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Light-induced pitch transitions in photosensitive cholesteric liquid crystals:
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We experimentally study how the cholesteric pitch P depends on the equilibrium pitch P0 in planar liquid
crystal (LC) cells with both strong and semistrong anchoring conditions. The cholesteric phase was induced by
dissolution in the nematic LC of the right-handed chiral dopant 7-dehydrocholesterol (7-DHC, provitamin D3)
which transforms to left-handed tachysterol under the action of uv irradiation at the wavelength of 254 nm. By
using the model of photoreaction kinetics we obtain the dependencies of isomer concentrations and, therefore, of
the equilibrium pitch on the uv irradiation dose. The cholesteric pitch was measured as a function of irradiation
time using the polarimetry method. In this method, the pitch is estimated from the experimental data on the
irradiation time dependence of the ellipticity of light transmitted through the LC cells. It is found that the
resulting dependence of the twist parameter 2D/P (D is the cell thickness) on the free twisting number parameter
2D/P0 shows jumplike behavior and agrees well with the known theoretical results for the anchoring potential
of Rapini-Papoular form.
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I. INTRODUCTION

In equilibrium structures of chiral nematic liquid crystals,
also known as cholesteric liquid crystals (CLCs), molecules
align on average along a local unit director n̂(r) that rotates in
a helical fashion about a uniform twist axis [1]. This tendency
of CLCs to form helical twisting patterns is caused by the
presence of anisotropic molecules with no mirror plane—so-
called chiral molecules (see [2,3] for reviews).

In planar CLC cells bounded by two parallel substrates
orientational structures (director configurations) are strongly
affected by the anchoring conditions at the boundary surfaces.
These conditions break the translational symmetry along the
twisting axis and, in general, the helical form of the director
field will be distorted.

Nevertheless, when the anchoring conditions are planar and
out-of-plane deviations of the director are suppressed, it might
be expected that the configurations still have the form of the
ideal helical structure:

n̂ = cos φ x̂ + sin φ ŷ, φ = qz + φ0, (1)

where q = 2π/P is the helix wave number and φ0 is the phase
at z = 0. But, by contrast with the case of unbounded CLCs, the
helix twist wave number q will now differ from q0 = 2π/P0.

A mismatch between the twist imposed by the boundary
conditions and the equilibrium pitch P0 may produce two
metastable twisting states that are degenerate in energy and
can be switched either way by applying an electric field [4].
This bistability underlines the mode of operation of bistable
liquid crystal devices [5–8].

More generally the metastable twisting states in CLC cells
appear as a result of interplay between the bulk and the surface
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contributions to the free energy. The free twisting number
q0 and the anchoring energy are among the key factors that
govern their properties. Specifically, varying q0 will change
the twist wave number of the twisting state, q, and may result
in sharp transitions—the so-called pitch transitions—between
different branches of metastable states. The dependence of the
twist wave number q on the free twisting number q0 is then
discontinuous.

In particular, these discontinuities manifest themselves
in a jumplike temperature dependence of selective light
transmission spectra [9–12]. Different mechanisms behind
the temperature variations of the pitch in CLC cells and
hysteresis phenomena were discussed in Refs. [13–15]. A
comprehensive stability analysis of the helical structures in
CLC cells with symmetric and asymmetric boundary condi-
tions was performed in Ref. [16]. The effects of bistable surface
anchoring and mechanical strain on the pitch transitions
have been studied theoretically in the recent papers [17,18],
respectively.

In practice, most cholesteric liquid crystals are prepared
on the basis of nematic LC mixtures doped with chiral
additives that induce a helical structure [19]. For photosensitive
chiral dopants, their helical twisting power and thus the
equilibrium helix pitch may, in principle, be controlled by
light, giving rise to the technologically promising effect
of phototunable selective reflection (i.e., a change in the
spectral position of the band gap with light exposure) [20–24].
The mechanism underlying phototunable reflection typically
involves photoinduced changes in dopant conformation that
affect the LC’s helical twisting power (see the recent review
[25]).

On the other hand, the light-driven variations of the free
twist wave number may trigger the pitch transitions discussed
above and can be used as a tool to explore the details of such
transitions, depending on a variety of factors. In particular, the
surface anchoring energy is known to have a profound effect
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on the pitch transitions. These surface-mediated effects will
be of our primary concern.

More specifically, we shall study the pitch transitions
in photosensitive CLC cells with strong and semistrong
anchoring conditions by using an experimental method that
involves modeling of the photoreaction kinetics combined
with polarimetry measurements. The results of modeling of
the photoreaction kinetics are used to obtain the equilibrium
pitch P0 as a function of the uv irradiation time. A similar
irradiation time dependence of the pitch in the CLC cells,
P , is extracted from experimental data on the ellipticity of
transmitted light measured at different irradiation doses. The
resulting dependence of the twist wave number q on the free
twisting number q0 describes the pitch transitions and can be
interpreted using known theoretical models.

