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Mullins effect in a filled elastomer under uniaxial tension
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Modulus softening and permanent set in filled polymeric materials due to cyclic loading and unloading,
commonly known as the Mullins effect, can have a significant impact on their use as support cushions. A
quantitative analysis of such behavior is essential to ensure the effectiveness of such materials in long-term
deployment. In this work we combine existing ideas of filler-induced modulus enhancement, strain amplification,
and irreversible deformation within a simple non-Gaussian constitutive model to quantitatively interpret recent
measurements on a relevant PDMS-based elastomeric cushion. We find that the experimental stress-strain data is
consistent with the picture that during stretching (loading) two effects take place simultaneously: (1) the physical
constraints (entanglements) initially present in the polymer network get disentangled, thus leading to a gradual
decrease in the effective cross-link density, and (2) the effective filler volume fraction gradually decreases with
increasing strain due to the irreversible pulling out of an initially occluded volume of the soft polymer domain.
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I. INTRODUCTION

Poly(dimethylsiloxane) (PDMS), with strong resistance
to high temperature, radiation, and chemical attack, is the
most widely used silicone elastomer in many applications
ranging from artificial organs and biomedical devices to
cushions, coatings, adhesives, interconnects, and seismic-
isolation, thermal, and electrical barriers [1–11]. However, to
ensure consistent performance under long-term deployment,
one needs to carefully examine cumulative effects that might
potentially alter its properties of interest. With our focus on
the mechanical properties of PDMS-based cushion and support
pads, we have previously examined the effect of radiation on
the molecular weight distribution, cross-link density, elastic
modulus, and permanent set in cross-linked PDMS elastomers
of our interest [12,13]. We found that in all these experiments,
the effect of radiation is strongly coupled with mechanical
softening and permanent set effects due to repeated cycling
of the rubber [14], a well-known effect commonly called
the Mullins effect [15,16]. In applications where the amount
of radiation exposure is small, it is important to develop a
quantitative theory to understand and estimate the changes in
elastic modulus and permanent set due to the Mullins effect.

The Mullins effect typically has the following characteristic
signatures [15–17]: (1) significant softening results upon the
first unloading cycle; (2) the amount of softening increases
with increase in the maximum strain in the first cycle;
(3) subsequent loading closely follows the first unloading
curve and the unloading shows much less softening as long
as the previous maximum strain is not exceeded; (4) if a
subsequent loading exceeds the previous maximum, it acts as
if to follow a continuation of the previous maximum loading
curve; (5) there can be an induced anisotropy even in rubber
that is isotropic in its virgin state; and (6) there is often a small
but noticeable permanent set at the end of the first unloading
curve. The permanent set typically increases upon unloading
from an increased maximum strain, although in some cases it
can recover after a long resting time [18]. Although the Mullins
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effect has been observed in both filled and unfilled rubber, it
is particularly pronounced in systems with significant filler
content, and although most studies have involved uniaxial
tension, there have been a few studies under more general
loading conditions [19,20].

Analysis by many groups over the past several decades has
led to the suggestion of several different physical mechanisms
behind the Mullins effect, including polymer-filler chain
breakage [21–23], chain slippage [24,25], rupture of filler
clusters [26], and chain disentanglement [27]. Although the
detailed mechanism is not clear, and perhaps could even be
dependent on the type of rubber, filler, strain rate, etc., many
authors have taken the viewpoint that stiff filler particles lead to
an enhanced elastic modulus through rubber-filler attachments
that provide additional restrictions on the cross-linked rubber
network—softening results from the breakdown, slippage,
or loosening of some of these attachments, a phenomenon
commonly referred to as stress softening [22–31]. Modeling
such phenomenon has typically involved the representation
of filled rubber with multiple networks, and strain-induced
damage or alteration of one of the networks, while more
detailed refinements, e.g., that involving the cluster topology
of fillers, are progressively being introduced [32,33]. An
alternative way to analyze Mullins effect has been to treat filled
rubber as a system comprised of soft and hard domains [34–40]
that evolve under stretch—softening is caused by the quasi-
irreversible increase in the volume fraction of the soft domain.
Models based on the second line of thought [41,42] postulate
a localized nonaffine deformation of the molecular networks
due to short chains reaching their limits of extensibility, and
effective strain amplification [35–37] in the soft domain as
compared to the actually applied strain because of almost zero
strain in the hard domain.

