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Characterization of the low-temperature properties of a simplified protein model

Johannes-Geert Hagmann,1 Naoko Nakagawa,2 and Michel Peyrard1

1Laboratoire de Physique, Ecole Normale Supérieure de Lyon, CNRS, 46 Allée d’Italie, 69364 Lyon, France
2Department of Mathematical Sciences, Ibaraki University, Mito, Ibaraki 310-8512, Japan

(Received 22 August 2013; published 8 January 2014)

Prompted by results that showed that a simple protein model, the frustrated Gō model, appears to exhibit a
transition reminiscent of the protein dynamical transition, we examine the validity of this model to describe the
low-temperature properties of proteins. First, we examine equilibrium fluctuations. We calculate its incoherent
neutron-scattering structure factor and show that it can be well described by a theory using the one-phonon
approximation. By performing an inherent structure analysis, we assess the transitions among energy states
at low temperatures. Then, we examine nonequilibrium fluctuations after a sudden cooling of the protein. We
investigate the violation of the fluctuation-dissipation theorem in order to analyze the protein glass transition.
We find that the effective temperature of the quenched protein deviates from the temperature of the thermostat,
however it relaxes towards the actual temperature with an Arrhenius behavior as the waiting time increases. These
results of the equilibrium and nonequilibrium studies converge to the conclusion that the apparent dynamical
transition of this coarse-grained model cannot be attributed to a glassy behavior.
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I. INTRODUCTION

Proteins are fascinating molecules due to their ability to
play many roles in biological systems. Their functions often
involve complex configurational changes. Therefore the famil-
iar aphorism that “form is function” should rather be replaced
by a view of the “dynamic personalities of proteins” [1]. This
is why proteins are also intriguing for theoreticians because
they provide a variety of yet unsolved questions. Besides the
dynamics of protein folding, the rise in the time averaged mean
square fluctuation 〈�r2〉 occurring at temperatures around
≈200 K, sometimes called the “protein dynamic transition”
[2–4], is arguably the most considerable candidate in the search
of unifying principles in protein dynamics. Protein studies lead
to the concept of energy landscape [5,6]. According to this
viewpoint a protein is a system which explores a complex
landscape in a highly multidimensional space and some of
its properties can be related to an incomplete exploration of
the phase space. The protein glass transition, in which the
protein appears to “freeze” when it is cooled down to about
200 K, is among them. Protein folding too can be related to
this energy landscape. The famous kinetic limitation known as
the Levinthal paradox, associated to the difficulty to find the
native state among a huge number of possible configurations,
is partly solved by the concept of a funneled landscape which
provides a bias towards the native state.

These considerations suggest that the dynamics of the
exploration of protein phase space deserves investigation,
particularly at low temperature where the dynamic transition
occurs. But, in spite of remarkable experimental progress
which allows us to “watch protein in action in real time at
atomic resolution” [1], experimental studies at this level of
detail are nevertheless extremely difficult. Further understand-
ing from models can help in analyzing the observations and
developing new concepts. However, studies involving com-
puter modeling to study the dynamics of protein fluctuations
are not trivial either because the range of time scales involved
is very large. This is why many mesoscale models, which
describe the protein at scales that are larger than the atom, have

been proposed. Yet, their validity to adequately describe the
qualitative features of a real protein glass remains to be tested.

In this paper we examine a model with an intermediate
level of complexity. This frustrated Gō model [7,8] is an
off-lattice model showing fluctuations at a large range of time
scales. It is though simple enough to allow the investigation
of time scales which can be up to 109 times larger than
the time scales of small amplitude vibrations at the atomic
level. The model, which includes a slight frustration in the
dihedral angle potential which does not assume a minimum
for the positions of the experimentally determined structure,
exhibits a much richer behavior than a standard Gō model.
Besides folding one observes a rise of fluctuations above
a specific temperature, analogous to a dynamical transition
[9,10], and the coexistence of two folded states. This model
has been widely used and it is therefore important to assess to
what extent it can describe the qualitative features of protein
dynamics beyond the analysis of folding for which it was
originally designed. This is why we focus our attention on
its low-temperature properties in an attempt to determine if a
fairly simple model can provide some insight on the protein
dynamical transition. The purpose of the present article is to
clarify the origin of the transition in the computer model,
and to determine similarities and differences with respect
to experimental observations. Although the calculations are
performed with a specific model, the methods are more general
and even raise some questions for experiments, especially
concerning the nonequilibrium properties.

This article is organized as follows. The numerical find-
ings relating to the “dynamical transition” from previous
studies [9,10] are presented in Sec. II. As a very large
body of experimental studies of protein dynamics emanates
from neutron scattering experiments, it is rational to seek
a connection between theory and experiment by studying
the most relevant experimental observable for dynamics, the
incoherent structure factor (ISF). We calculate the ISF from
molecular dynamics simulations of the model in Sec. III.
We show that its main features can be well reproduced by a
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theoretical analysis based on the one-phonon approximation,
which indicates that, at low temperature, the dynamics of the
protein within this model takes place in a single minimum
of the energy landscape. Section IV proceeds to an inherent
structure analysis to examine how the transitions among energy
states start to play a role when temperature increases. As
the freezing of the protein dynamics at low temperature is
often called a “glass transition,” this raises the question of the
properties of the model protein in nonequilibrium situations. In
Sec. V we examine the violation of the fluctuation-dissipation
theorem after a sudden cooling of the protein. We find that
the effective temperature of the quenched protein, deduced
from the fluctuation-dissipation theorem (FDT) deviates from
the temperature of the thermostat, however it relaxes towards
the actual temperature with an an Arrhenius behavior as the
waiting time increases. This would imply that the dynamics
of the protein model is very slow but not actually glassy. This
method could be useful to distinguish very slow dynamics
from glassy dynamics, in experimental cases as well as in
molecular dynamics simulations. Finally Sec. VI summarizes
and discusses our results.

II. A DYNAMICAL TRANSITION IN A SIMPLE
PROTEIN MODEL?

Following earlier studies [9–11] we chose to study a small
protein containing the most common types of secondary
structure elements (α helix, β sheets, and loops), protein
G, the B1 domain of immunoglobulin binding protein [12]
(Protein Data Bank code 2GB1). It contains 56 residues,
with one α helix and four β strands forming a β sheet. We
describe it by an off-lattice Gō model with a slight frustration
which represents its geometry in terms of a single particle
per residue, centered at the location of each Cα carbon in the
experimentally determined tertiary structure. The interactions
between these residues do not distinguish between the types
of amino acids. Details on the simulation process and the
parametrization of the model are presented in the Appendix. In
spite of its simplicity, this model appears to exhibit properties
which are reminiscent of the protein dynamical transition. This
shows up when one examines the temperature dependence of
its mean-squared fluctuations [9] by calculating the variance
�r2 of the residue distances to the center of mass as a function
of temperature, defined by

�r2 = 1

N

N∑
i=1

(
r2
i0 − ri0

2). (1)

Here, N denotes the number of residues, and ri0 is distance of
residue i with respect to the instantaneous center of of mass.
The average A of the observable A(t) is the time average
A = 1

T

∫ T

0 dt A(t). The variances of 20 trajectories (Langevin
dynamics simulations, each 3 × 107 time units long) were
averaged for each temperature point (〈·〉 denotes the average
over independent initial conditions).

