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Micro- and nanofibers and liquid crystals for light-scattering shutters: Simulation of
electro-optical properties
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This work demonstrates the feasibility of using polymeric micro- and nanofiber-composed films and liquid
crystals as electrically switchable scattering light shutters. We present a concept of electro-optic device based
on an innovative combination of two mature technologies: optics of nematic liquid crystals and electrospinning
of nanofibers. These devices have electric and optical characteristics far superior to other comparable methods.
The simulation presented shows results that are highly consistent with those of experiments and that explain the
working mechanism of the devices.
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I. INTRODUCTION

Liquid crystals (LCs) have been widely used as light
modulators [1]. The effective refractive index of LCs can be
changed significantly by applying a substantially lower field
than is required to modulate the refractive index of other
materials. Also, LCs are highly transparent in the visible
and near-infrared wavelength regions, and so can be used
as modulators, switches, shutters, and wavelength filters for
optical communication.

Cellulose derivative composites for electro-optical ap-
plication were introduced in 1982 by Craighead and co-
workers [2], followed a few years later by the develop-
ment of a cellulose derivative electro-optical device named
cellulose based polymer dispersed liquid crystal (CPDLC)
[3,4]. Recently an innovative solution with optimized electro-
optical performance and reduced production cost was pre-
sented [5] where light-scattering electro-optical devices
were produced with two layers of a cellulose deriva-
tive deposited as a nonwoven nano- and microfiber mat
onto the conductive substrates by electrospinning and a
nematic LC.

These devices represent an important new class of materials
for optical device applications [6–8]. These inhomogeneous
polymer-LC composites have a spatially varying effective
refractive index and efficiently scatter light, which makes
them translucent. Light scattering is switched off by simply
applying an electric field across the film to reorient the
LCs. In this state the film becomes transparent. Being so,
these devices require no extra optical elements (other than
optically transparent electrodes) to provide optical contrast.
Because small current flows are involved in energizing these
devices, they also consume relatively low power. As a
result, they are particularly suited to be used in low cost
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large-area applications and are already used in electrically
switchable windows.

In the past, different simulations have been used to
study light-scattering devices loosely related to ours, namely,
polymer dispersed liquid crystals (PDLC), in a variety of
physical situations such as different droplet dimensions,
director configurations, different boundary conditions [9],
and anchoring strengths at the nematic-polymer interface
[10,11]. Other extensively studied light-scattering systems
with relations to ours include confined LCs with internal
disorder induced by aerosil or aerogel [12–14]. The different
morphology of our system requires a specific model to address
the light-scattering problem. The model simulations provide
a key test to the working mechanism of this device and
are an important asset in the design of a better performing
electro-optical cell.

II. RESULTS AND ANALYSIS

In this work we simulate the electro-optical response of a
device composed by a micro- and nanometric fiber assembly as
shown in Fig. 1. Both the production and the characterization
performed to obtain the electro-optical data are described
somewhere else [5].

The fact that the liquid crystal is not confined in droplets
or placed in layers, but is interpenetrating a network of fibers
gives rise to enhanced electro-optical properties of the devices.
These improvements come from the fact that the polymer is
acting as a stabilizer of the liquid crystal and since the fibers
are randomly distributed, the orientation of the liquid crystal
director in the OFF state close to the polymer-LC interfaces
is also random, improving the scattering characteristics of this
state.

Due to the good match between the ordinary refractive
index of the liquid crystal E7 (1.510) and the refractive index
of CA (1.45) a very clear ON state is achieved when an electric
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FIG. 1. (Color online) Schematic representation of the device’s
assembly.

field Eon is applied to the device and the director aligns with
the field.

To simulate the electro-optical characteristics of these
devices we consider a model for an idealized cell where
the nematic LC is confined to a layer in between the two
polymer film layers arising from the fiber deposition over
the transparent conducting substrates. Light passing through
the device at different points suffers a phase shift that may
vary significantly from point to point over the illuminated area
depending upon the orientation of the nematic liquid crystal
director, the refractive indices of the liquid crystal and the
polymer, and the local surfaces features. For polymer surface
features in the micron range and due to the similarity between
the refractive indices involved, the scattering problem may be
considered to fall within the anomalous diffraction conditions
[15], and in this case the light wave electric field at the detector
is calculable from Kirchhoff’s diffraction theory [16] with
a position dependent phase shifted incident field over the
illuminated area.