The first viewpoint of describing Mullins effect typically
necessitates complex materials-based models that continue to
get refined in the current literature [32,33,43]. Such devel-
opments are important because they can quantitatively relate
observed effects like strain-induced anisotropy, permanent set,
and inelastic response to physical assumptions of network
damage like chain sliding on and debonding from filler
aggregates. On the other hand, the second viewpoint (i.e.,
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strain amplification) is more phenomenological [41] and easier
to implement numerically. However, there is some ambiguity
in how strain should be amplified. For instance, Mullins
and Tobin [34,35] suggested amplifying the uniaxial strain,
Govindjee and Simo [28] suggested amplifying the total
deformation gradient, while Boyce and co-workers [41,42]
have suggested amplifying the first invariant of stretch I1. One
could also construct more realistic models that incorporate
nonuniformity of strain enhancement, e.g., through the inclu-
sion of microstrain gradient [44].

In this paper we analyze the observed Mullins softening in
a filled PDMS rubber material of our interest using the concept
of strain amplification in a way originally proposed by Mullins
and Tobin [34,35]. Given the large amounts of stretch involved,
we adopt a non-Gaussian stress function [45,46] and generalize
it for the case of amplified strain. The layout of the paper is as
follows: Sec. II contains a short discussion of the experimental
measurements, Sec. III systematically develops the materials
model, Sec. IV summarizes the main results, and we conclude
with a brief summary in Sec. V.

II. MEASUREMENTS

The mechanical measurements reported here were per-
formed on the commercial silicone elastomer TR-55 from
Dow Corning, the same system on which previous studies of
radiation aging had been carried out [12–14,47]. It essentially
consists of silicone gum stock (primarily PDMS) filled with
30 wt % of fumed silica, which corresponds to a filler
volume fraction of �16%. In our mechanical measurements,
rectangular samples (�3 mm wide by �1 mm thick) of TR-55
were stretched to a maximum engineering strain of εmax �
2.15 at a rate of 20 mm/min under ambient conditions. The
initial grip separation was 20 mm. After 5 s at εmax the
external stretching force was removed and the samples relaxed
to a state of equilibrium (i.e., zero stress). After 5 s in the
zero stress condition, the samples were stretched again to the
previously attained maximum stretch. The cycle was repeated
four times. During the fifth loading cycle, the sample was
stretched beyond the previous maximum stretch. Figure 1 plots

FIG. 1. (Color online) Stress-strain curve for a typical TR-55
sample that underwent five loading and four unloading cycles with
the first four loading cycles limited to an engineering strain of 2.15
and the fifth loading cycle exceeding this strain. In addition to the
typical Mullins softening, one observes a large permanent set with a
recovered engineering strain εs � 18%.

FIG. 2. (Color online) A simplified representation of Fig. 1 for
modeling purpose.

the stress-strain response of a typical TR-55 sample. It exhibits
many of the characteristic Mullins signatures mentioned in the
Introduction. Two aspects that are most noteworthy are the
significant softening and a large permanent set incurred upon
the very first unloading, with a recovered engineering strain
λs − 1 � 18% (where λs is the ratio of the length of the
specimen with incurred permanent set to the original length). If
such strain levels are not accounted for prior to the deployment
of the elastomeric component in mechanical support devices,
it can have undesired effects in the long-term performance.

III. MODELING

Given that the difference between the first unloading
curve and subsequent loading and unloading curves are small
until the previous maximum strain is exceeded, a common
simplification is to ignore such difference, as illustrated in
Fig. 2. Thus, a quantitative analysis of the Mullins effect
becomes an exercise in describing the first loading and the first
unloading curves for varying maximum strain levels. In order
to develop an appropriate stress-strain relation, i.e., a materials
model, we start from the simple neo-Hookean model [46]
often employed in the description of the mechanical response
of unfilled, cross-linked rubber. Under a uniaxial strain, the
expression for stress in this model is given by