The paper is organized as follows. Experimental details
are given in Sec. II, where we describe the materials and
the methods of measurements. In Sec. III, we present the
experimental data and apply the theoretical results [16] to
interpret them. Concluding remarks are given in Sec. IV.
Technical details on the method used to compute the ellipticity
of light transmitted through CLC cells are relegated to the
Appendix.

II. EXPERIMENT

In this section we describe the samples and the experimental
technique used to estimate both the equilibrium pitch P0

and the pitch characterizing the helical structures formed in
the CLC cells. For this purpose, in Sec. II A, the method
of uv absorption spectroscopy is used in combination with
modeling the kinetics of the 7-dehydrocholesterol (7-DHC)
photoreaction to determine the concentrations of photoisomers
that govern the equilibrium pitch. In Sec. II B, we present
the experimental results for the ellipticity of light transmitted
through the cells that are used to estimate the pitch in the CLC
cells.

A. Photokinetics of equilibrium pitch

As a system with light-controlled CLC pitch, we have used
the nematic MLC-6815 (Merck) doped with the uv-sensitive
right-handed chiral dopant provitamin D3 (7-DHC) with the
helical twisting power P = +3.5 μm−1 (wt)−1. Under the
action of uv irradiation this dopant (provitamin D3) is known
to undergo transformation into the left-handed trans isomer
tachysterol with P = −8.5 μm−1 (wt)−1 [26]. By contrast, the
nematic mixture MLC-6815 is uv transparent at wavelengths
ranged from 240 to 400 nm and the liquid crystal host remains
stable under such uv irradiation.

The kinetics of the 7-DHC photoreaction is detailed in
Refs. [27,28]. It is well known that, in ethanol solution, the
efficiency of 7-DHC conversion to the trans isomer tachysterol
under uv irradiation at the wavelength λuv = 254 nm is about
60%. This photo-transformation is thermally irreversible and
is accompanied by increase of the absorption maximum at
the wavelength 282 nm. This increase can be measured using
the method of uv absorption spectroscopy and the results
can be used for an indirect assessment of the tachysterol
concentration.

FIG. 1. (Color online) Scheme of key 7-DHC phototransforma-
tions in a nematic LC matrix under uv irradiation at the wave-
length λuv = 254 nm (see Refs. [29,30] for more details). 7-DHC
is provitamin D3, Pre indicates previtamin D, and T stands for
tachysterol.

In nematic LCs, the efficiency of tachysterol accumula-
tion strongly depends on the initial 7-DHC concentration
[26,29,30]. In our experiment, the initial 7-DHC concentration
was C7-DHC ≈ 0.4 wt%. At this concentration, we have
100% efficiency of 7-DHC conversion to tachysterol. For
this case, the photochemical transformations of 7-DHC are
schematically illustrated in Fig. 1. Note that we addition-
ally controlled the photoreaction efficiency by performing
measurements of the uv absorption spectra before irradiation
and at the time corresponding to maximum increase of
absorption at the wavelength 282 nm (it typically takes about
6 min).

For the simplified scheme shown in Fig. 1, the temporal
evolution of the photoisomer concentrations can be evaluated
using the kinetic model of the 7-DHC photoreaction developed
in Ref. [31]. The concentrations computed as a function of the
uv irradiation time are shown in Fig. 2(a). The important point
is that, in our calculations, the effect of the liquid crystal host
on the quantum yields of phototransformations is taken into
account.

According to the well-known formula

P −1
0 =

∑
i

wi Pi Ci, (2)

where wi is the weight fraction of the ith chiral photoisomer,
and the equilibrium cholesteric pitch P0 is determined by
the photoisomer concentrations. The calculated concentrations
can now be substituted into Eq. (2) to obtain the irradiation
time dependence of the free twisting wave number depicted in
Fig. 2(b).

In our experiments, we have used the planar CLC cells of
the thickness D varied between 55 and 65 μm. At the initial
7-DHC concentration C7-DHC ≈ 0.4 wt%, the photoinduced
reorientation processes in such cells are not complicated
by inhomogeneity effects related to the formation of highly
twisted states.

B. Polarimetry measurements

When a light beam propagates through an optically
anisotropic medium, the anisotropy is known to greatly
affect its state of polarization [32]. This state is generally
described by the Stokes parameters and can be conveniently
represented by a polarization ellipse whose orientation and
eccentricity are specified by the azimuthal angle of polarization
(polarization azimuth) φp and the ellipticity εell, respectively
[33–35].
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FIG. 2. (Color online) (a) Photoisomer concentrations and (b) equilibrium cholesteric wave number q0 = 2π/P0 computed as a function
of the irradiation time.