Figure 1 shows the evolution of 〈�r2〉 as a function
of temperature. It exhibits a crossover in the fluctuations
in the temperature range T/Tf = [0.4,0.5] resembling the
transition observed for hydrated proteins in neutron scattering
and Mössbauer spectroscopy experiments [2–4], the so-called
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FIG. 1. Average mean-squared distance fluctuations 〈�r2〉 as a
function of temperature for protein G. Data adapted from [9]. The
temperatures marked T1, T2, T3 are the temperatures studied in
Sec. IV.

dynamical transition. Above T/Tf = 0.4, the fluctuations
increase quickly with temperature whereas a smaller, linear,
growth is observed below. One may wonder whether the
complexity of the protein structure, reflected by the Gō model,
is sufficient to lead to a dynamical transition or whether,
notwithstanding the resemblance of the onset of fluctuations
in the present model and the experimentally determined
transition, different physical and not necessarily related events
may contribute to the curves which by coincidence look
similar. One can already note that, for a folding temperature in
the range 330–350 K, the range 0.4–0.5 T/Tf corresponds to
132–175 K, lower than the experimentally observed transition
occurring around 180–200 K. If it had been confirmed the
observation of a dynamical transition in a fairly simple protein
model would have been very useful to shine a new light
on this transition which is still not fully understood. It is
generally agreed that it is hydration dependent [13], but still
different directions for a microscopic interpretation are being
pursued, suggesting the existence [14] or nonexistence [15] of
a transition in the solvent coinciding at the dynamical transition
temperature. Recently, a completely different mechanism
based on percolation theory for the hydration layer has been
proposed [16]. The precise nature of the interaction between
the solvent and proteins, and the driving factor behind the
transition, hence still remain to be understood. The dynamical
transition has often been called the protein glass transition
due to its similarity with some physical properties of structural
glasses at low temperatures. In particular, it was pointed out
that, for both glasses and protein solutions, the transition
goes along with a crossover towards nonexponential relaxation
rates at low temperatures. The comparison is however vague
since the glass transition itself and notably its mechanism are
ongoing subjects of research and debate.

Our goal in this paper is to clarify the origin of the
numerically observed transition, which moreover gives hints
on the possibilities and limits of protein computer models.

III. ANALYSIS OF THE INCOHERENT
STRUCTURE FACTOR

If computer models of proteins are to be useful they must go
beyond a simple determination of the dynamics of the atoms,

012705-2



CHARACTERIZATION OF THE LOW-TEMPERATURE . . . PHYSICAL REVIEW E 89, 012705 (2014)

and make the link with experimental observations. This is
particularly important for the “dynamical transition” because
its nature in a real protein is not known at the level of the
atomic trajectories. It is only observed indirectly through the
signals provided by experiments. Therefore a valid analysis of
the transition observed in the computer model must examine
it in the same context, i.e., determine its consequences on the
experimental observations.

Along with NMR and Mössbauer spectroscopy, neutron
scattering methods have been among the most versatile and
valuable tools to provide insight on the internal motion of
proteins [17,18]. Indeed, the thermal neutron wavelength being
of the order of Å and the kinetic energy of the order of meVs,
neutrons provide an adequate probe matching the length and
frequency scales of atomic motion in proteins. An aspect
brought forward in the discussion of the dynamical transition
in view of the properties of glassy materials is the existence of
a boson peak at low frequencies in neutron scattering spectra
[19]. Such a broad peak appears to be a characteristic feature of
unstructured materials as compared to the spectra of crystals.

A. Incoherent structure factor from molecular
dynamics trajectories

In neutron scattering the vibrational and conformational
changes in proteins appear as a quasielastic contribution to
the dynamic structure factor S(q,ω) which contains crucial
information about the dynamics on different time and length
scales of the system. In scattering experiments one measures
the double-differential scattering cross section d2σ/(d�dE)
which gives the probability of finding a neutron in the solid
angle element d� with an energy exchange dE after scattering.
The total cross section of the experiment is obtained by
integration over all angles and energies. Neglecting magnetic
interaction and only considering the short-range nuclear
forces, the isotropic scattering is characterized by a single
parameter bi , the scattering length of the atomic species i

[20], which can be a complex number with a nonvanishing
imaginary part accounting for absorption of the neutron. If
one defines the average over different spin states bcoh = |〈b〉|
as the coherent scattering length, and the root-mean-square
deviation binc =

√
〈|b|2〉 − |〈b〉|2 as the incoherent scattering

length, the double-differential cross section arising from the
scattering of a monochromatic beam of neutrons with incident
wave vector k0 and final wave vector k by N nuclei of the
sample can be expressed as [20]

d2σ

d�dE
= N

�

|k|
|k0| (bcoh)2Scoh(q,ω),

+ N

�

|k|
|k0| (binc)2Sinc(q,ω), (2)

where q = k − k0 is the wave vector transfer in the scattering
process and ri denote the time-dependent positions of the
sample nuclei and the coherent and incoherent dynamical
structure factors are

Scoh(q,ω) = 1

2πN

∑
i,j

∫ ∞

−∞
dt e−iωt 〈e−iq(ri (t)−rj (0))〉, (3)

Sinc(q,ω) = 1

2πN

∑
i

∫ ∞

−∞
dt e−iωt 〈e−iq(ri (t)−ri (0))〉. (4)

The coherent structure factor contains contributions from the
position of all nuclei. The interference pattern of Scoh(q,ω)
contains the average (static) structural information on the
sample, whereas the incoherent structure factor Sinc(q,ω)
monitors the average of atomic motions as it is mathematically
equivalent to the Fourier transform in space and time of
the particle density autocorrelation function. In experiments
on biological samples, incoherent scattering from hydrogens
dominates the experimental spectra [18] unless deuteration of
the molecule and/or solvent are used.

Since the Gō-model represents a reduced description of the
protein and the locations of the individual atoms in the residues
are not resolved, we use “effective” incoherent weights of
equal value for the effective particles of the model located
in the position of the Cα atoms. Such a coarse grained view
assumes that the average number of hydrogen atoms and their
location in the residues is homogeneous, which is of course
a crude approximation in particular in view of the extension
and the motion of the side chains. These approximations are
nevertheless acceptable here as we do not intend to provide a
quantitative comparison with experimental results considering
the simplifications and the resulting limitations of the model.

