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Kardeljeva ploščad 16, SI-1000 Ljubljana, Slovenia
3Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia

(Received 20 September 2013; revised manuscript received 30 November 2013; published 2 January 2014)

The phenomenological continuum model is used to study the director structure and dielectric response of the
ferroelectric smectic-A phase in thin planar cells. The frequency of the phase mode and the dielectric permittivity
are calculated numerically as a function of the bias external DC electric field, cell thickness, the strength of
polar surface anchoring, and the ratio between the bend and splay elastic constants. The theoretically obtained
dependencies are in agreement with the recently reported experimental measurements, which show that in thin
planar cells both the phase mode frequency and the dielectric permittivity decrease with increasing external bias
electric field.

DOI: 10.1103/PhysRevE.89.012501 PACS number(s): 61.30.Gd, 77.84.−s

I. INTRODUCTION

Liquid crystals made of bent-core molecules were discov-
ered almost two decades ago [1]. Due to the specific shape
of the molecules they tend to form polar smectic layers. In
bent-core liquid crystals the polar order is decoupled from
the tilt order [2–4], so smectic layers can be polar even
without the long molecular axes being tilted with respect to
the smectic layer normal. Because of that, ferroelectric and
antiferroelectric phases are possible also in the smectic-A-type
(Sm-A) phases, as opposed to the rod-like ferroelectric LCs,
where polar structures are possible only in the smectic-C
(Sm-C) phase. Smectic phases formed by bent-core molecules
usually have an antiferroelectric interlayer structure [5,6] and
until 2011 the ferroelectric interlayer structure (in the absence
of external DC field) was observed only in the Sm-C-type
phases. A ferroelectric Sm-A phase, which presents the highest
symmetry layered ferroelectric possible, was, for a long
time, only a theoretical possibility. The crucial problem was
to synthesize such molecules that would promote parallel
alignment of dipoles in the neighboring smectic layers. Finally,
a ferroelectric property of a smectic-A phase consisting
of bent-core molecules was discovered in 2011 [7]. The
ferroelectric structure is stabilized by a silane group on one
terminal chain of an asymmetric bent-core molecule.

The ferroelectric Sm-A phase (Sm-AP F ) made of bent-core
molecules with carbosilane terminal group is the highest
symmetry ferroelectric material found to date and as such
extremely interesting. Its ferroelectricity was confirmed by
the optical second-harmonic generation activity in the absence
of an external electric field, the ferroelectric response, and high
dielectric strength [8]. The properties of the Sm-AP F phase
were studied in planar cells of thicknesses from 1.6 to 25 μm.
The dielectric response increases and the relaxation frequency
decreases with increasing cell thickness. Such behavior was
successfully explained by a continuum phenomenological
model, by which the liquid crystal structure in the cell is
obtained by minimization of a free energy, which contains an
elastic, electrostatic, and surface contribution. The relaxation
frequency and the dielectric strength were calculated, in zero

bias field, as a function of cell thickness and strength of polar
surface anchoring. Comparison between the experimentally
obtained and modeled dependencies show that the polar
surface anchoring should be very strong. This is an expected
result, because spontaneous polarization in bent-core liquid
crystals is very high (≈300 nC/cm2 in the Sm-AP F phase
[7–9]), so the interaction between the surface and liquid crystal
molecules should be very strong. In Ref. [8] the effect of the
bias DC electric field on the relaxation frequency and the
dielectric response is reported, as well. Measurements show
that there are (at least) two modes present. The frequency of the
lower frequency mode decreases with increasing bias DC field,
while the frequency of the higher frequency mode increases
with increasing bias field. What comes as a surprise is that the
dielectric permittivity of the lower frequency mode decreases
with increasing bias field, although the relaxation frequency
decreases (see Fig. 6 in Ref. [8]). The explanation of this phe-
nomena (which differs significantly from the typical behavior
observed in ferroelectric bent-core LC phases [10,11], where
the relaxation frequency increases with increasing electric field
and the dielectric response decreases) remained open.