For light propagating through a CLC cell where the optical
anisotropy is determined by the helical orientational structure
(1), its ellipticity is sensitive to the pitch of the CLC spiral
[36]. Thus the cholesteric pitch P in photosensitive CLC cells
may, in principle, be estimated by measuring the ellipticity of
light passed through the cells.

In our experiments, the measurements were performed for
light which is normally incident onto the aligned substrate and
is linearly polarized along the direction of rubbing. Figure 3
illustrates the geometry of normal incidence.

We have used planar CLC cells where the photosensitive
CLC was sandwiched between quartz substrates. In the

FIG. 3. Geometry of normal incidence: A plane wave of linearly
polarized light impinges on the CLC cell.

symmetric case of strong anchoring conditions, both the quartz
substrates were coated with rubbed polydimethylsiloxane
aligning layers which are insensitive to the uv irradiation. We
have also examined asymmetric CLC cells with semistrong
anchoring conditions. These cells were assembled using the
exciting substrate without the aligning coating.

After each step of uv irradiation, the ellipticity of light
transmitted through the cell was measured using the standard
Stokes polarimetry technique which is described in our
previous papers [37,38]. The time interval between irradiation
and polarimetry studies was long enough (up to 30 min) to
allow for the processes of reorientation to reach the stationary
state.

Figure 4 shows the setup scheme used in our experi-
ments. Referring to Fig. 4, the cell is irradiated with a
beam generated by a He-Ne laser (the wavelength is 633
nm) and passed through the collimating lenses. After the
cell, the beam is expanded and a charge-coupled device
camera collects the output from the Stokes analyzer repre-
sented by the combination of the quarter-wave plate and the
polarizer.

Figure 5 presents the results for the ellipticity measured at
different irradiation doses in the symmetric and asymmetric
CLC cells. These results were derived using the standard
procedure [32–35] which involves performing the intensity

FIG. 4. Scheme of the polarimeter. Setup consists of a He-Ne
laser (λ = 633 nm), collimating lenses, CLC cell, beam expander,
Stokes analyzer (quarter-wave plate and polarizer), and charge-
coupled device (CCD) camera.
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FIG. 5. (Color online) (a) Ellipticity εell of transmitted light measured as a function of uv irradiation time in cells with (a) strong and (b)
semistrong anchoring conditions.

measurements at six different combinations of the quarter-
wave plate and the polarizer needed to obtain the Stokes
parameters.

The theoretical results shown in Fig. 6 are computed from
the analytical expression for the transmission matrix deduced
in the Appendix [see the formulas (A52a), (A52c), and (A50a)]
using the transfer matrix method in the form formulated in

Refs. [37,39]. In particular, the curve depicted in Fig. 6(a)
represents the q dependence of the ellipticity and can be used
to estimate the helix pitch P at different irradiation doses by
making comparison between the experimental data and the
results of calculations. In the subsequent section we provide
details on the procedure used for data processing and discuss
the results.
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FIG. 6. (Color online) (a) Ellipticity εell computed as a function of the twist parameter, 2D/P , for light transmitted through a CLC cell
of thickness D = 62 μm. �φ = 3◦ [see Eq. (A54)] and n⊥ = 1.4674 (n‖ = 1.5191) is the ordinary (extraordinary) refractive index. Squares
indicate the places that are associated with the experimental points by applying the procedure described in Sec. III B. (b) Ellipticity εell computed
for seven equilibrium helical structures (2D/P ∈ {−4,−3,−2,−1,0,1,2}) in the symmetric CLC cell for �φ = 0◦. Squares represent the q0

dependence of the ellipticity obtained for the experimental data shown in Figs. 5(a) and 2(b).
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FIG. 7. (Color online) Twist parameter 2D/P versus free twist
parameter 2D/P0 measured in the CLC cell with strong anchoring
conditions.

III. RESULTS

At this stage, our task is to evaluate the pitch of the CLC
helical structure formed at different irradiation doses from the
results of the previous section. In this section, we detail the
procedures used for this purpose and present the results.

A. Strong anchoring: Symmetric cells

When the anchoring is strong at both substrates, the
boundary conditions require the CLC director (1) at the
substrates to be parallel to the corresponding easy axis (in
experiments, the easy axes are defined by the direction of
rubbing). Owing to the boundary conditions, the helix wave
number q takes values from a discrete set. This set represents
the helical structures characterized by the twist parameter
ν = qD/π = 2D/P and labeled by the half turn number k,

ν ≡ qD/π = k, k ∈ Z. (3)

The equilibrium value of k is the integer that minimizes
the distance between k and the free twist parameter ν0 =
q0D/π = 2D/Po. The resulting steplike dependence of 2D/P

on 2D/P0 for the equilibrium helical structures is depicted in
Fig. 7.