σ (λ) = G0(λ2 − 1/λ), (1)

where σ is the true stress, λ is the stretch ratio (i.e., λ =
1 + ε, where ε is the engineering strain), and G0 is the
shear modulus. For an unfilled network system G0 can be
expressed as a function of the cross-link density, with some
dependence on the network topology, junction coordination,
etc. [48]. The above model is based on the assumption that the
cross links behave essentially as Gaussian chains, which can be
justified under not-too-large strains. Under large strains finite
extensibility needs to be taken into account via non-Gaussian
statistics, under which Eq. (1) gets modified to the Wang-Guth
model [45,46]:

σ (λ) = 1

3
G0

√
N

{
λL−1(λ/

√
N ) − 1√

λ
L−1(1/

√
λN)

}
, (2)

where N is a parameter describing the finite chain length of the
small-chain cross links (presumably related to polymer-filler
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attachments), and L−1 is the inverse of the Langevin function
given by L(x) = coth(x) − 1/x. In the small strain limit,
where λ/

√
N � 1 (assuming N � 1), the inverse Langevin

function can be approximated as L−1(λ/
√

N ) ≈ 3λ/
√

N , and
Eq. (2) reduces to Eq. (1).

The Wang-Guth model, Eq. (2), is suitable for describing
the mechanical response of networked, elastomeric systems
without fillers. For filled systems, Mullins and later workers
found it necessary to incorporate the notion of strain amplifi-
cation. To represent strain amplification we follow the original
work of Mullins and Tobin [34,35] and replace the stretch ratio
λ in Eq. (2) by an amplified stretch ratio � given by

� = 1 + X(λ − 1), (3)

where X is an amplification factor that depends on the
effective volume fraction veff of the hard domain, i.e., fillers.
A commonly used form for X as a function of veff is given
by [42]

X = 1 + 3.5veff + bv2
eff . (4)

In Eq. (4) b is a parameter with a commonly used value of
18, which is obtained by comparing with the widely adopted
filler-enhancement model due to Guth and Gold [49] that is
applicable for well-dispersed nearly spherical filler particles
with not-too-high volume fraction (�15% or below). In reality,
even at this filler fraction silica or carbon-black filler particles
can be nonuniformly distributed with significant clustering,
which will necessitate modification of Eq. (4). However, for
simplicity, we will continue to use Eq. (4) (with b = 18) and
an assumption of spatially uniform strain amplification (i.e.,
no microstrain gradient [44]) with the implicit understanding
that any correction due to these effects is absorbed within other
factors, e.g., G0 and veff .

Replacing the stretch ratio λ in Eq. (2) by �, and accounting
for the fact that the elastic response comes only from the soft
part of the material, we obtain the following materials model
for filled rubber:

σ (λ) = 1

3
(1 − veff)G0

√
N

{
�L−1(�/

√
N )

− 1√
�

L−1(1/
√

�N )

}
. (5)

Equation (5) can be used to describe the Mullins effect
quantitatively by assuming that during the first loading curve
the soft part of the matrix is being pulled out of the hard region
thus progressively decreasing the relative volume fraction veff

of the hard domain. The volume fraction of the soft part
(1 − veff) should increase monotonically with an increase in
the maximum strain level, and expected to reach a saturation
value depending upon the relative amount of filler particles
that was originally mixed into the rubber formulation.

Finally, to account for the observed permanent set (see
Fig. 1) the formula for stretch ratio, Eq. (3), was modified as
follows:

� = 1 + X

(
λ

λs

− 1

)
, (6)

where λs is the recovered length, which in our model is
assumed to increase linearly with λ during the first loading

cycle until a maximum value of λs,max is reached at the max-
imum strain. During any subsequent unloading and reloading
λs remains constant at this maximum value until the previously
attained maximum strain is exceeded. The numerical value of
λs,max is obtained from the experimental recovered length at
the end of the first unloading curve. More specifically, λs is
assumed to be of the form

λs = 1 + C(λ − 1) (7)

or

λs = 1 + C(λmax − 1), (7’)

where Eq. (7) applies during the first loading, or any sub-
sequent loading beyond the previously attained maximum
strain λmax, while Eq. (7’) applies during unloading or
subsequent loading at strain levels below λmax. The constant
C is determined from the measurement of permanent set upon
unloading from a moderate or large value of λmax, e.g., from
Fig. 1, λs = 1.18 for λmax = 3.15, which yields C � 0.084 for
our system. Equations (4)–(7) constitute the materials model
employed in the simulations presented below.