We generated Langevin and Nosé-Hoover dynamic trajec-
tories of length t = 105 time units, i.e., about 1000 periods
of the slowest vibrational mode of the protein, after an
equilibration of equal length for protein G at temperatures
in the interval T/Tf = [0.0459,0.9633]. To compute the
incoherent structure factor for the Gō model of protein G,
we use nMoldyn [21] to analyze the molecular dynamics
trajectories generated at different temperatures. The data
are spatially averaged over Nq = 50 wave vectors sampling
spheres of fixed modules |q| = 2,3,4 Å−1, and the Fourier
transformation is smoothed by a Gaussian window of width
σ = 5% of the full length of the trajectory. Prior to the analysis,
a root-mean-square displacement alignment of the trajectory
onto the reference structure at time t = 0 is performed using
virtual molecular dynamics (VMD) [22]. Such a procedure is
necessary in order to remove the effects of global rotation and
translation of the molecule.

Figure 2 shows the frequency dependence of the incoherent
structure factor S(q,ω) for a fixed wave vector q = 4 Å−1 for a
simulation with the Nosé-Hoover thermostat. In Fig. 2(a), the
evolution of the low frequency range of the structure is shown
for a range of temperatures including the supposed dynamic
transition region T/Tf = [0.4,0.5]. At low temperatures up
to T/Tf ≈ 0.51, individual modes are clearly distinguishable
and become broadened as temperatures increases. The slowest
mode, located around 4 cm−1 is also the highest in amplitude.
It has a time constant of about τ = 80 in reduced units
(≈8 ps). These well-defined lines are observed to be shifting
towards lower frequencies with increasing temperature, similar
to the phonon frequency shifts that are frequently observed in
crystalline solids. As we show in the following section, the
location of these lines can be calculated from a harmonic
approximation associated to a single potential energy mini-
mum. Therefore, the shift in frequency and the appearance of
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FIG. 2. (Color online) Incoherent structure factor Sinc(q =
4 Å−1,ω) as a function of temperature for protein G (Nosé-Hoover
thermostat). The unit of time has been converted to absolute units
using the approximate conversion factor 1 t.u. = 0.1 ps. Panel (a)
shows a magnification of the structure factor in the low frequency
range. The structure factors in this panel have been shifted with an
offset to avoid the overlap of curves at different temperatures. The
different curves, from bottom to top, correspond to the temperatures
T/Tf listed on the side of each panel.

additional modes can be seen as a signature of increasingly
anharmonic dynamics involving several minima associated to
different conformational substates.

If, instead of the Nosé-Hoover thermostat, we consider
the results obtained with Langevin dynamics and a friction
constant γ = 0.01, the stronger coupling to the thermostat
leads to low energy modes which are significantly broader
than with the Nosé-Hoover thermostat, so that they can hardly
be resolved anymore. However, the location of the peaks in
the spectra remains the same as the one shown on Fig. 2(b).
Besides the larger damping, Langevin calculations pose
additional technical difficulties because Langevin dynamics
does not preserve the total momentum of the system. The
center of mass of the protein diffuses on the time scale of the
trajectories. At low temperatures when fluctuations are small,
the alignment procedure can efficiently eliminate contributions
from diffusion as the center of mass is well defined for a rigid
structure. At high temperatures however, it cannot be excluded
that the alignment procedure adds spurious contributions to
the structure factor calculations as the fluctuations grow in
amplitude and the structure becomes flexible.

The analysis of the incoherent structure factor has shown
that the low-temperature dynamics of the Gō model is domi-
nated by harmonic contributions. An increase of temperature
leads to a broadening and a shift of these modes until they

eventually become continuously distributed. However, for
both strong and weak coupling to the heat bath, no distinct
change of behavior can be detected within the temperature
range T/Tf = [0.4,0.5] in which Fig. 1 shows an apparent
dynamical transition. Instead, the numerical results suggest a
continuous increase of anharmonic dynamics, and the absence
of a dynamical transition in this model, even though, in the
range T/Tf = [0.4,0.5], the peaks of the structure factor
in the Nosé-Hoover simulations broaden significantly. In the
lowest temperature range the structure factor does not show
any contribution reminiscent of a Boson peak.

B. Structure factor from normal mode analysis in the
one phonon approximation

A further analysis can be carried out to determine whether
the low-temperature behavior of the protein model shows
a complex glassy behavior or simply the properties of an
harmonic network made of multiple bonds. The picture of
a rough energy landscape of a protein with many minima
separated by barriers of different height does not exclude
the possibility that, in the low-temperature range, the system
behaves as if it were in thermal equilibrium in a single
minimum of this multidimensional space. This would be the
case if the time scale to cross the energy barrier separating
this minimum from its neighbor basins were longer than the
observation time (both in numerical or real experiments). In
this case, it should be possible to describe the low-temperature
behavior of the protein in terms of a set of normal modes.
To determine if this is true for the Gō model that we study,
one can compare the spectrum obtained from thermalized
numerical simulations at low temperature (low temperature
curves on Fig. 2) with the calculation of the structure factor in
terms of phonon modes, in the spirit of the study performed in
Ref. [23] for the analysis of inelastic neutron scattering data of
staphylococcal nuclease at 25 K on an all-atom protein model.

The theoretical basis for a quantitative comparison is an
approximate expression of the quantum-mechanical structure
factor S(q,ω) in the so-called one-phonon limit which only
accounts for single quantum process in the scattering events
assuming harmonic dynamics of the nuclei. In this approxi-
mation, the incoherent structure factor can be written as

Sinc(q,ω) =
∑

i

∑
λ

b2
i e

�ωλβ/2e−2Wi (q)
�|q·eλ,i |2

× [4miωλ sinh(β�ωλ/2)]−1δ(ω − ωλ). (5)

Here, the indices i and λ denote the atom and normal modes
indices respectively. eλ,i is the subvector relating to the
coordinates of particle i of the normal mode vector associated
to index λ. Wi(q) denotes the Debye-Waller factor, which in
the quantum calculation of harmonic motion reads [23]

Wi(q) =
∑

λ

�|q·eλ,i |2
miωλ

[2n(ωλ) + 1] , (6)

n(ω) being the Bose factor associated to the energy level ω.
For the calculations of the structure factor in the Gō

model within this approximation, we average Sinc(q,ω)
on a shell of q vectors by transforming the Cartesian
coordinate vector (qx,qy,qz) into spherical coordinates
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q = q · (sin(θ )cos(φ),sin(θ )sin(φ),cos(θ )), and generate a
grid with Nq points for the interval φ = [0,2π ], and Nq points
for θ = [0,π ]. With this shell of vectors, we can evaluate the
isotropic average Sinc(q,ω). In Eq. (5), � appears as a prefactor
to the Debye-Waller factor Wi(q) in the exponentials and in the
inverse hyperbolic function. In order to evaluate the structure
factor in reduced units of the Gō model, we therefore need
to estimate the order of � in a similar way as we did for the
energy scale (see Appendix) by comparing the fractions

�ω

kBTf

= �
′ω′

(kBTf )′
, (7)

the nonprimed variables denoting quantities in reduced units.
In the numerical evaluation of Eq. (5), we discretize the
spectrum of frequencies from the smallest eigenvalue to the
largest mode into 10 000 grid points to evaluate the δ function.
We use Nq = 225 vectors to average on a shell of modulus
|q| = 4 Å−1. The summation runs over all eigenvectors except
for the six smallest frequencies which are numerically found
to be close to zero, and result from the invariance to overall
translation and rotation of the potential energy function.