According to the stability analysis of Ref. [16], instability
caused by slippage of the director in the plane of the spiral
cannot occur provided the azimuthal anchoring is strong at
both substrates. The structures may, however, lose their stabil-
ity due to out-of-plane fluctuations. It was shown that, when
the energy cost of bending is relatively small, the structure
becomes unstable at sufficiently large distance between its
wave number q and q0 [16].

The values of the ellipticity indicated in Fig. 6(b) are
calculated for helical structures in the symmetric cell with
strong anchoring conditions. From Eq. (3), these structures
are characterized by the integer half turn number 2D/P = k

which is independent of the free twisting wave number.
The experimental points in Fig. 6(b) represent the depen-

dence of the ellipticity on the free twist parameter 2D/P0 that
can be obtained from the data shown in Fig. 5(b) with the

help of the irradiation time dependence of the free twisting
wave number shown in Fig. 2(b). These points can now be
related to the half turn number k, by minimizing both the
difference between the theoretical and experimental values of
the ellipticity and the change in the half turn number �k.

Figure 7 shows the experimental q0 dependence of the helix
twist parameter 2D/P measured in the CLC cells with strong
anchoring conditions at both substrates. Referring to Fig. 7, it
can be seen that the experimental data indicate the presence
of metastable states and jumplike transitions with �k = 1 and
�k = 2.

B. Semistrong anchoring: Asymmetric cells

Asymmetric CLC cells represent the case of mixed bound-
ary conditions in which the strong anchoring limit applies
only to the entrance plate, z = 0. This case is referred to
as semistrong anchoring and we assume that the anchoring
potential at the substrate with weak anchoring conditions can
be taken in the Rapini-Papoular form [40]:

Vs(φs) = W

2
sin2(φs − φe), (4)

where W is the anchoring energy strength, φs ≡ φ(D) is the
director azimuthal angle at the surface, and φe is the azimuthal
angle of the easy axis ê = (cos φe, sin φe,0).

For such CLC cells, the relation between the helix wave
number and the free twisting wave number can be conveniently
written in the following form [16]:

ν0 = ν + w/π sin 2(πν − φe), w = WD

2Kt

,

(5)
ν = 2D/P, ν0 = 2D/P0,

where Kt is the twist elastic constant. The stability condition
for the helical configurations characterized by the twisting
parameter ν is given by

1 + 2w cos 2(πν − φe) > 0. (6)

Formulas (5) and (6) can be used for processing the
experimental data presented in Fig. 5(b). This procedure
produces dependence of the twist parameter 2D/P on the
free twisting parameter 2D/P0 based on the data shown in
Figs. 5(b) and 2(b) and the ellipticity computed as a function
of 2D/P [see the theoretical curve in Fig. 6(a)]. It works as
follows:

(a) For each point in Fig. 5(b), the value of the irradiation
time is used to compute the corresponding value of the free
twisting wave number using the curve depicted in Fig. 2(b).

(b) For each value of the measured ellipticity in Fig. 5(b)
and the associated free twisting parameter, we generally obtain
multiple values of the twist parameter representing the points
on the theoretical curve in Fig. 6(a) with ellipticity equal to the
measured one. The next step describes the selection procedure.

(c) Given the free twisting parameter and the values
of the twist parameter, 2D/P0 = ν0 and 2D/P = ν, we
evaluate 1 + 2w cos 2(πν − φe) and the difference � = |ν0 −
ν − w/π sin 2(πν − φe)|. Then we choose the twist parameter
that satisfies the stability condition (6) and minimizes �. The
selected points are indicated by squares in Fig. 6(a).
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FIG. 8. (Color online) Dependence of the twist parameter 2D/P

on the free twist parameter 2D/P0, measured in the CLC cell with
semistrong anchoring conditions. Theoretical curve is computed from
Eq. (5) at w = 3.2 and φe = 9◦. Solid line represents branches of
stable twisting states that meet the stability condition (6).

(d) The result is that each point in Fig. 5(b) is characterized
by the free twisting parameter and the twist parameter. These
parameters define the points indicated by squares in Fig. 8.

From Fig. 8, it can be seen that the results for the asymmetric
cell are in good agreement with the theoretical predictions of
Ref. [16] [Eqs. (5) and (6)]. They indicate that the jumplike
pitch transitions occur only between adjacent branches of
stable helical structures, unlike in the case of the symmetric
cell with strong anchoring.