The nematic director field in the LC layer is determined
from the solution of the appropriate dynamic equations for the
director obtained from the Leslie-Erickson theory of nemato-
dynamics and neglecting fluid flow, this is equivalent to saying
that the director field is determined through the minimization
of the free energy composed of a Frank elastic term plus an
electric term and subjected to the boundary conditions at the
polymer-LC interfaces assuming strong boundary conditions
[17]. These interfaces are rough with a random nature and
will locally determine the director orientation, but on average
the director seems to adopt a planar orientation close to these
surfaces as suggested by the data analysis. In the simplified
model we consider, for the determination of the overall director
field, the surface details are disregarded and uniform strong
planar anchoring conditions with a small pretilt θ1 are used.
It is also considered that the director only varies with the
distance to the LC-polymer interfaces (z distance to one
LC-polymer interface) and may experience a twist on going
from one LC-polymer interface to the other, quantified by an
average angle ϕ̄. It is considered that the director orientation
at the LC-polymer interface varies over the illuminated area of
the sample, implying the presence of defects in the LC layer
that will not be explicitly addressed by our simplified analysis.
The director field is parametrized as follows:

�n(z) = cosθ (z)cosφ(z)êx + cosθ (z)sinφ(z)êy + sinθ (z)êz,

(1)

where θ (z) and ϕ(z) are functions to be determined from
the minimization of the free energy per unit area of the
nematic slab. This minimization leads to a set of coupled
Euler-Lagrange equations [18] that after a first integration
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where the Ki are the Frank elastic constants; �ε = ε|| − ε⊥
and ε||, ε⊥ are the principal values of the dielectric permit-
tivity tensor of the nematic; e1 and e3 are the flexoelectric
coefficients; c1, c2 are integration constants [18]; and DZ is
the electric displacement vector component. EZ is the electric
field. In obtaining (2) it was considered that the electric
potential in the nematic slab only depends on z; the elec-
tric field is then directed along z and it is related to the z

component of the electric displacement in the cell Dz that
is then constant. It is then possible to solve the system of
equations (2) along with the equation for the total voltage
applied to the cell and determine numerically the electric
displacement Dz, θ (z), and ϕ(z) for each applied voltage V .

From the value of Dz for each applied voltage V we
determine the sample capacitance that was also experimentally
measured along with the light transmission coefficient,

C = DzA

V
, (3)

where A is the active sample surface area. Both the sample
capacitance and the light transmission coefficient as a function
of the applied voltage were fitted to the experimental results.

We now address the light transmission calculation. From
Kirchhoff’s diffraction theory [14] the field at the detector �ud

is

�ud = − i

λ

∫
S

�uS

eikr

r
dS, (4)

where i is the imaginary unit, λ is the wavelength, S is the
illuminated outer surface of the device facing the detector, �uS

is the field at S, k is the light wave vector in free space, and r

is the distance from the surface element dS to the detector. The
light intensity at the detector is proportional to the modulus
square of �ud ; its spatial average over the sample surface equates
to

I ∝ 1

(λl)2

∫
S

∫
S ′

〈uSu
∗
S ′ 〉e

ik
2l

(ρ2−ρ ′2)

r
dSdS ′, (5)

where l is the distance from the sample to the detector and
ρ and ρ ′ are the radial distances in the sample surface from
the origin at the sample surface center to the surface elements
dS and dS′. The brackets indicate a surface average. In our
experiment we have separated the field �ud in its components
parallel and perpendicular to the incident linearly polarized
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field in the sample using a polarizing beam splitter cube,
giving rise to I|| ∝ ud||u∗

d|| and I⊥ ∝ ud⊥u∗
d⊥ with the latter

showing always negligible values relative to the former. The
light transmission coefficient measured in our experiment
corresponds to the ratio I||/I||o where I||o is the intensity
reaching the detector in the absence of the scattering cell.
Fresnel factors [16] at the four glass interfaces of the optical
cell are later included in the calculation of the final value for I||.

The field �uS is calculated using the Jones matrices for-
malism [19] since light is crossing the stratified device con-
taining a birefringent nematic LC layer at normal incidence.