In a first step, we use the coordinates of the global minimum
of the Gō model for protein G corresponding to the inherent
structure with index α0 to calculate the Hessian of the potential
energy function. The second derivatives are calculated by
numerically differentiating the analytical first derivatives at the
minimum. As discussed in the Appendix, due to the presence
of frustration in the potential, the experimental structure
does not correspond to the global minimum of the model.
The difference between the minimum and the experimental
structure is however small, with root-mean-square deviation
0.16 Å and notable changes in position occurring only for a
small number of residues located in the second turn.

To estimate the normal mode frequencies in absolute units,
we use the conversion of the time unit of 0.1 ps introduced
in the Appendix. The conversion into wave numbers, which
is convenient for the comparison to experimental data and
to the results from all-atom calculations, is achieved by
noting that, from ck = f , we can assign the conversion
1 ps−1 → 33.3 cm−1 and multiply the frequencies by this
scaling factor. Figure 3(a) shows the results of the calculation
of the incoherent structure factor S(q = 4 Å,ω) in the one
phonon approximation at the temperature T = 0.0459 Tf .
Since in this approximation the normal mode frequencies enter
with a δ function into Eq. (5), there is no linewidth associated
to these modes unless the structure factor is convoluted with
an instrumental resolution function or a frictional model [18].
Comparing to the structure factor calculated from a molecular
dynamics trajectory at the same temperature [Fig. 3(b)], we
find a good correspondence of the location of the lines and
their relative amplitude with respect to each other.

Therefore the analysis of the incoherent structure factor
using a harmonic approximation quantitatively confirms the
dominant contribution of harmonic motion at low temper-
atures. In particular, the motion at very low temperatures
occurs in a single energy well associated to one conformational
substate. To see how this behavior changes with increasing
temperature, in the next section we analyze the distribution of
inherent structures with temperature.
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FIG. 3. (a) Frequency dependence of the incoherent structure
factor S(q = 4 Å,ω) (T = 0.0459 Tf ) calculated from normal modes
in the one-phonon approximation. This figure only shows the lower
frequency part of the spectrum. (b) Incoherent structure factor
S(q = 4 Å,ω) calculated from Nosé-Hoover constant temperature
molecular dynamics at the same temperature.

IV. INHERENT STRUCTURE ANALYSIS IN THE
DYNAMIC TRANSITION REGION

The freezing of the dynamics of a protein at tempera-
tures below the “dynamic transition” is also described as a
“glass transition.’ This leads naturally to consider an energy
landscape with many metastable states, also called “inherent
states” in the vocabulary of glass transitions. In Refs. [9,11]
we showed that the thermodynamics of a protein can be
well described in terms of its inherent structure landscape,
i.e., a reduced energy landscape which does not describe the
complete energy surface but only its minima. This picture is
valid at all temperatures, including around the folding transi-
tion and above. For our present purpose of characterizing the
low-temperature properties of a protein and probe its possible
relation with a glassy behavior, it is therefore useful to examine
how the protein explores its inherent structure landscape in
the vicinity of the dynamic transition. Here, we shall try
to find how the number of populated minima changes with
temperature around the transition region T/Tf = [0.4,0.5] for
the Gō model of protein G, and which conformational changes
can be associated to these inherent structures.

For three selected temperatures T1 = 0.275 Tf , T2 =
0.39 Tf , T3 = 0.482 Tf shown in Fig. 1, we generated ten tra-
jectories from independent equilibrated initial conditions for
2 × 107 reduced time units using the Nosé-Hoover thermostat.
Along each trajectory, a minimization was performed every
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FIG. 4. Inherent structure population of the Gō model for protein
G at temperatures T1,T2,T3 (from top to bottom) and their associated
structural dissimilarity. Lines are drawn between states that are
connected within a molecular dynamics trajectory. The width of the
circles is proportional to 1/2 log(w) where w is the total number of
occurrences of a given minimum.

2 × 104 time units such as to yield Nm = 20 000 minima for
each temperature point. In the classification of these minima
and their graphical representation, we only keep those minima
which have been visited at least two times within the Nm

minima, which lead to discard less than ten events from the
total number of counts. Most of the counts are concentrated
on a small number of inherent structures. In Fig. 4, we show
the relative populations of the inherent structures on a two-
dimensional subspace spanned by the inherent structure energy
and the structural difference with the experimental structure
measured by the dissimilarity factor [10,24]. The radius of the
circles centered at the location of the minima on this plane is set
proportional to 1/2 log(w) where w is the absolute number of
counts of this minimum along the trajectories. This definition
is necessary to allow the graphical representation on the plane,

FIG. 5. (Color online) Shapes of inherent structures α1, α2, α6,
α7. The reference coordinates of the global minimum α0 are shown
by red balls surrounded by a thick black line. The coordinates of the
global minimum are invisible for residues which overlap with the
inherent structure coordinates.

however, it may visually mask that linear differences in the
radii translate into exponential differences of the frequency of
visit of the minimum. As an example, the minima α0,α1,α2,α3

have the occupation probabilities p(α0) = w(α0)/Nm ≈
92%, p(α1) ≈ 8%, p(α2) ≈ 0.1%, and p(α3) ≈ 0.02%
at T = T1.

From Fig. 4, we notice that already at T1 more than one
minimum is populated though the global minimum α0 is
dominant. In these figures, lines are drawn between minima
that are connected along the trajectory, i.e., that form a
sequence of events. It should however be noted that since
the sampling frequency is low, it cannot be excluded that an
intermediate corresponding to an additional connection line is
skipped. Connections between all minima may therefore exist
even though they did not appear in the sequences observed
in this study. Moving to higher temperatures T2 and T3, a
larger number of minima which are both higher in energy
and structural dissimilarity appear. As the temperature rises,
their population numbers become more important, as can be
seen, e.g., by inspection of the radii of the block α4-α7 in
Fig. 4. To obtain a physical picture of the conformational
changes associated with these minima, it is useful to align
their coordinates onto the coordinates of the global minimum.
The results of such an alignment are shown in Fig. 5. In
this figure, the coordinates of the effective Gō-model particles
located at the positions of the Cα atoms for each amino acid
are drawn in red color. One notices that the conformational
changes associated to α1-α3 are small. It is interesting to
notice that these small changes already appear in the range of
temperatures where the rise in fluctuations seems to grow still
linearly with the temperature. The next higher minima involve
in particular a reorientation of a turn within the β sheets of
a protein. The temperature range at which these minima start
to be populated coincides with the transition region revealed
by the mean-distance displacement 〈�r2〉, suggesting that the
anharmonic motion required to make transitions between the
basins of these minima is at its origin.