Note that the above procedure relies on the computed
curve representing the q dependence of the ellipticity of light
transmitted through the CLC cell. In addition to parameters
such as the cell thickness and the refractive indices, this curve
depends on the angle between the surface director at the
entrance substrate and the polarization vector of the linearly
polarized incident light, �φ. It is found that the best fit value
of this angle is about 3◦. This implies that, in the asymmetric
cells, the surface director may not be parallel to the rubbing
direction. A similar phenomenon was previously reported in
Ref. [12]. In our case, however, the angle is relatively small
and can be attributed to the misalignment error.

In closing this section, we briefly comment on the estimated
value of the anchoring energy parameter w ≈ 3.2. For the
thickness D ≈ 62 μm and the twist elastic constant Kt ≈
10−12 N, the anchoring energy strength can be estimated at
about W = 2wKt/D ≈ 10−7 J/m2. It comes as no surprise
that, for the untreated substrate, the estimated anchoring
energy is at least two orders of magnitude smaller than typical
values for the azimuthal anchoring energy strength [41].

IV. DISCUSSION AND CONCLUSIONS

In the confined geometry of planar cells, the helical struc-
tures formed in the cells and their stability are greatly affected
by the boundary conditions imposed at the confining surfaces.
The helix pitch characterizing these structures generally differs

from its equilibrium value. A more important additional effect
is the presence of multiple metastable twisting states in such
cells, which appear as a result of interplay between the bulk
and the surface contributions to the free energy. Changes of the
equilibrium pitch may trigger sharp transitions—the so-called
pitch transitions—between different branches of metastable
states.

In this paper we have studied the pitch transitions in cells
filled with photosensitive chiral nematic liquid crystals. In such
materials, the equilibrium pitch can be efficiently controlled
by light through photochemically induced transformations of
chiral dopants.

In order to determine the concentrations of photoisomers
that govern the equilibrium pitch (and the free twisting
wave number q0 = 2π/P0) we have used the method of uv
absorption spectroscopy combined with modeling the kinetics
of the photoreaction. In our experiments, the free twisting wave
number is found to be a monotonically decreasing function of
irradiation time [see Fig. 2(b)].

The pitch of helical structures formed in the cells after
each step of irradiation was estimated from the experimental
results of polarimetry measurements giving the ellipticity of
light transmitted through the cells at different irradiation doses
(see Fig. 5). There are two cases that have been studied
experimentally: (a) a symmetric cell with strong anchoring
conditions at both substrates; and (b) an asymmetric cell with
mixed boundary conditions where weak anchoring conditions
are applied at one of the substrates (semistrong anchoring).

From the steplike dependence of the twist parameter
ν = 2D/P on the free twist parameter ν0 = 2D/P0, shown
in Fig. 7, it can be concluded that the light-induced pitch
transitions in the symmetric cell are governed by the boundary
conditions and involve metastable twisting states. By contrast,
the similar dependence for the asymmetric cell with semistrong
anchoring (see Fig. 8) shows successive jumplike transitions
that take place between the branches of stable twisting states
where the twist parameter ν monotonically increases with ν0.

We have found that such behavior agrees very well with the
predictions of the theoretical analysis performed in Ref. [16].
According to this analysis, the helical structure responds
to variations of the free wave number q0 (and thus the
free twist parameter ν0) by changing its twist parameter ν.
This change may render the initially equilibrium structure
either metastable or unstable. Under certain conditions, this
instability is governed by in-plane director fluctuations. The
mechanism dominating transformations of the director field
then can be described as director slippage through the energy
barriers formed by the surface potentials.

For the case of semistrong anchoring, Eqs. (5) and (6)
define branches of stable helical structures. These formulas
were used to fit the experimental data, and the best fit value
of the anchoring energy parameter is estimated at about
w = WD/(2Kt ) ≈ 3.2. So the anchoring energy strength at
the untreated substrate is found to be at least two orders
of magnitude smaller than typical values of the azimuthal
anchoring strength. It turns out that this value is not small
enough to suppress the jumplike behavior. From Eq. (6), the
latter occurs at w < 1.

In conclusion, it should be emphasized that the nonequi-
librium dynamics of the light-induced pitch transitions is well
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beyond the scope of this paper. We have demonstrated that
use of photosensitive CLCs with light-controlled equilibrium
pitch provides a useful tool for investigation of such transitions
and we hope that our study will stimulate further progress in
this field.