In the optical analysis with the Jones matrices formalism
the LC layer is considered to be divided into sublayers within
which the director is uniform. The evolution of the director
in the nematic layer when going from one polymer surface to
the other, corresponding to different anchoring easy directions
that change over the polymer surfaces from point to point,
may imply some degree of twist of the director field that will
be quantified by an average rotation angle ±ϕ̄ and a variance
δϕ2. For simplicity three layers were considered, giving rise
to the following relation between the incident field �ui and the
field �uS :

[
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=
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0 eiδ1||

]
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0 eiδp/2

] [
uix
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]
, (6)

where R is a rotation matrix R(φ) = [cos(φ) sin(φ)
−sin(φ) cos(φ)] and φ2 =

φ1 + ϕ

2 , φ3 = φ1 + ϕ.
The angle φ1 = π/2 − β, where β is the angle between the

electric field of the incoming light wave and the projection of
the nematic director on the sample surface, and consequently
φ2 and φ3, are considered to vary randomly over the cell’s
surface with a characteristic correlation length lφ . δi⊥ and δi||
are the phase shifts experienced by the light waves with the
electric field respectively orthogonal to and in the plane of the
nematic director in the sublayer i and also vary randomly over
the sample surface due to the random nature of the polymer-LC
interfaces. δp is the phase shift in the polymer layers. This
random nature of δi⊥, δi||, and δp is quantified considering that
the LC layer thickness has an average value z̄LC and fluctuates
over the sample surface with a correlation length lZ and a
variance (�zLC)2. �zLC ≡

√
〈(zLC − z̄LC)2〉 is the root mean

square roughness amplitude of the LC-polymer interface. Due
to the presence of random variations of zLC, φ1, and ϕ over
the sample surface with correlation lengths lZ , lφ , and lϕ , the
light intensity at the detector includes an averaging over the
distribution of these variables indicated by the brackets in
Eq. (5); the details are given in the Appendix.
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FIG. 2. Applied field dependence of the transmission coefficient.
(Circles) CA data; (continuous line) model fit.

Figures 2 and 3 present the light transmission and capac-
itance applied field dependences for one of the cells studied
along with fits from the model, respectively.

We used known and fitting parameters in the model. The
known parameters include the LC refraction indices n|| =
1.736, n⊥ = 1.511 [20] and dielectric constants ε|| = 19ε0,
ε⊥ = 5.2ε0 [21]; the wavelength of the visible light used λ =
632.8 nm; the distance from the sample to the detector l =
0.2 m; the glass index of refraction nglass = 1.51; the LC and
polymer layer thicknesses lLC = 10 μm, lp = 2 μm; the device
active area S = 5.64 cm2; and the LC Frank elastic constants
K11 = 11.1 pN, K22 = 6.0 pN, K33 = 17.1 pN [21]. The sum of
the flexoelectric coefficients e1 + e3 (not known for E7 which
is a mixture of three cyanobiphenyl LCs) was approximated
by the value reported for 5CB, e1 + e3 = −8.4 pC/m [22].
The fitting parameters include the root mean square roughness
amplitude,

√
〈�z2

LC〉 = 1.95 μm; the polymer layer index of
refraction np = 1.49 and dielectric constant εp = 2.32ε0; the
average director twist angle ϕ̄ = ±0.6 rad and its distribution
width �ϕ = 2.93 rad; the correlation lengths lZ = 1 μm,
lφ = 1 μm, and lϕ = 0.9 μm; and the director pretilt at
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FIG. 3. Applied field dependence of the sample capacitance.
(Circles) CA data; (continuous line) model fit.
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the LC-polymer layer interfaces θ1 = 0.0 rad. Regarding the
fittings shown in Figs. 2 and 3 we see that in general they
reproduce well the experimental results but a small irregularity
on the theoretical light transmission curve can be observed for
low voltages. This irregularity is reminiscent of the strong
interference modulations that appear in the light transmission
as a function of applied voltage when the director experiences
no twist on going from one face to the other of the optical cell
[23]. They arise from the constructive interference between
the ordinary and extraordinary rays traveling through the LC
medium; these interference maxima are strongly attenuated
by the twisting of the director within the LC material. The
roughness of the polymer-LC interfaces inducing random local
LC director variations (not included in the simulation) is also
a strong contributor to the suppression of the interference
modulations referred to above.

III. CONCLUSIONS

The overall good quality of the fits indicates that the
model captures the main aspects of the device’s behavior,
with the roughness of the LC polymer interfaces playing
a central role in defining the optical characteristics of the
device, in particular, the scattering in the OFF state. The
simultaneous fitting of both the light transmission coefficient
and the cells’ capacitance imposes strong constraints on the
model, contributing significantly to a precise definition of
the director response to the applied voltage and its role
in the optical response of the device. This work shows
that the composite devices using nematic liquid crystals and
cellulose based polymeric micro- and nanofibers obtained
by electrospinning constitute efficient electrically switchable
light-scattering shutters capable of achieving high contrast and
high transmissions in the ON state suitable for low loss optical
valves.
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APPENDIX