We again observe that the dynamic transition region does
not exhibit any particular change of behavior that could deserve
the name of “transition,” but rather a gradual evolution which
gets noticeable in the range T/Tf = [0.4,0.5]. In the next
section we use a nonequilibrium approach to reveal whether
the dynamics below the transition range can be characterized
as “glassy” or not.
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V. TEST OF THE FLUCTUATION-DISSIPATION
THEOREM (FDT)—A NONEQUILIBRIUM APPROACH

An alternative approach to study the low-temperature
transition, for which equilibrium simulations take a significant
amount of computer time, consists in the test of the response
of the protein to external perturbations. Rather than waiting
a long time to see rare fluctuations dominating the average
fluctuation at low temperatures, the system is driven out of
equilibrium on purpose to either observe the relaxation back
to equilibrium and its associated structural changes, or the
response to a continuous perturbation to be compared to
fluctuations at equilibrium.

The fluctuation-dissipation theorem (FDT) relates the
response to small perturbations and the correlations of fluc-
tuations at thermal equilibrium for a given system. In the
past years, the theorem and its extensions have become
a useful tool to characterize glassy dynamics in a large
variety of complex systems [25]. For glasses below the glass
transition temperature, the equilibrium relaxation time scales
are very large so that thermal equilibrium is out of reach [26].
Consequently, the FDT cannot be expected to hold in these
situations, and the response functions and correlation functions
in principle provide distinct information. In this section, we test
the FDT for the Gō model of protein G at various temperatures
to see whether a signature of glassy dynamics is present in the
system. To this aim, we first recall the basic definitions and
notations for the theorem.

In our studies we start from a given initial condition and
put the system in contact with a thermostat during a waiting
time tw. The end of the waiting time is selected as the origin of
time (t = 0) for our investigation. If tw is large enough (strictly
speaking tw → ∞) the system is in equilibrium at t = 0. We
denote the Hamiltonian of the unperturbed system H0, which
under a small linear perturbation of the order ε(t) acting on an
observable B(t) becomes

H = H0 − ε(t)B(t), (8)

where for ε = 0 we recover the unperturbed system. For any
observable A(t), we accordingly define the two ensemble
averages 〈A(t)〉tw0 and 〈A(t)〉twε where the index references the
average with respect to the unperturbed or perturbed system
respectively and the exponent tw indicates how long the system
was equilibrated before the start of the investigation. The
correlation function in the unperturbed system relating the
observables A(t), B(t ′) at two instances of time t,t ′ is defined
by

CAB(t,t ′) = 〈A(t)B(t ′)〉tw0 − 〈A(t)〉tw0 · 〈B(t ′)〉tw0 . (9)

The susceptibility χAB(t), which measures the time-integrated
response of the of the observable A(t) at the instant t to the
perturbation ε(t ′) at the instant t ′, reads

χAB(t) =
∫ t

t0

dt ′
δ〈A(t)〉twε

δε(t ′)
. (10)

The index B in the susceptibility indicates that the response
is measured with respect to the perturbation arising from the
application of B(t), and the lower bound t0 of the integral
indicates the instant of time at which the perturbation has been
switched on.

The integrated form of the FDT states that the correlations
and the integrated response are proportional and related by the
system temperature at equilibrium,

χAB(t) = 1

kBT
�C with

(11)
�C = [CAB(t,t) − CAB(t,0)].

In the linear response regime for a sufficiently small and
constant field ε, the susceptibility can be approximated as

χAB(t) ≈ 〈A(t)〉twε − 〈A(t)〉tw0
ε

(12)

such that in practice, verifying the FDT accounts for the
comparison of observables on both perturbed and unperturbed
trajectories. The basic steps for a numerical experiment aiming
to verify the FDT can be summarized as follows:

(i) Initialize two identical systems 1 and 2, 1 to be simulated
with and 2 without perturbation.

(ii) Equilibrate both systems without perturbation during tw .
(iii) At time t0 (in practice t0 = 0, i.e., immediately after

the end of the equilibration period) switch on the perturbation
for system 1 and acquire data for both systems for a finite time
tFDT.

(iv) Repeat the calculation over a large number of initial
conditions to yield the ensemble averages 〈·〉tw0 and 〈·〉twε ;
combine the data according to Eq. (11).

The protocol may be modified to include an external
perturbation which breaks the translational invariance in time.
For instance the initial state can result from a quench from a
high to a low temperature. Then the system is only equilibrated
for a short time tw before the perturbation in the Hamiltonian
is switched on. In this case the distribution of the realizations
of the initial conditions is not the equilibrium distribution so
that the correlation function defined by Eq. (9) depends on the
two times t and t ′ and not only on their difference.

A. Simulation at constant temperature

This case corresponds to tw → ∞. In our calculations we
start from an initial condition which as been thermalized
for at least 5000 time units. The first step is to make an
appropriate choice for the perturbative potential ε(t)B(t). An
earlier application of the FDT to a protein model [27] has used
the perturbative term

ε(t)B(t) = ε

N∑
i=1

cos(k yi), (13)

where k is a scalar, yi is the y coordinate of amino acid i,
and ε �= 0 for t > t0 a constant. This perturbation is invariant
neither by a translation of the system nor by its rotation.
Although this does not invalidate the FDT, this choice poses
some problems for the accuracy of the calculations because,
even in the absence of internal dynamics of the protein, the
perturbation varies as the molecules diffuse in space or rotate.
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To avoid this difficulty we selected the perturbation

W := −εB(t) = −ε

N∑
i=1,i �=28

cos(k ri,28), (14)

where ri,28 is the distance between amino acid i and the amino
acid 28 which has been chosen as a reference point within the
protein because it is located near the middle of the amino-acid
chain. Such a potential only depends on the internal state of the
molecule, while it remains unaffected by its position in space.
To test the FDT for the Gō model of protein G using Eqs. (11)
and (12), we add this potential W to the potential energy V of
the model and we select A(t) = B(t). The thermal fluctuations
are described with the same Langevin dynamics as previously.
We switch on the perturbation for the equilibrated protein
model and record 50 000–400 000 trajectories (depending on
the value of ε) of duration 2000 time units for temperatures
in the range T/Tf = [0.275,0.826] covering both the low-
temperature domain and the approach of the folding transition
of the protein. The perturbation prefactors chosen in this first
set of simulations were ε = 0.05 and ε = 0.005, and the wave
number of the cosine term was k = 2π/10.