APPENDIX: OPTICS OF HELICAL STRUCTURES AT
NORMAL INCIDENCE: EXACT SOLUTION

RECONSIDERED

In this Appendix we briefly outline the transfer matrix
approach in the form formulated in Refs. [37,39,42] and show
how it can be used to describe the optical properties of ideal
CLC helical structures. The director field of these structures is
given in Eq. (1) and is characterized by the helix wave number
q = 2π/P , where P is the CLC pitch.

1. Transfer matrix method

We deal with a harmonic electromagnetic field character-
ized by the free-space wave number kvac = ω/c, where ω is
the frequency (the time-dependent factor is exp{−ωt}), and
consider the slab geometry. In this geometry, an optically
anisotropic layer of thickness D is sandwiched between the
bounding surfaces (substrates) z = 0 and z = D (the z axis is
normal to the substrates) and is characterized by the dielectric
tensor εij and the magnetic permittivity μ. The dielectric tensor
can be expressed in terms of the director (1) as follows:

εij (z) = ε⊥δij + �ε ni(z) nj (z), �ε = ε‖ − ε⊥, (A1)

where δij is the Kronecker symbol and n⊥ = √
με⊥ (n‖ =√

με‖) is the ordinary (extraordinary) refractive index.
Further, we restrict ourselves to the case of stratified media

and assume that the electromagnetic fields can be taken in the
following factorized form:

{E(r),H(r)} = {E(z),H(z)} exp(kp · r), (A2)

where the vector

kp/kvac = qp = qp(cos φp, sin φp,0) (A3)

represents the lateral component of the wave vector. Then we
write down the representation for the electric and magnetic
fields E and H,

E = Ezẑ + EP , H = Hzẑ + ẑ × HP , (A4)

where the components directed along the normal to the
bounding surface (the z axis) are separated from the
tangential (lateral) ones. In this representation, the vectors

EP = Ex x̂ + Ey ŷ ≡ (Ex

Ey
) and HP = H × ẑ ≡ ( Hy

−Hx
) are

parallel to the substrates and give the lateral components of
the electromagnetic field.

Substituting the relations (A4) into the Maxwell equations
and eliminating the z components of the electric and magnetic
fields gives equations for the tangential components of the
electromagnetic field that can be written in the following 4 × 4
matrix form [37]:

− i∂τ F = M F ≡
(

M11 M12

M21 M22

)(
EP

HP

)
, τ ≡ kvacz. (A5)

For the dielectric tensor (A1) with the plane of incidence
parallel to the x-z plane, from the general expressions derived
in Refs. [37,39], the 2 × 2 matrices Mij characterizing the
block structure of the matrix M are given by

M12 = μI2 − q2
p

2ε⊥
(I2 + σ 3), Mii = 0, (A6)

M21 = − q2
p

2μ
(I2 − σ 3)

+ εc{I2 + ua[cos(2φ) σ 3 + sin(2φ) σ 1]}, (A7)

εc = (ε‖ + ε⊥)/2, ua = ε‖ − ε⊥
ε‖ + ε⊥

, (A8)

φ = q̃τ + φ0, q̃ = q/kvac = λ/P, (A9)

where In is the n × n identity matrix and {σ 1,σ 2,σ 3} are the
Pauli matrices given by

σ 1 =
(

0 1
1 0

)
, σ 2 =

(
0 −i

i 0

)
, σ 3 =

(
1 0
0 −1

)
.

(A10)

The general solution of the system (A5),

F(τ ) = U(τ,τ0) F(τ0), (A11)

can be conveniently expressed in terms of the evolution
operator defined as the matrix solution of the initial value
problem,

− i∂τ U(τ,τ0) = M(τ ) U(τ,τ0), (A12a)

U(τ0,τ0) = I4. (A12b)

In an ambient medium with εij = εmδij and μ = μm, the
general solution (A11) can be expressed in terms of plane
waves propagating along the wave vectors with the tangential
component (A3). For such waves, the result is given by [42]

Fm(τ ) = Vm(qp)

(
exp{iQm τ } 0

0 exp{−iQm τ }
)(

E+
E−

)
,

(A13)

Qm = qm I2, qm =
√

n2
m − q2

p, (A14)

where Vm(qp) is the eigenvector matrix for the ambient
medium given by

Vm(qp) = Trot(φp)Vm

=
(

Rt(φp) 0
0 Rt(φp)

)(
Em −σ 3Em

Hm σ 3Hm

)
, (A15)

Em =
(

qm/nm 0
0 1

)
, μm Hm =

(
nm 0
0 qm

)
, (A16)

Rt(φ) =
(

cos φ − sin φ

sin φ cos φ

)
, (A17)

From Eq. (A13), the vector amplitudes E+ and E− corre-
spond to the forward and backward eigenwaves with k+ =
kvac(qm ẑ + qp) and k− = kvac(−qm ẑ + qp), respectively. In
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the half space z � 0 before the entrance face of the layer
z = 0, these eigenwaves describe the incident and reflected
waves