IV. RESULTS

In order to compute the stress-strain behavior σ (λ) using
the model developed in the previous section, the parameters
G0, b, N , veff , and λs need to be determined. The motivation
of this project was to obtain these parameters (some of which
could vary with the applied strain ε if necessary) such that
not only is the computed stress in quantitative agreement
with that observed experimentally for TR-55 (Fig. 1), but
also the parameters conform with previous knowledge about
similar filled systems. For instance, given �16% volume
fraction of fillers in TR-55, the parameter b is expected to be
�18 [42,49], while the filler-enhancement factor at low stress
should be roughly in the range 2–4 (Fig. 4, Ref. [41]). From
the phantom network model G0 can be assumed proportional
to the cross-link density (νx link) through the equation G0 =
νx link(1 − 2/fc)kBT [48], where fc is the average network
coordination, kB is the Boltzmann constant, and T is the
absolute temperature. However, there is always a degree of
uncertainty as to the nature of the cross link, e.g., a chemical
cross link vs a physical entanglement. Swelling experiments on
unfilled systems of similar polymeric material indicate that the
chemical cross-link density is much too small (by a factor of
�4–5) to account for the observed mechanical modulus at low
strain. This leads us to believe that prior to being subjected
to any strain, the polymer chains in the TR-55 material
are strongly entangled, while upon swelling or mechanical
stretching a significant fraction of these entanglements become
disentangled, thus reducing the effective value of G0.

Figure 3 (dashed-dotted curve) displays the results of
our model calculation of true stress (σ ) as compared to the
experimental data from Fig. 1 (up to a maximum engineering
strain of ε = 2.15). The various parameters, chosen within the
constraints mentioned in the previous paragraph, were b =
18; N = 30; λs = 1 at ε = 0 increasing linearly to λs =
1.18 at the end of loading (ε = 2.15); G0 starting from an
original value of G0,orig = 0.35 MPa at zero strain (point A:
ε = 0) decreasing linearly to 25% of this initial value at the
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FIG. 3. (Color online) Stress-strain response in TR-55 during the
first loading-unloading cycle (maximum engineering strain εmax =
2.15): Experimental vs simulated results. The experimental results are
from Fig. 1, while the simulated results are obtained using Eqs. (4)–(6)
(see text) with no re-entanglements allowed during unloading (see
Fig. 5). The simulated curve corresponds to fixed parameters b = 18,
N = 30; on the loading curve G0 decreases linearly from 0.35 MPa at
point A to 0.09 MPa at point B and then assumed to remain constant
during unloading (path BC′) and further loading until the previous
maximum strain is exceeded.

end of loading (point B: ε = 2.15). The gradual decrease in
G0 during the loading corresponds to a fourfold decrease in
the effective cross-link density due to detangling of physical
entanglements, as discussed in the previous paragraph. The
value of veff , the effective volume of the hard domain, was
treated as an adjustable parameter so that the computed stress
σ (λ) follows the experimental loading curve.

Figure 4 displays the resulting behavior of veff as a function
of strain. Although the actual volume fraction of the fillers is
only �16% in TR-55, veff starts out higher, around 42%. The

FIG. 4. (Color online) The effective volume of the hard domain
veff as a function of strain during the first loading curve. During
subsequent loading and unloading cycles veff in this model is
assumed to remain at its lowest value (achieved during the previous
maximum loading) until the previously attained maximum strain level
is exceeded.

higher than actual value of veff in the beginning of loading can
be interpreted as due to an occluded volume of the polymer
that effectively behaves like part of the rigid domain [50].
With increasing strain, this occluded volume gets released,
thus irreversibly increasing the fraction of the soft domain and
correspondingly decreasing the volume fraction of the hard
domain. At large strains, one expects the occluded volume
to nearly go to zero, in which case veff should be around
the volume fraction of the fillers originally included in the
rubber formulation, consistent with the behavior we see in
Fig. 4. Another point of consistency check for this model is
to consider the filler-enhancement factor for the mechanical
modulus at small strain. By comparing the small-strain limit
of Eq. (1) [or (2)] with that of the strain-amplified materials
model [Eq. (5)] one obtains the following formula for the
enhancement factor (denoted by α):

α = (1 − veff)X = (1 − veff)
(
1 + 3.5veff + bv2

eff

)
. (8)

which, with the choice of b = 18, reduces to the well-known
filler-enhancement factor of Guth and Gold [49]. Using the
small-strain value veff � 0.42 (see Fig. 4), we obtain α � 3.3,
which is within the range expected from experimental values
on a number of filled rubber systems (Fig. 4, Ref. [41]).