In this paper we present a continuum phenomenological
model to discuss in detail the effect of the DC bias field on
the structure and the dielectric response of the Sm-AP F phase
in thin planar cells as a function of cell thickness, surface an-
choring strength, and magnitudes of the bend and splay elastic
constants. The paper is structured as follows. In Sec. II we
present the theoretical model and discuss equilibrium structure
in thin cells as a function of the above-mentioned parameters.
In Sec. III we study the dielectric response. We focus on the
low-frequency mode, which is attributed to the fluctuations in
the polar director, and we show that the numerically obtained
results for the relaxation frequency and dielectric permittivity
agree with the experimental measurements reported in Ref. [8].

II. THEORETICAL MODEL

The cell geometry is shown in Fig. 1. Surfaces lie in the
yz plane. The cell thickness is L. The average direction of
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FIG. 1. (Color online) The cell geometry. L is the cell thickness,
�n is the director pointing along the average direction of the long
molecular axes, and �p is the polar director, which points in the
direction of the short axes and also in the direction of the local
polarization. (a) �n and �p director profiles in the xz plane. (b) The
polar director profile in the xy plane. ϕ(x) is an angle between the x

axis and �p.

the long molecular axes is labeled with the director �n and the
direction of the short axes with the polar director �p. We assume
that the smectic order parameter is constant. The director �n is
also constant, only the polar director �p varies across the cell.
We also assume that the spatial variation of the polar director
is the same in all smectic layers.

The spatial variation of �p is determined by a competition
among the torques due to the bulk elasticity, electrostatic
effects, and surface anchoring. The free energy (F ) of the
liquid crystal inside the cell is expressed as a sum of the bulk
and surface contribution,

F =
∫

f dV +
∫

fSdS, (1)

where f is the bulk free energy density, fS is the surface
energy density, and V and S are the cell volume and surface,
respectively.

The bulk free energy density is expressed as a sum of elastic
and electrostatic contributions:

f = 1

2
KpS[ �p · ( �∇ · �p)]2 + 1

2
KpB[ �p × ( �∇ × �p)]2

+ P 2
0 p2

x

2εε0
− EBP0px, (2)

where �p = (px,py,0) and | �p| = 1. More conveniently, the
polar director can be expressed by an angle ϕ [see Fig. 1(b)]

as

�p = (cos ϕ, sin ϕ,0) . (3)

P0 is the magnitude of the polarization, ε is the static dielectric
constant, KpS is the polarization splay, and KpB is the
polarization bend elastic constant. In the studied geometry
there is no twist elasticity. The third term in Eq. (2) presents the
self-electrostatic energy due to the permanent dipole moments
and it is of crucial importance in cells when surfaces tend to
enforce specific orientation of polarization [12,13]. The last
term presents coupling of polarization with the external DC
bias electric field (EB), applied along the x direction.

The equilibrium structure of the polar director in the cell
depends on the type and strength of surface anchoring [14].
We consider only polar surface anchoring. Polarization at
the bottom and upper surfaces tends to point in the opposite
directions, and the surface energy (fS) is expressed as

fS = −WSpx |(x=0) + WSpx |(x=L), (4)

where WS is the strength of the polar surface anchoring.
The equilibrium spatial dependence of the polar director

is found by minimization of the free energy [Eq. (1)].
For the purpose of numerical calculations the free energy
is transformed into a dimensionless form. We introduce a
correlation length,

ξ =
√

KpSεε0

P 2
0

, (5)

and dimensionless parameters,

x̃ = x

L
, ẼB = EBεε0

P0
, κ = KpB

KpS

, W̃S = WSξ

KpS

, (6)

and define the dimensionless free energy (F̃ ) as

F̃ = L

KpS

F =
∫ 1

0
f̃ dx̃ + F̃S, (7)

where the dimensionless bulk free energy density (f̃ ) is

f̃ = 1

2

(
dpx

dx̃

)2

+ 1

2
κ

(
dpy

dx̃

)2

+ 1

2

(
L

ξ

)2

p2
x −

(
L

ξ

)2

ẼBpx, (8)

and the dimensionless surface free energy density (f̃S) is

f̃S = −W̃S

(
L

ξ

)
px

∣∣∣∣
x=0

+ W̃S

(
L

ξ

)
px

∣∣∣∣
x=L

. (9)