Determination of the average 〈uSu
∗
S ′ 〉: The field vector uS

at S can be written in accord with the result of Eq. (6) as

uS[φ1(�r),ϕ(�r),zLC(�r)] =
2(2n−1)∑
j=1

fj [φ1(�r),ϕ(�r),zLC(�r)]

=
2(2n−1)∑
j=1

faj (φ1,ϕ)fbj (zLC), (A1)

where the quantities φ1(�r),ϕ(�r),zLC(�r) in Eq. (A1) are random
variables on the sample surface position indicated by �r . n =
3 is the number of layers considered in our case. The average

〈uSu
∗
S ′ 〉 is then given by

〈uS(φ,ϕ,zLC)u∗
S ′ (φ′,ϕ′,z′

LC)〉

=
〈

2(2n−1)∑
j=1

faj (φ1,ϕ)fbj (zLC)
2(2n−1)∑
m=1

f ∗
am(φ′

1,ϕ
′)f ∗

bm(z′
LC)

〉
.

(A2)

Considering now the random variables φ1, ϕ, zLC to be
independent we obtain

〈uS(φ,ϕ,zcl)u
∗
S ′(φ′,ϕ′,z′

LC)〉

=
2(2n−1)∑
j=1

2(2n−1)∑
m=1

〈faj (φ1,ϕ)f ∗
am(φ′

1,ϕ
′)〉〈fbj (zLC)f ∗

bm(z′
LC)〉.

(A3)

The second average in Eq. (A3) is calculated as follows:

〈fbj (zLC)f ∗
bm(z′

LC)〉 = 〈fbj (zLC)〉〈f ∗
bm(z′

LC)〉
+ 〈[fbj (zLC) − 〈fbj (zLC)〉][f ∗

bm(z′
LC)

−〈f ∗
bm(z′

LC)〉]〉, (A4)

where it is considered that the correlation indicated by the
second term decays exponentially in the sample plane with
the distance between the points characterized, respectively,
by the variables with and without prime and located at �r and
�r ′. The average becomes

〈fbj (zLC)f ∗
bm(z′

LC)〉 = 〈fbj (zLC)〉〈f ∗
bm(zLC)〉

+ [〈fbj (zLC)f ∗
bm(zLC)〉

− 〈fbj (zLC)〉〈f ∗
bm(zLC)〉]e− |�r−�r′ |

lZLC . (A5)

The average 〈fbj (zLC)〉 is in accord with the result of Eq. (6)
given by

〈fbj (zLC)〉 = 〈ei{δ1j (zLC)+δ2j (zLC)+δ3j (zLC)+δp(zLC)}〉,

and defining

Xj ≡ {δ1j (zLC) + δ2j (zLC) + δ3j (zLC) + δp(zLC)},

which is considered also to be a Gaussian random variable over
the sample surface due to the roughness of the polymer-LC
interfaces. The average 〈fbj (zLC)〉 is evaluated as

〈fbj (zLC)〉 = 〈eiXj 〉 = ei〈Xj 〉e− 1
2 〈(Xj −〈Xj 〉)2〉. (A6)

The phase shifts δmj (zLC) included in Xj can assume one

of two values, δmj (zLC) = {kon̄emzLC m
konozLC m

}, depending upon the
value of the index j ; ko is the light wave vector in free space,
no is the LC ordinary refraction index, z̄LC m is the average
thickness of the LC m sublayer, and n̄em is the average LC
effective extraordinary refraction index in the sublayer m

given by n̄em = 1
z̄LC m

∫
z̄LC m

neno√
n2

e sin2(θ)+n2
o cos2(θ)

dz. The average
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〈Xj 〉 becomes

〈Xj 〉 = ko

{
z̄LC1

{
n̄e1

no

}
j

+ z̄LC2

{
n̄e2

no

}
j

+ z̄LC3

{
n̄e3

no

}
j

+ z̄pnp

}

where z̄LC3 = z̄LC1, z̄p is the polymer layers’ total average thickness, and z̄LC1 is determined by minimizing the average
square difference between φ(z) determined from Eq. (2) and φ(z) considered in the LC layered structure yielding the equation
φ(z̄LC1) = ϕ̄

4 . The average 〈(Xj − 〈Xj 〉)2〉 is given by

〈(Xj − 〈Xj 〉)2〉 = ko

〈{
�zLC1

{
n̄e1

no

}
j

+ �zLC2

{
n̄e2

no

}
j

+ �zLC3

{
n̄e3

no

}
j

+ �zpnp

}2〉
,

where �zLCi ≡ (zLCi − z̄LCi).

