to
the [P] law predicted by Eq. (11) for N = 3 while at large
concentrations we have the [ P]° law predicted by Eq. (12). The
size of the region of intermediate concentrations over which
noise increases with concentration is found to increase with
decreasing differences between the values of m; and tends
to infinity in the limit of zero differences. This necessarily
follows from the fact that Eq. (12) must “switch” to Eq. (11)
as the differences between the turnover numbers goes to zero.

It is also found that the anomalous phenomenon of fluc-
tuation size increasing with concentration, which is observed
at intermediate concentrations for unequal turnover numbers,
is enhanced by positive cooperativity [see Fig. 4(a)] and is
attenuated by negative cooperativity [see Fig. 4(b)], where
positive cooperativity implies a situation in which substrate
binding to an enzyme facilitates the next binding event
and negative cooperativity implies the opposite. Positive
cooperative phenomena are very common in biochemistry [15]
and, hence, the anomalous effect we have identified here could
be relevant to a wide range of biochemical systems.

We stress that though the size of the fluctuations may
increase or remain the same with increasing protein con-
centration, the macroscopic limit is still well defined; this is
since the latter is given by the limit of infinite volume 2 at
constant concentration [1,7] and the scaling laws in all cases
are proportional to Q~!/2,

An intuitive explanation for the transition in the fluctuation
scaling law is as follows. From Eqgs. (2) and (3) one deduces
that the effective rate parameter k' is a constant for small
protein concentrations and scales as k' ~ 1/[P] for large
protein concentrations [ P]. The latter implies that the effective
protein removal rate due to catalysis decreases with increasing
concentration, when the concentrations are sufficiently large.
Hence, in this regime, large fluctuations in protein concen-
trations can be considerably long lived and correspondingly
their magnitude can be quite large compared to the case where
the removal rate is independent of [P], namely the case of
small concentrations. In agreement with this picture, one notes
that large steady-state protein concentrations correspond to
the region of parameter space close to a bifurcation; this is
characterized by a small real and negative eigenvalue of the
Jacobian of the effective deterministic equation which in turn
implies very weak dampening of the fluctuations and, hence,
to large fluctuations in the protein concentrations.

A. The case of bidirectional protein movement
into the compartment

Thus far we have assumed unidirectional transport of
protein into the compartment. We now treat the case in which
protein can move in and out of the compartment via diffusion
or active processes, i.e., we allow k; to take a nonzero value.
The reduced rate equation model for scheme (1) now reads as
follows:

&[P] = ko — [Pl(ki + K'(QLP])). (13)

Recall that the nonlinear catalytic rate k' ($2[ P]) is proportional
to a constant for low concentrations and of order [P]~! for high
concentrations [see just after Eq. (3) for the definition of k'].
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FIG. 4. (Color online) Influence of cooperativity on the anoma-
lous scaling laws at intermediate concentrations for the case of
unequal turnover numbers. Panels (a) and (b) show plots of the
coefficient of variation of fluctuations in protein concentration Cy
versus the mean protein concentration [ P] for the catalytic reaction
scheme (1) with parameters k, = 0.05 x 107 s7! M~!, k3 =1 x 107
sT' M7, ky =1.95x%x 107 s7! M™! (blue dashed line in panel
a), ky =ks =ky =1 x 107 s7! M~! (solid black line in panels a
and b) and k, =195 x 10" s ' M7, ks =1 x 107 s M7, ky =
0.05 x 107 s7! M~! (blue dashed line in panel b). These respectively
represent the cases of positive cooperativity, no cooperativity, and
negative cooperativity. The rest of the parameters are N = 3,m; = 6
sTLmy=8s"1,my=10s"", k., =k_3 =k_4 = 1 s~!. The total
enzyme concentration and the compartment volume are as in Fig. 2.
Note that both the LNA (lines) and the stochastic simulations of the
CME (points) are for the full reaction scheme (1). A comparison
of the black and blue lines in both panels shows the anomalous
phenomenon of increasing Cy with increasing protein abundance
(apparent at intermediate concentrations) is amplified in the presence
of positive cooperativity and diminished in the presence of negative
cooperativity.