Figure 6 shows the evolution of the relation between the
susceptibility and the variation of the correlation function
�C = CAB(t,t) − CAB(t,0). The straight lines represent the
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FIG. 6. (Color online) Variation of χ vs C for ε = 0.05 and
ε = 0.005 at the equilibrium temperature T = 0.826 Tf . The insets
show χ vs �C at T = 0.275 Tf . The oblique (red) lines show the
slope 1/kBT that would be expected according to the fluctuation-
dissipation theorem. The results presented in this figure have been
obtained from 400 000 realizations.

slopes expected from the FDT. One notices that, for ε = 0.05,
at T = 0.826 Tf , in the long term the value of χ/�C stabilizes
around a value which is away from the expected value
1/kBT . From a first glance, this result is reminiscent of
the properties of a glass driven out of equilibrium. In this
context, the deviation from the slope expected from the FDT
is interpreted as the existence of an “effective temperature”
for nonequilibrium systems. For the case studied here, finding
an effective temperature would be surprising as the results
are obtained from measurements on a thermalized protein
model, i.e., a system in a state of thermal equilibrium.
How is it then possible to explain the apparent deviation
from the FDT? The calculations performed with ε = 0.005
give the clue because they show that the deviation appeared
because the perturbation was too large and outside of the
linear response regime assumed to calculate the susceptibility
because for this lower value of ε the deviation has vanished.
If one computes the average value of the perturbation energy
〈W 〉 and compares it to the protein average energy 〈E(T )〉, for
the case shown in Fig. 6, ε = 0.05, one finds 〈W 〉/〈E(T )〉 =
1.3 × 10−2. This is small, but, at temperatures which approach
Tf the protein is a highly deformable object and even a small
perturbation can bring it out of the linear response regime.
This shows up by a rise of χ versus time for ε = 0.05. At
low temperatures the protein is more rigid and therefore more
resilient to perturbations. The insets in Fig. 6 show that for
ε = 0.05 the calculations find that the fluctuation-dissipation
relation at T = 0.275 Tf is almost perfectly verified although
a very small deviation can still be detected for this value of
ε = 0.05. Therefore a careful choice of parameters is necessary
to test the FDT under controlled conditions. In particular, the
perturbation needs to be carefully chosen to only probe the
internal dynamics and not to dominate them.

B. Simulation of quenching

A typical signature of a glassy system is its aging after a
perturbation. In the context of the protein “glass transition,”
one can therefore expect to detect a slow evolution of the
system as a function of the time after which it has been
brought to the glassy state. This is usually tested in quenching
experiments, which can be investigated by a sharp temperature
drop in the numerical simulations. Our calculations start from
an equilibrium state at high temperature T = 1.40 Tf , which
is abruptly cooled at a temperature Tq below the temperature
of the dynamical transition studied in the previous sections.
The model protein is then maintained at this temperature Tq

by a Langevin thermostat. After a waiting time tw we start
recording the properties of the system over a time interval
tFDT = 25 000 units of time (t.u.) to probe the fluctuation
dissipation relation. In order to avoid nonlinear effects we use
a small value of ε = 0.005. For such a weak perturbation, the
response is weak compared to thermal fluctuations and a large
number of realizations (50 000 or more) is necessary to achieve
reliable statistical averages. To properly probe the phase space
of the model, these averages must be made over different
starting configurations before quenching. This is achieved by
starting the simulations from a given initial condition properly
thermalized at T = 1.40 Tf in a preliminary calculation. Then
we run a short simulation at this initial temperature, during
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FIG. 7. (Color online) Time evolution of the energy above the
ground state, in units of kBTf , after a temperature jump from T =
1.4 Tf to T = 0.367 Tf for two different waiting times tw , indicated
in the title of each panel. The figure shows the evolution of the energy
for 15 realizations (corresponding to the different colors) for the time
tFDT = 25 000 t.u.

which the unfolded conformations change widely from a
run to another with different random forces because at high
temperatures the fluctuations of the protein are very large. The
conformations reached after this short high-T thermalization
are the conformations which are then quenched to Tq , for the
FDT analysis.

Typical results are shown on Figs. 7 and 8 for two values
of tw. The time evolution of the energy shows that, after the
waiting time tw, even for the largest value tw = 50 000 t.u.
the model protein is still very far from equilibrium because
its energy is well above the ground state energy (chosen
as the reference energy 0). This nonequilibrium situation
sometimes leads to rapid energy drops, generally accompanied
by a decrease of the dissimilarity with the native state, which
superimpose to random fluctuations which have to be expected
for this system in contact with a thermal bath. As expected
the sharp variations of the conformations are more noticeable
for the shortest waiting time. Figure 8 shows that, while
for small values of �C = [CAB(t,t) − CAB(t,0)], which also
correspond to shorter times after we start to collect the data
for the FDT test, the variation of χAB(t) versus �C follows
the curve given by the FDT relation, then at larger �C

the curve shows a significant deviation from the slope 1/T ,
which defines an effective temperature Teff > T . The effective
temperature is larger for short waiting times after the quench
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FIG. 8. (Color online) Test of the FDT for the temperature jump
from T = 1.4 Tf to T = 0.367 Tf and different waiting times tw ,
indicated in the title of each panel. The figures show the response
function χ vs the variation �C of the correlation function. The full
straight lines (red) show the result of the FDT. The results for tw =
10 000 t.u. have been obtained by averaging over 115 000 independent
realizations, those for tw = 50 000 t.u. have been obtained with
92 000 realizations. The dotted (green) lines show the fit of the data for
the domain �C > Cm where Cm is the value above which the curve
deviates significantly from the line of slope 1/T . The inverse of the
slope of these fits defines an effective temperature Teff . As indicated in
the legend of each figure, the value obtained for Teff slightly depends
on the choice of Cm. By varying Cm we can therefore estimate the
standard deviation on the value of Teff .

and decreases when tw increases. This should be expected
because, in the limit tw → ∞ we should have Teff → T when
the system reaches equilibrium.