We refrain from using a one-constant approximation
(KpB = KpS), because in the bent-core liquid crystals the bend
elastic constant is much lower than the splay elastic constant
[15–18] (in rod-like LC, on the other hand, the bend elastic
constant is always the largest [19]). We have to point out that
the elastic constants measured in Refs. [15–18,20] are the bend
and splay elastic constants in the deformation of the director
�n, while this model includes elastic constants for the splay
and bend deformation of the short molecular axis. However,
for the elastic deformations in the short axis the splay elastic
constant can also be expected to be larger than the bend elastic
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constant as deduced from the defect structure in Sm-AP F (see
Fig. 3(G) in Ref. [7]). Still, we decided to keep the ratio κ as a
parameter and study the structure and the dielectric response
also as a function of parameter κ .

Minimization of the free energy over the angle ϕ gives the
Euler-Lagrange equation

∂f̃

dϕ
− d

dx̃

∂f̃

∂ (dϕ/dx̃)
= 0 (10)

and two boundary conditions[
± ∂f̃

∂(dϕ/dx̃)
+ ∂f̃S

∂ϕ

]
x=0,L

= 0, (11)

where the positive sign is valid at x = L and the negative sign
at x = 0.

Using the relation Eq. (3) between the polar director �p and
angle ϕ and inserting the dimensionless free-energy densities
[Eqs. (8) and (9)] into Eqs. (10) and (11) leads to the following
bulk equation:

(sin2 ϕ + κ cos2 ϕ)
d2ϕ

dx̃2
+ 1

2
(1 − κ) sin 2ϕ

(
dϕ

dx̃

)2

+ 1

2

(
L

ξ

)2

sin 2ϕ − ẼB

(
L

ξ

)2

sin ϕ = 0, (12)

and two surface equations[
W̃S

(
L

ξ

)
sin ϕ + (sin2 ϕ + κ cos2 ϕ)

dϕ

dx̃

]
x=0,L

= 0. (13)

Equations (12) and (13) are solved numerically for the
variable ϕ(x) at different values of the parameters κ , W̃S , ẼB ,
and L/ξ . The results of numerical calculation are presented
below.

A. The polar director profile in bias electric field

In Fig. 2 we show spatial variation of the x component of
the polar director �p across the cell for different strengths of
polar surface anchoring. The director profile is calculated at
κ = 0.3 and L/ξ = 7. If κ is increased, the spatial variation
of px close to the surfaces, where the bend deformation is
the largest [see Fig. 1(b)], flattens (see Fig. 3). The effect of
κ on the spatial variation of the polar director in very thin
cells (L/ξ ∼ 1) and strong polar surface anchoring is shown
in Fig. 3. At a very small κ the polar director profile is almost
linear in px , while at κ = 1 the profile is linear in ϕ, a result
well known already from the one-constant approximation of
the ferroelectric smectic-C phase made of rod-like molecules
[21,22]. In the case of ferroelectric liquid crystals made of rod-
like molecules, the spatial distortion is in the nematic director
�n, which rotates on the cone from one surface to another. In
our case the nematic director is uniform and the polar director
rotates; however, mathematically the situations are identical.

If the surface anchoring strength decreases, the value of px

at the surface [px(0)] decreases from 1 toward 0 (or increases
from −1 toward 0 at the other surface) and the structure
becomes more uniform. Figure 2(b) shows px(0) as a function
of W̃S . The results show that in thinner cells stronger anchoring
is required to orient polarization at the surfaces in the direction

FIG. 2. (a) Spatial variation of the x component of the polar
director (px) across the cell at different surface anchorings (W̃S) at
L/ξ = 7. (b) The value of px at the surface [px(0)] as a function of
the polar anchoring strength W̃S at different cell thicknesses L/ξ . In
all cases κ = 0.3.

perpendicular to the surface. In what follows, we refer to
the anchoring as strong if, in zero bias field, px(0) > 0.9,
if px(0) < 0.5 we refer to the anchoring as weak and at all
other values as intermediate anchoring.