E+|z�0 = Einc, E−|z�0 = Erefl, (A18)

whereas, in the half space z � D after the exit face of the layer,
these waves are given by

E+|z�D = Etrm, E−|z�D = 0, (A19)

where Etrm is the vector amplitude of the transmitted wave.
The standard linear input-output relations

Etrm = TEinc, Erefl = REinc (A20)

link the vector amplitudes of transmitted and reflected waves
Etrm and Erefl with the amplitude of the incident wave Einc

through the transmission and reflection matrices T and R.
It is our task now to relate these matrices and the

evolution operator given by Eq. (A12). To this end, we use
the boundary conditions requiring the tangential components
of the electric and magnetic fields to be continuous at the
boundary surfaces: F(0) = Fm(0 − 0) and F(h) = Fm(h + 0),
and apply the relation (A12) to the anisotropic layer of the
thickness D to yield the following result:

Fm(h + 0) = U(h,0) Fm(0 − 0), h = kvacD. (A21)

On substituting Eqs. (A13) into Eq. (A21) we have(
Einc

Erefl

)
= W

(
Etrm

0

)
, (A22)

where the matrix W linking the electric field vector amplitudes
of the waves in the half spaces z < 0 and z > D bounded by
the faces of the layer will be referred to as the transfer (linking)
matrix. The expression for the transfer matrix is as follows:

W = V−1
m U−1

R (h) Vm =
(

W11 W12

W21 W22

)
, (A23)

where UR(τ ) = Trot(−φp)U(τ,0)Trot(φp) is the rotated op-
erator of evolution. This operator is the solution of the
initial value problem (A12) with M(τ ) replaced by MR(τ ) =
Trot(−φp)M(τ )Trot(φp).

From Eqs. (A20) and (A22), the transmission and reflection
matrices can be expressed in terms of the transfer matrix as
follows:

T = W−1
11 , R = W21T. (A24)

In what follows we assume that, as is illustrated in Fig. 3,
the light impinges normally onto the CLC cell with qp = 0
and φp = 0. So all the waves are propagating along the helical
axis and we deal with the most studied limiting case of normal
incidence, which has a long history dating back more than half
a century to the original paper by De Vries [43].

2. Operator of evolution: rotating wave ansatz

By contrast to the case of oblique incidence, it can be shown
that the initial value problem for the evolution operator (A12)
is exactly solvable at qp = 0. To this end, we begin with the

vector amplitudes written in the circular basis

Eα = E(α)
x x̂ + E(α)

y ŷ = E
(α)
+ ê+ + E

(α)
− ê−, (A25)

where ê± = (x̂ ± i ŷ)/
√

2 and E
(α)
± = (E(α)

x ∓ i E(α)
y )/

√
2, so

that the transfer and reflection matrices

TC = CTC†, RC = CRC†, (A26)

where C = 1√
2
(1 −i

1 i
), relate the circular components of the

incident, transmitted, and reflected waves. When the basis
changes the system (A5) transforms and, in the circular basis,
takes the following form:

−i∂τ FC = MC FC, MC = C̃MC̃†, (A27)

FC = C̃F, C̃ =
(

C 0
0 C

)
. (A28)

The next step is the rotating wave ansatz that uses the basis
vectors rotating in helical fashion similarly to the director field.
For the electric field, it can be written in the following form:

E = E(rw)
x n̂ + E(rw)

y m̂ = E
(rw)
+ ê(rw)

+ + E
(rw)
− ê(rw)

− , (A29)

where ê(rw)
± = exp{∓iφ}ê± = (n̂ ± i m̂)/

√
2 and the unit vec-

tor m̂ = ẑ × n̂ = ∂φ n̂ is perpendicular to the director n̂ defined
in Eq. (1). More generally, this ansatz is defined as follows:

FRW = R+(φ) FC, (A30)

R±(φ) =
(

exp{iφ σ 3} 0
0 exp{±iφ σ 3},

)
(A31)

so that Eq. (A27) is transformed into the system

−i∂τ FRW = MRWFRW

=
(

q̃ σ 3 μ I2

εc{I2 + ua σ 1} q̃ σ 3

)(
ERW

HRW

)
, (A32)

where the matrix MRW is independent of τ .
The evolution operator of the system (A32) then can be readily
expressed in terms of eigenvalues and eigenvectors of the
matrix MRW. The result is given by

URW(τ ) = exp{iMRW τ }

= V
(

U+(ncτ ) 0
0 U−(ncτ )

)
V−1, n2

c = μεc, (A33)

U±(τ ) = exp{±i� τ }, � =
(

κ1 0
0 κ2

)
, (A34)

where

κ1, 2 =
[

1 + q2
c ±

√
4q2

c + u2
a

]1/2

, qc = q̃/nc, (A35)

V =
(

E −σ 1E
H σ 1H

)
, E = (E1 E2), H = (H1 H2),

(A36)

Ei =
(

ua

(κi − qc)2 − 1

)
, Hi = nc

μ
[ κi I2 − qc σ 3] Ei .