It is not surprising to find a deviation from the FDT
behavior after a strong quench of the protein model because
we put the system very far from equilibrium. Therefore the
observation of an effective temperature that differs from
the actual temperature of the system is not a sufficient
indication to conclude at the existence of a glassy state of
the protein model. What is important is the time scale at
which the system tends to equilibrium and how it depends on
temperature. To study this we have performed a systematic
study of the variation of Teff(tw; T ) as a function of the
waiting time tw and temperature T , at the temperatures
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T = 0.1875 Tf , T = 0.2752 Tf , T = 0.3670 Tf , T =
0.4128 Tf , and T = 0.4817 Tf . The temperature domain that
we can study numerically is limited both from below and
from above. At the lowest temperatures the relaxation of the
system is very slow so that tw must be strongly increased.
Moreover the speed at which the protein model explores its
phase space by moving from an inherent structure to another
becomes very low and statistically significant data cannot be
obtained without a large increase of tFDT. Running enough
calculations to get a good average on the realizations becomes
unpractical. As discussed above, at high temperatures the
protein becomes “soft” so that one quickly leaves the linearity
domain of the FDT, unless the applied perturbation becomes
very small. But then the large thermal fluctuations reduce
the signal to noise ratio. Therefore the advantage of faster
relaxation times at high temperature is whipped out by
the need to make statistical averages over a much larger
number of realizations. However, the temperature range over
which one can get statistically significant results overlaps the
temperature T ≈ 0.45 Tf above which the fluctuations of the
model appear to grow faster (Fig. 1) so that one could expect
to observe a change in the properties of the system at this
temperature, if it existed.

At a given temperature T we have defined a relaxation
time τ (T ) by assuming that the effective temperature relaxes
exponentially towards the actual temperature according to(

Teff

T
− 1

)
∝ exp

(
− tw

τ (T )

)
. (15)

Figure 9 shows that this assumption is well verified by the
numerical calculations. It should however be noticed that, for
the longest waiting times, we may observe a large deviation
from the exponential decay, as shown in Fig. 9 for the results
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FIG. 9. Variation of the effective temperature Teff as a function
of the waiting time tw at two temperatures, T = 0.2572 Tf (open
circles) and T = 0.4128 Tf (closed squares). The figure shows
ln (Teff/T − 1) vs tw . The lines show a linear fit that takes into account
the error bars on the determination of Teff determined as explained in
the caption of Fig. 8. Such a fit determines τ (T ) and its the standard
deviation. For T = 0.4128 Tf the point corresponding to the largest
value of tw is not included in the fit (see the discussion in the text).
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FIG. 10. Variation of the relaxation time τ (T ) vs temperature. We
plot ln(τ ) vs Tf /T . The line is a fit of the values which takes into
account the uncertainties on the values of τ (T ).

at T = 0.4128 Tf . We attribute this to the limitations of
our observations because, when the system has sufficiently
relaxed so that its effective temperature approaches the actual
temperature, all subsequent relaxations become extremely
slow and may exceed the observation time tFDT = 25 000 t.u.
so that the test of the FDT no longer properly probes the
phase space. Increasing tFDT by an order of magnitude might
allow us to observe the relaxation further but is beyond our
computing possibilities as we have to study at least 50 000
realizations or more to achieve a reasonable accuracy. A fit
of the values of (Teff/T − 1) versus tw, which takes into
account the statistical weight of each point according to its
standard deviation obtained from the uncertainties on Teff ,
determines the relaxation time τ (T ) and its corresponding
standard deviation.

Figure 10 shows the variation of τ (T ) with temperature, in
logarithmic scale, versus Tf /T . It shows that, except for the
value at the lowest temperature T = 0.1875 Tf , i.e., Tf /T =
5.45, within the numerical errors evaluated at each stage of
our calculation, the relaxation time obeys a standard Arrhenius
relation

τ (T ) = τ0 exp

(
Ea

T

)
(16)

with an activation energy Ea/(kBTf ) = 0.5668 ± 0.1799. At
the lowest temperature, the relaxation temperature estimated
from the Arrhenius law is τ (T = 0.1875 Tf ) ≈ 100 000 t.u.
so that calculations with tw � 100 000 as well as tFDT 

100 000 would be necessary, which is unpractical. However,
the observed deviation from Arrhenius law at low T cannot be
attributed to a low-temperature glass transition because such a
transition would lead to a relaxation time larger than predicted
by the Arrhenius relation, while we observe the opposite. In
any case the Arrhenius relation is well verified for a temper-
ature range which overlaps the temperature T ≈ 0.45 Tf , i.e.,
Tf /T ≈ 2.22, above which dynamical simulations suggested
a possible increase of the fluctuations (Fig. 1). Therefore the
relaxation of the protein model after a quench appears to follow
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a standard activated process, with an activation energy of the
order of 0.57kBTf , without any sign of a glassy behavior.

These observations can be compared with other studies
of the fluctuations of the same Gō model of protein G

[9,28]. Paper [9] investigated the fluctuation in equilibrium
below the folding temperature Tf . In these conditions, the
numerical simulations of a protein which is near its native
state detect small, up and down, jumps of the dissimilarity
factor, which, in any case, stays very low (d ≈ 0.06 for the
equilibrium temperature T = 0.55 Tf ) but switches between
values that differ by ≈0.01. In its equilibrium state the protein
may jump from an inherent structure to another but these
fluctuations are much slower than the one that we observed
shorter after a temperature quench because they occur on a
time scale of the order of 107 t.u. Their activation energy
had been found to be EB = 6.2 Tf , i.e., much higher than
the activation energy Ea that characterizes the relaxation of
the effective temperature that we measured. Those results are
not in contradiction because they correspond to fundamentally
different phenomena. The nonequilibrium fluctuations that
we discuss in the present paper appear because the potential
energy surface has minima on the side of the “funnel” that
leads to the native state. Such minima, corresponding to protein
structures which are not fully folded, can temporarily trap the
protein in intermediate states. However the lifetime of these
high-energy minima is only of the order of 105 t.u., i.e., they
are short lived compared to the residence time of the protein in
an inherent structure close to the native state. When the protein
escapes from one of these high-energy minima we observe an
energy drop, as shown in Fig. 7.

The study that we presented here is neither a study of
the protein near equilibrium, nor an investigation of the full
folding process which also occurs on much longer time scales
(typically 107–108 t.u.) as observed in Refs. [9] and [28].
Therefore the activation energy Ea is also different from the
energy barrier for folding. For the same reason the effective
temperature after the quench Teff should not be confused with
the configurational temperature Tcnf defined in Ref. [28] which
relates the entropy and energy of the inherent structures during
folding. Tcnf gives a global view of the phase space explored
during folding, and it evolves with a characteristic time of
107–108 t.u. as the folding itself. Compared to these scales,
the FDT analysis that we presented here appears as a snapshot
of the strongly nonequilibrium state created after a fast quench.
It offers a new view of the time evolution of the protein model,
which completes the ones which had been presented earlier.

VI. DISCUSSION

The starting point of our study has been the numerical
observation of a low-temperature transition in a simplified pro-
tein model resembling the experimentally observed dynamical
transition in hydrated protein samples. This suggested that, in
spite of its simplicity, the frustrated Gō model could be used not
only to study the folding of proteins but also their dynamics in
the low-temperature range, opening the way for an exploration
of the glassy behavior of proteins.