Figure 4 shows the effect of the bias electric field on
the polar director structure at different strengths of surface
anchoring. As expected, at a given value of the bias field
the reorientation of the polar director along the external field
direction is stronger at weaker surface anchoring. When the
bias field increases, the average value of the x component of

FIG. 3. Spatial variation of px across the cell at different κ at
L/ξ = 1 and infinitely strong polar anchoring. Inset: Spatial variation
of ϕ.
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FIG. 4. Spatial variation of the x component of the polar director (px) across the cell at different values of the bias field ẼB at (a) weak
(W̃S = 1); (b) intermediate (W̃S = 2); and (c) strong (W̃S = 7) surface anchoring. Parameter values: L/ξ = 7 and κ = 0.3. (d) The average
value of the x component of the polar director 〈px〉 as a function of the bias field ẼB at different values of surface anchoring W̃S .

the polar director

〈px〉 =
∫ 1

0
pxdx̃ (14)

increases linearly as molecular dipoles rotate toward the
external field direction [Fig. 4(d)]. At weaker polar surface
anchoring a uniform structure of polar director (〈px〉 ≈ 1) is
obtained at lower bias field because the surface torque, at the
surface that prefers px in the opposite direction to the direction
preferred by the bias field, is smaller.

III. THE DIELECTRIC RESPONSE

In the lower frequency region below several MHz, two
collective fluctuations were detected in the SmAPF phase in
thin cells [8]. The higher-frequency mode was attributed to
the fluctuations in the magnitude of the local polarization
(amplitude mode) and the lower frequency mode to the
fluctuations in the polarization direction (phase mode). It was
observed that both the phase mode relaxation frequency and
the dielectric permittivity decrease with increasing bias field.
In a bulk sample a decrease in relaxation frequency essentially
leads to an increase in the dielectric permittivity [10,11], so
the observed effect must be a result of the LC confinement.

Phase fluctuations in the polarization can be described
by the fluctuations in the polar director orientation. The
fluctuation of the polar director [δ �p(x)] in the cell must be
perpendicular to �p(x) at a given position x in the cell (Fig. 5).
If the AC field used for the dielectric measurements is applied

along the x direction, we detect the change in the magnitude
of the x component of polarization.

A. Numerical approach

To find the relaxation frequency and the magnitude of
the dielectric response at the relaxation frequency we use
the following method. First, we find the equilibrium polar

FIG. 5. (Color online) External electric field EAC with frequency
ω, applied along the x axis, causes fluctuations in the direction of the
polar director; �p0(x) is equilibrium direction of the polar director at
position x in the cell in external bias field; δ �p(x) is the fluctuation
part of the polar director.
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director profile in the external bias field EB (see, for example,
Fig. 4). Next, we calculate the equilibrium structure for a
slightly larger electric field EB + 	E, with 	E � EB . Then
we switch off 	E and study a time-dependent relaxation of
the director profile back to the equilibrium state at EB by using
the Landau-Khalatnik equation,

−γ
∂ϕ(x,t)

∂t
= ∂f

∂ϕ
− d

dx

∂f

∂ (dϕ/dx)
, (15)

where γ is a rotational viscosity. This equation is transformed
into a dimensionless version,

∂ϕ(x̃,t̃)

∂t̃
= ∂f̃

∂ϕ
− d

dx̃

∂f̃

∂ (dϕ/dx̃)
, (16)

where a dimensionless time t̃ is defined as

t̃ = t
KpS

γL2
. (17)

At the moment when 	E is switched off, the departure of
ϕ from the equilibrium value at a given position in the cell is
	ϕ0(x) = ϕ (x,EB + 	E) − ϕ (x,EB ). This value decreases
exponentially with time so, at some time t after 	E was
switched off, the departure of ϕ from the equilibrium value
at field EB is

	ϕ(x,t̃) = 	ϕ0 (x) e−t̃ /τ , (18)

where τ is a dimensionless characteristic relaxation time. From
	ϕ(x,t̃) we obtain the relaxation time τ and assume that the
relaxation frequency ω (the phase mode frequency) is inversely
proportional to the relaxation time: ω ∝ 1/τ .