Hence, for small and large concentrations, the second term in
Eq. (13) is directly proportional to the protein concentration,
i.e., the protein removal kinetics is first order. Thus the kinetics
can only be nonlinear for intermediate concentrations; this
behavior stems from the dominance of the k'(2[ P]) term over
the rate k1 in Eq. (13). On this basis, one expects the anomalous
fluctuation scaling laws that we found earlier, Eqgs. (11)
and (12), to be valid in some intermediate concentration range
and the conventional scaling law Eq. (10) to manifest for
small and large concentrations.
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FIG. 5. (Color online) Influence of bidirectional protein transport
on anomalous scaling laws for intermediate and large protein
concentrations. We show a plot of the coefficient of variation of
fluctuations in protein concentration Cy versus the mean protein
concentration [ P] for the catalytic reaction scheme (1) with nonzero
ko and k;. Note that both the LNA (lines) and the stochastic
simulations of the CME (points) are for the full reaction scheme (1).
Two cases are shown: (i) the blue dashed line is for N = 3, m 53 =
10 s7!, k; = 0.001 s~!; (ii) the black dashed line is for N = 3,
mipys = 0.1/1/10 s7" and k; = 0.01 s™'; the rest of the parameters
are as in Fig. 2. Protein concentration is varied by changing k, over
the range 0-10~3 M s~!. The results confirm that in the presence of
bidirectional transport, (i) the anomalous scaling laws at intermediate
concentrations (Cy o [P]° and o [P] for unequal and equal turnover
numbers respectively) are the same as those predicted for large
concentrations for unidirectional transport and (ii) the conventional
scaling law (Cy o< [P]7"/?) is obtained for large concentrations.

This hypothesis is confirmed by LNA and stochastic
simulations of the full scheme (1), which are shown in
Fig. 5. For the case N = 3, and equal turnover numbers, the
exponent of the scaling law changes from —1/2 to 1 (over one
order of magnitude) to —1 (over three orders of magnitude)
and, finally to —1/2 as protein concentration increases. The
relevance of anomalous behavior to real systems stems from
the fact that simulations show that it is observed over the
micromolar to millimolar regime (Fig. 5), which is a subset of
the typical physiological range of concentrations (nanomolar
to millimolar [16]).

The exponent of 1 stems from the nonlinear catalytic
mechanism; indeed, this is the same as predicted in the
absence of protein export by Eq. (11) (see also Fig. 2). The
exponent of —1/2 for large concentrations is clearly due to
the first-order protein export. The exponent of —1 originates
from contributions to the fluctuations due to both the nonlinear
catalysis and the first-order export process. In Fig. 5 we also
show the effect of adding protein export to the case N =3
with unequal turnover numbers; we see that the scaling law
for intermediate protein concentrations is 0 in accordance with
what is predicted for large concentrations in the absence of
protein outflux by Eq. (12) (see also Fig. 3).

In Fig. 6 we explore how the size of the regime in which
fluctuations increase with concentration varies with ky; it is
shown that the size of this regime increases with decreasing k;
and is zero for k; above a certain threshold value. Hence, the
aforementioned type of anomalous behavior is conspicuous
whenever the rate of protein import into the compartment
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FIG. 6. Dependence of the range of anomalous behavior on the
outflux rate constant k. By anomalous behavior here we specifically
mean the increase of Cy with protein concentration over a range of
intermediate concentrations, as, for example, seen in Fig. 5. [P ]min
and [ P]nax are, respectively, the protein concentrations at which the
coefficient of variation reaches a minimum and a maximum which
correspond to the two concentrations between which the Cy increases
with protein concentration (see Fig. 5). Hence, the ratio [ P ]max /[ P Imin
is a measure of the size of the region of protein concentrations over
which anomalous behavior is observed. The parameters are N = 3,
my 3 =10 s~! and the rest are as in Fig. 2. The points are obtained
using the LNA of the effective CME, Eq. (6), and the lines connecting
them are simply a guide to the eye. The dependence is found to be
[P max/[Plin ¢ k; /* for small k; (dashed line), which confirms that
the anomalous behavior becomes manifest over larger ranges of the
concentration as the outflux decreases, i.e., as the transport switches
from bidirectional to unidirectional. For k; > 4/3 s~! the anomalous
behavior disappears.