(A37)
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Note that the eigenvector matrix (A36) satisfies orthogonality
conditions of the form [37]

V−1 = N−1VT G, (A38)

N = diag(N+,−N+), N+ = diag(N1,N2), (A39)

Ni = 2nc

μ

{
(κi − qc)u2

a + (κi + qc)[(κi − qc)2 − 1]2
}
, (A40)

and one of the eigenvalues (A35), κ2, is imaginary in the optical
stop band (photonic band gap):

κ2 = i|κ2|, q− ≡
√

1 − |ua| � |qc| � q+ ≡
√

1 + |ua|,
(A41)

where the corresponding eigenmode becomes evanescent and
selective reflection takes place. In the photonic band gap,
additional analysis is required so as to deal with the problem of
numerical instability caused by the presence of exponentially
large terms proportional to exp(|κ2|hc). This analysis can be
found in an extended version of this Appendix [44].
We can now write down the resulting expression for the
evolution operator of the system (A28):

UC(τ ) = R+(−φ) URW(τ ) R+(φ0). (A42)

3. Transmission and reflection matrices

In the case of normal incidence with qp = 0 and φp = 0,
the eigenvector matrix for the ambient medium in the circular
basis and the corresponding orthogonality relation are given
by

Vm =
(

I2 −σ 1
nm

μm
I2

nm

μm
σ 1

)
, V−1

m = N−1
m VT

mG, (A43)

Nm = NmG3, G3 = diag(I2,−I2), Nm = 2nm. (A44)

For the evolution operator (A42), these formulas and the
relation

R+(φ) Vm = VmR−(φ) (A45)

can now be used to deduce the transfer matrix (A23) in the
following form:

W = R−(−φ0)WRWR−(φ1), φ1 = φ0 + πν, (A46)

WRW = V2

(
U−(hc) 0

0 U+(hc)

)
V−1

2 , hc = nch, (A47)

NmV2 =
(

A+ A−
A− A+

)
, Ñ+V−1

2 =
(

AT
+ −AT

−
−AT

− AT
+

)
, (A48)

where ν = 2D/P = qchc/π is the CLC half turn number pa-
rameter, V2 ≡ V−1

m V, and Ñ+ ≡ diag(N+,N+). The matrices
A+ and A− are given by

A+ = nm

μm
E + H = (a(+)

1 a(+)
2 ),

(A49)

A− = σ 1

{
− nm

μm
E + H

}
= (a(−)

1 a(−)
2 )

and define the block 2 × 2 matrices W(rw)
ij of the transfer matrix

(A47) as follows:

NmW(rw)
11 = A+ W− AT

+ − A− W+ AT
−, (A50a)

NmW(rw)
21 = A− W− AT

+ − A+ W+ AT
−

= −Nm
[
W(rw)

12

]T
, (A50b)

NmW(rw)
22 = A+ W+ AT

+ − A− W− AT
−, (A50c)

where

W∓ = U∓(hc) N−1
+ =

(
γ±1/N1 0

0 γ±2/N2

)
,

(A51)
γ±i = exp(∓iκihc).

Finally, for the transmission and reflection matrices (A24) in
the circular basis, we have the relations

TC = exp[−iφ1 σ 3] TRW exp[iφ0 σ 3], (A52a)

RC = exp[iφ0 σ 3] RRW exp[iφ0 σ 3], (A52b)

TRW = [
W(rw)

11

]−1
, RRW = W(rw)

21 TRW, (A52c)

where the block 2 × 2 matrices are given in Eqs. (A50a) and
(A50b).

Note that the theoretical curves presented in Fig. 6 are
computed for the ellipticity

εell = |E(trm)
+ | − |E(trm)

− |
|E(trm)

+ | + |E(trm)
− |

(A53)

of the transmitted wave

exp[iφ1 σ 3]

(
E

(trm)
+

E
(trm)
−

)
= TRW exp[i�φ σ 3]

(
1
1

)
E

(inc)
0 ,

�φ = φ0 − φ(inc)
p , (A54)

where E
(inc)
0 and φ(inc)

p are the amplitude and polarization
azimuth of the linearly polarized incident wave, respectively.
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