To find the real part of the dielectric permittivity (ε′) as a
function of bias field at the relaxation frequency we assume that
it is proportional to the value of the dielectric permittivity in
the limit of a very small frequency of the AC field (ωAC → 0).
In bulk, the dielectric permittivity at the relaxation frequency
is half of the value at ωAC → 0, but because we are in thin
cells, such an approximation is not necessarily valid. However,
since the theoretically obtained dependencies of ω(EB) and
ε′(EB) agree well with the ones obtained experimentally (see
Sec. III C), we conclude that the approximation can be used.

The dielectric permittivity [ε′(EB)] at ωAC → 0 is propor-
tional to the change in the x component of polarization, i.e., to
the increase in the x component of the polar director. Because
this change varies across the cell, we calculate the average
value

〈	px〉 =
∫ 1

0
	pxdx̃, (19)

where 	px is a difference between px(EB + 	E) and px(EB)
at position x in the cell.

Figure 6 shows the dependence of the dielectric permittivity
ε′(EB) and the relaxation frequency ω(EB) on the magnitude
of the external bias field. Relative changes with respect to the
values in zero bias field [ε′(0) and ω(0)] are shown. Both ε′(EB)
and ω(EB) decrease with increasing bias field. However, at
high bias fields the theoretically calculated ω(EB) starts to
increase while the dielectric permittivity continues to decrease.

Let us first focus on the dielectric permittivity. As already
mentioned, only the variation in the x component of polariza-
tion contributes to the dielectric response. With increasing bias

FIG. 6. The dependence of the phase mode relaxation frequency
(ω) and the dielectric permittivity (ε′) on external bias field (ẼB ). Both
values are normalized by the corresponding values in zero bias field
[ε′(0) and ω(0)]. Parameter values: L/ξ = 7, κ = 0.3, and W̃S = 7
(strong anchoring).

field the x component of polarization increases across the cell
(except close to the surface at x = L, if anchoring is strong).
At some value of the bias field, px close to the surface at x = 0
becomes uniform and equal to 1. The width of the region over
which px ≈ 1 increases with increasing bias field (see Fig. 4).
Within this region the external AC field used in the dielectric
measurements does not induce significant fluctuations of the
polar director. So, the volume of the cell, which responds to
the external AC field, reduces with increasing bias field and as
a result the dielectric response decreases.

The effect of the bias field on the relaxation frequency is
more intriguing. As it is shown in the next section, the bias field
renormalizes the elastic constants; it increases the bend and
it decreases the splay elastic constant, both renormalizations
depend also on the cell thickness and the anchoring strength.
At low bias field, the variation of the relaxation frequency (its
increase or decrease) with increasing bias field depends on a
subtle interplay between the surface and bulk torques.

On the other hand, the increase in relaxation frequency
at high bias fields is straightforward to explain. At some
bias field, the polar director close to the surface at x = 0
aligns along the bias field (px ≈ 1). By increasing the bias
field, the region in which the polar director is aligned along
the bias field increases, so less and less volume of the cell
responds to the AC field. The effect is the same as the effect of
changing the cell thickness in zero bias field. If, in the zero bias
field, the cell thickness is reduced, the relaxation frequency
increases (see Fig. 5 in Ref. [8]).

In Fig. 7 we show the dependence of the phase mode
relaxation frequency ω on external bias electric field EB as a
function of the ratio between the elastic constants κ [Fig. 7(a)],
cell thickness [Fig. 7(b)], and anchoring strength [Fig. 7(c)].