considerably exceeds the rate of protein export out of the
compartment

IV. DISCUSSION

Summarizing, we have shown the existence of anomalous
scaling laws in a model of enzyme-mediated catalysis. These
laws emerge due to the nonlinearity in the law of mass action
characterizing the bimolecular binding of protein and enzyme.
The anomalous laws have been found to manifest over at least
a decade of physiological protein concentrations and, hence,
they are probably of relevance to real biological systems. We
have also shown that the degree of observability increases with
the asymmetry of the transport process carrying protein across
the compartment membrane and with the extent of positive
cooperativity.

Our study has made use of the LNA to derive the
anomalous scaling laws. In recent years it has been shown that
corrections to the LNA predictions of mean concentrations,
of the covariance of fluctuations, and of higher moments
of the probability distribution can differ considerably from
those of the CME whenever there is at least one bimolecular
reaction in the chemical reaction system [23—27]. The excellent
agreement between the LNA prediction for the Cy and
stochastic simulations in the figures is in some sense due to
a cancellation of two errors since the LNA underestimates
both the protein concentration and the variance of fluctuations
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in enzyme systems [23,25]. It is, however, plausible that in
different systems than the one considered here, the anomalous
scaling laws are modified when the next order correction to
the LNA is taken into account.

Here we have presented an analysis of a specific model of
enzyme catalysis. However, it is to be noted that the results
derived are more general than this model. In particular, the
nonlinear catalytic rate [second term in Eq. (2)] is of the
same form as the Adair equation [28] and that obtained from
the Koshland-Nemethy-Filmer sequential model [29], which
are commonly used mathematical descriptions of allosteric
regulation [15]. It is also important to note that the effects
elucidated stem from the nonlinear dependence of k' on
the protein concentration in reaction scheme (3). Hence,
one would expect that independent of the precise reaction
mechanism at work, any chemical system which can be
roughly approximated as (3) with a nonlinear k&’ will display
anomalous fluctuation scaling laws in some range of protein
concentrations. Such concentration-dependent degradation
rates are common in nature [30,31] and, hence, it stands to
reason that the effects elucidated here for a specific model of
catalysis maybe found in other biochemical systems. Indeed
it can be shown that similar anomalous scaling laws also
manifest in simple gene regulatory networks; this will reported
elsewhere.

We finish by noting that a transition froma [P]~!/>toa [ P]°
scaling law has been observed in single-cell studies [32,33].
The authors attributed the origin of the [P]° scaling law
to heterogeneity in the rate constants of a linear genetic
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network in a population of cells. Our results, on the other
hand, can be interpreted to hold for heterogeneity in the rate
constants of a nonlinear enzymatic reaction in a population
of cells. The heterogeneity that we consider is specifically in
the rate constant ky since each point in the Cy versus [P]
plots corresponds to a particular value of ky. While for linear
systems only a transition from [P]~'/2 to a [P]° scaling law
is observed, in our nonlinear system a diversity of transitions
have been elucidated, including the aforementioned transition,
a transition from [ P]~'/2 to [PV ~1/2 scaling law (where N is
apositive integer), a transition from [P]¥ =2 to [ P] or [ P]~!
scaling law, and a transition from [P] ' to[P] /2 scaling law.
One may ask why such transitions have not been observed thus
far. The data in Refs. [32,33] are not for one protein but rather
collated from that of all detectable protein species and, hence,
are only reflective of the dominant transition in the scaling law.
In contrast, our theory is for fluctuations in a single protein
species involved in a particular catalytic reaction and, hence,
it is plausible that various transitions in the fluctuation scaling
law of a single protein species are masked by the averaging
over all protein species and reactions, which is inherent in the
published data.
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