Considering now that �zp = −�zLC and the approximation �zLCi = �zLC
z̄LCi

z̄LC1+z̄LC2+z̄LC3
= �zLC

z̄LCi

z̄LC
we obtain

〈(Xj − 〈Xj 〉)2〉 = ko

{
z̄LC1

z̄LC

{
n̄e1

no

}
j

+ z̄LC2

z̄LC

{
n̄e2

no

}
j

+ z̄LC3

z̄LC

{
n̄e3

no

}
j

− np

}2

〈(�zLC)2〉.

The averages,

〈fbj (zLC)f ∗
bm(zLC)〉 = 〈ei{δ1j (zLC)+δ2j (zLC)+δ3j (zLC)−δ1m(zLC)−δ2m(zLC)−δ3m(zLC)}〉,

are calculated in a similar way.

The first average in Eq. (A3) involving the random variables φ1 and ϕ was approximated as follows:

〈faj (φ1,ϕ)f ∗
am(φ′

1,ϕ
′)〉 =

∫ ∫ ∫ ∫
faj (φ1,ϕ)f ∗

am(φ′
1,ϕ

′)Pϕ(ϕ,ϕ′)Pφ(φ1,φ
′
1)dϕdϕ′dφ1dφ′

1,

with Pφ(φ1,φ
′
1) = PφI (φ′

1)PφII (φ1|φ′
1) = 1

2π
PφII (φ1|φ′

1) and Pϕ(ϕ,ϕ′) = PϕI (ϕ′)PϕII (ϕ|ϕ′) with PϕI (ϕ′) given by the
sum of two Gaussian functions centered at the angles ϕ̄ and −ϕ̄ with standard deviations �ϕ PϕI (ϕ′) =
C[e−(ϕ′−ϕ̄′)2/[2(�ϕ′)2] + e−(ϕ′+ϕ̄′)2/[2(�ϕ′)2]], where C is a normalizing constant. The conditional probability density PφII (φ1|φ1′) is
approximated as the solution of a diffusion-type equation:

lφ
∂

∂rd

PφII (φ1|φ′
1) = ∂2

∂φ2
1

PφII (φ1|φ′
1),

with the boundary conditions PφII (φ1|φ′
1)|rd=0 = δ(φ1 − φ′

1) and PφII (φ1|φ′
1)|rd=∞ = 1

2π
where rd ≡ |�r − �r ′|, leading to

Pφ(φ1,φ
′
1) = PφI (φ′

1)PφII (φ1|φ′
1) = 1

2π
PφII (φ1|φ′

1) = 1

4π2

{
1 + 2

∑
k>0

e
−k2 rd

lφ [cos(kφ1) cos(kφ′
1) + sin(kφ1) sin(kφ′

1)]

}
.

Let us introduce now the partial averages,

Fajm(ϕ,ϕ′) ≡ 〈faj (φ1,ϕ)f ∗
am(φ1,ϕ

′)〉φ1,φ
′
1
=

∫ ∫
faj (φ1,ϕ)f ∗

am(φ′
1,ϕ

′)Pφ(φ1,φ
′
1)dφ1dφ′

1,

to be used later. The conditional probability density PϕII (ϕ|ϕ′) is a function of rd and was approximated to a function that takes

the limiting values PϕII (ϕ|ϕ′) = {δ(ϕ−ϕ′)|rd =0
1

2π
|rd =∞

} and for intermediate values of rd gives rise to the final result for the first averages

in Eq. (A3):

〈faj (φ1,ϕ)f ∗
am(φ′

1,ϕ
′)〉 =

∫ ∫
Fajm(ϕ,ϕ′)Pϕ(ϕ,ϕ′)dϕdϕ′ =

[∫
Fajm(ϕ,ϕ)PϕI (ϕ)dϕ − 1

2π

∫ ∫
Fajm(ϕ,ϕ′)PϕI (ϕ)dϕdϕ′

]
e
− rd

lϕ

+ 1

2π

∫ ∫
Fajm(ϕ,ϕ′)PϕI (ϕ)dϕdϕ′,

with the Fajm(ϕ,ϕ′) introduced earlier. The explicit expressions for either the partial averages Fajm(ϕ,ϕ′) or the first averages in
Eq. (A3), 〈faj (φ1,ϕ)f ∗

am(φ′
1,ϕ

′)〉, are not presented due to their length.
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