We note that in Fig. 3 the computed unloading curve consis-
tently falls below the experimental unloading curve. The origin
of this could be traced back to the assumption in our model that
the initially occluded volume of the soft domain that gets pulled
out and the physical entanglements that get detangled during
the application of tensile strain are both irreversible, i.e., there
is no recovery in either of these quantities during the unloading
process. Allowing partial recovery in either or both of these
quantities will result in a simulated stress that is much closer
to the experimental value. Given that possible retraction of the
occluded volume presumably occurs on a much longer time
scale than the experimental times, we have considered below
the case in which the soft network domain undergoes some
physical entanglement during unloading. Figure 5 displays
the behavior of the modulus G0 (as a fraction of the starting
value) during loading and unloading in situations both with
and without re-entanglement. The case with re-entanglement
leads to the computed stress-strain curve overlap with the
experimental data, as shown in Fig. 6.

Finally, from the above model it is straightforward to
simulate the stress-strain behavior for any loading-unloading
cycle with a maximum strain level within the maximum in
Fig. 3 (i.e., εmax � 2.15). Figure 7 (top) displays the simulated
results for four loading-unloading cycles with εmax = 0.5,
1.0, 1.5, and 2.15, respectively. As alluded to in Fig. 2, in our
model the unloading curve of the previous cycle coincides
with the loading curve of the following cycle. This simulated
result can be directly compared with experimentally measured
stress-strain data [Fig. 7 (bottom)], where it was necessary
to use a different sample (cut out of the same original TR-55
material) because the one used in Fig. 1 had been permanently
altered.

V. SUMMARY

In this paper we have developed a phenomenological
model that quantitatively reproduces the stress-strain behavior
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FIG. 5. (Color online) The behavior of modulus G0 (which can
be assumed proportional to the density of cross links in the soft
domain, both physical and chemical) as a function of the applied
strain during the first loading and unloading cycle. For unloading
two different paths are shown: no re-entanglement allowed (dashed
curve BC′) that leads to curve BC′ in Fig. 3; and re-entanglement
allowed (solid curve BC) that leads to curve BC in Fig. 6. A large
fraction of the physical entanglements lost during loading appear to
get recovered by the end of unloading.

of a specific filled rubber system (TR-55). The model is
based on using the Mullins-Tobin concept of amplified strain
within the Wang-Guth stress function and is based on the
following assumptions: (1) The permanent set (expressed as
recovered length λs) increases linearly as a function of the
maximum strain level reached up to that point; (2) modulus
G0, assumed proportional to an effective cross-link density
decreases linearly as a function of the loading strain due to the
detangling of physical entanglements, with partial recovery
during unloading; and (3) the effective volume of the soft
part (1 − veff) increases monotonically with the loading
strain (due to the gradual pulling of the soft polymer domain
out of an initially occluded phase) until a saturation value
depending on the relative amount of filler is reached. The

FIG. 6. (Color online) The same as Fig. 3 with re-entanglement
upon unloading allowed (see path BC in Fig. 5).

FIG. 7. (Color online) (Top) Simulated stress-strain response in
TR-55 for different intermediate maximum strain levels: Cycle 1
(εmax = 0.5); cycle 2 (εmax = 1.0); cycle 3 (εmax = 1.5); and cycle 4
(εmax = 2.15). The loading (unloading) segments are indicated with
up (down) arrows. The model parameters employed are the same as
used to obtain the simulated results in Fig. 6. (Bottom) Corresponding
experimental loading-unloading data through four cycles. A sample
different from the one used in Fig. 1 (cut out of the same original
TR-55 material) was employed in these measurements.

model yields a small-strain filler-enhancement factor of 3.3
for our system with 16 vol % filler, which is within the range
of what has been reported in the literature for a number of
different filled rubber systems at such filler content. However,
the model developed here is for uniaxial strain only. It would
be interesting to generalize it to other types of deformations,
e.g., biaxial loading or shear, which would likely involve
expressing amplification in terms of one or more invariants of
strain [41].
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