We have therefore used different approaches to further
characterize the properties of the protein model in the
low-temperature range. Thermalized molecular dynamics

simulations have been used to calculate the incoherent struc-
ture factor than one could expect to observe for the protein. It
shows peaks that broaden as temperature increases, suggesting
that the dynamics of the protein model is dominated by
harmonic or weakly anharmonic vibrations. This has been
confirmed by the calculation of the structure factor in the one-
phonon approximation. All the main features of the structure
factor obtained by simulations, such as the peak positions
and even the power law decay of the amplitude of the modes
with frequency, are well reproduced. In the low-temperature
range, the dynamics of the protein appears to occur in a single
energy well of its highly multidimensional energy landscape.
Of course this is no longer true when the temperature increases.

By analyzing the population of the inherent structures, we
have shown that, in the temperature range of the dynamical
transition, there is a continuous increase of the number of
states which are visited by the protein. The transition seems
to be continuous, and it is likely that numerical observations
suggesting a sudden increase may have the origin in the limited
statistics due to finite time observation. Indeed, as shown
for the example of protein G, the conformational transitions
become extremely slow at low temperatures, such that the
waiting time between the jumps between conformations may
exceed the numerical (or the experimental) observation time.
It is this breakdown of the ergodic hypothesis together with
the observation of nonexponential relaxation rates which may
have led to the emergence of the terminology “protein glass
transition” in analogy to the phenomenology of glasses.

Nonequilibrium studies allowed us to systematically probe
a possible glassy behavior by searching for violations of the
fluctuation-dissipation theorem. First we have shown that these
calculations must be carried out with care because apparent
violations are possible, even when the system is in equilibrium,
due to nonlinearities in the response. Except at very low
temperatures they can be observed even for perturbations as
low as 1% of the potential energy of the system. Once this
artifact is eliminated by the choice of a sufficiently small
perturbative potential, we have shown that, after a sudden
quench from an unfolded state to a very low temperature Tq ,
one does observe a violation of the FDT in the protein model,
analogous to what is found in glasses. The quenched protein
is characterized by an effective temperature Teff > Tq . But the
relaxation of the model towards equilibrium, deduced from
the evolution of the effective temperature Teff as a function
of the waiting time after the quench, follows a standard
Arrhenius behavior, even when the temperature crosses the
value T ≈ 0.45Tf at which dynamical simulations appeared
to show a change in the amplitude of the fluctuations.

Although one cannot formally exclude that the results could
be different for other protein structures or other simplified
protein models, this work concludes that a coarse-grain model
such as the Gō model is too simple to describe the complex
behavior of protein G and particularly its glass transition.
Indeed such a model does not include a real solvent, which
plays an important role in experiments. The thermostat used
in the molecular dynamics simulations only partially models
the effect of the surrounding of the protein. The apparent
numerical transition previously observed for protein G may
simply be related to finite-time observations of the activation
of structural transitions which appears in a particularly long
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time scale for proteins. This is an obvious limitation of
molecular dynamics calculations, but this could also sound
as a warning to experimentalists. Indeed experiments can
access much longer time scales. But they also deal with real
systems which are much more complex than the Gō model. In
these systems relaxations may become very long, so that the
experimental observation of a transition could actually face the
same limitations as the numerical simulations. Such a “time
window” interpretation has also been brought forward for
the experimentally observed dynamical transition, suggesting
that the transition may in fact depend on the energy resolution,
and thus, on the time resolution of the spectrometer [29]. In
this respect, as shown by our nonequilibrium studies to test
the validity of the FDT, such measurements, if they could be
performed for a protein, should tell us a lot about the true
nature of the “glass transition” of proteins.
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APPENDIX: SIMULATION AND UNITS

The forcefield and the parametrization of the simplified
Gō model are presented in [9,10]. In a standard Gō model
the potential energy is written in such a way that the
experimental energy state is the minimal energy state. We
use here a weakly frustrated Gō model for which the dihedral
angle potential does not assume a minimum in the reference
position defined by the experimentally resolved structure:
it favors angles close to π/4 and 3π/4 irrespective of the
secondary structure element (helix, sheet, turn) the amino acid
belongs to. This source of additional “frustration” affects the
dynamics and thermodynamics of the model, leading to a more
realistic representation [10]. This feature introduces additional
complexity in the model because, besides its ground state
corresponding to the experimental structure, the frustrated
model exhibits another funnel for folding, which leads to a
second structure which is almost a mirror image of the ground
state, but has a significantly higher energy (Fig. 11).

To control temperature in the molecular dynamics simula-
tions, several types of numerical thermostats were used. Most
of the calculations use underdamped Langevin simulations
[30,31] with a time step dt = 0.1 t.u. and friction constants
in the range γ = 0.01,0.025. The mass of all the residues is
assumed to be equal to m = 10. Some calculations were also
performed with the multithermostat Nose-Hoover algorithm
using the specifications defined in [32].
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FIG. 11. (Color online) Stable and metastable conformations of
the protein G model obtained by a nonequilibrium cooling protocol
followed by energy minimization (the various colors show minima
obtained with different speed of cooling). The horizontal axis shows
the energy of each structure with reference to the global minimum,
and the vertical axis indicates its dissimilarity with the ground state
[10,24], lower values indicating more structural similarities between
two conformations.

For simulation purposes, the variables in the Gō model are
chosen dimensionless (reduced units). Lengths are expressed
in units of l̃ = 1 representing Å, and the average mass of an
amino acid, 135 Da, has been expressed as ten units of mass
of the model. As the empirical potentials are defined at the
mesoscopic scale of the amino acids, values for the interaction
constants in the effective potentials cannot be easily estimated
in absolute units. It is possible to estimate the energy scale of
the model by comparing the reduced folding temperature of
the Gō model with a realistic order of magnitude of the folding
temperature T ′

f in units of K and setting

k′
BT ′

f = ε̃kBTf , (A1)

where the variables on the left-hand side are given in SI units
(T ′

f is the estimate of the folding temperature), and unprimed
variables are written in reduced units; ε̃ is the required energy
scale in units of J to match between both. In our calculations
kB = 1 (meaning that reduced temperatures are expressed
in reduced energy units) and Tf = 0.218 is deduced from
equilibrium simulations. Then a simple dimensional analysis

gives the time unit of the model as t̃ =
√

m̃l̃2

ε̃
. One arrives at

an estimated time unit of t̃ ≈ 0.1 ps. In the paper we refer to
t̃ ≈ 0.1 ps as the unit of time (t.u.) for the simulations of the
Gō model, keeping in mind that this can merely be seen as an
order of magnitude in view of the approximations that lead to
this number.
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