At weak surface anchoring (W̃S = 1.5) and in thin cells
(L/ξ = 3) the relaxation frequency decreases with increasing
bias field. The smaller the ratio κ the stronger the decrease
[Fig. 7(a)]. However, there exists some critical value (κcr )
above which the relaxation frequency increases with increas-
ing bias field. At a chosen set of parameters we find κcr = 1.7.
Numerical calculations show that κcr decreases with increasing
anchoring strength and with decreasing cell thickness.
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FIG. 7. Phase mode frequency [ω/ω(0)] as a function of bias
field (ẼB ). (a) The effect of the ratio between the bend and splay
elastic constants (κ); L/ξ = 3 and W̃S = 1.5. (b) The effect of
the cell thickness (L/ξ ); κ = 0.3 and infinitely strong anchoring.
(c) The effect of the polar surface anchoring strength (W̃S); κ = 0.3
and L/ξ = 3.

At a fixed (strong) surface anchoring and κ = 0.3 the
relaxation frequency decreases with increasing bias field, the
decrease is larger in thicker cells [Fig. 7(b)]. At the chosen set
of parameters one cannot find the cell thickness below which
the relaxation frequency would increase with bias field. As
will be shown in Sect. III B, such cell thickness (critical cell
thickness) can be found at larger values of κ .

At a constant cell thickness (L/ξ = 3) and constant ratio
between the bend and splay elastic constant (κ = 0.3) the
relaxation frequency decreases with increasing bias field, the
decrease is stronger at weaker surface anchoring [Fig. 7(c)].
At the chosen set of parameters the frequency decreases at all
values of anchoring strength, because L/ξ = 3 is greater than
the critical cell thickness (at infinite anchoring and κ = 0.3)
and κ = 0.3 is below the critical value (at infinite anchoring
and L/ξ = 3).

FIG. 8. The dielectric permittivity [ε(ω)] as a function of external
bias field (ẼB ) for (a) different surface anchoring (W̃S), L/ξ = 3 and
κ = 0.3 and for (b) different cell thicknesses (L/ξ ), infinitely strong
anchoring, and κ = 0.3.

Figure 8 shows the dielectric permittivity as a function of
bias field for different surface anchorings and cell thicknesses.
At a constant cell thickness and κ the decrease in the dielectric
permittivity is larger if anchoring is weaker [Fig. 8(a)]. This
is expected because at weaker anchoring the polar director
structure reaches the uniform structure with px ≈ 1 across the
whole cell at lower bias fields. At a given surface anchoring
and κ [Fig. 8(b)] the dielectric permittivity decreases with
increasing bias field, the decrease is larger in thicker cells.

B. Analytical estimate

The relaxation frequency can be found also analytically in
the limit of infinitely strong polar surface anchoring, thin cells,
and low external bias field. In thin cells we can approximate
the spatial dependence of px(x) [or ϕ(x)] by a linear function
of x (see Fig. 3). If EB is small, its effect can be considered as
a slight harmonic modulation of the structure in zero external
field.

The spatial variation of the polar director is expressed as a
sum of the equilibrium value p0(x) at some low bias field EB

and the time-dependent fluctuation part δp(x,t) due to the AC
field:

�p (x) = �p0 (x) + δ �p (x,t) . (20)

The x component of the polar director is expressed as

p0,x (x) = −2x̃ + 1 + δpE sin(πx̃), (21)

where δpE is the amplitude of the modulation due to
external bias field. Since the polar director is a unit vec-
tor, the y component of the polar director is obtained as
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p0,y =
√

1 − p2
0,x . When Eq. (21) is used in the free energy

density [Eq. (8)] and the energy is minimized, we find

δpE = 4ẼB (L/ξ )2

π ( (L/ξ )2 + π2)
. (22)

The fluctuation part of the polar director [δ �p(x,t)] has the
x and y component for which we choose the harmonic ansatz
such that the fluctuation amplitude at the surfaces is zero:

δpx(x,t) = δp0 sin ϕ(x) sin(πx̃)e−iωt , (23)

δpy(x,t) = δp0 cos ϕ(x) sin(πx̃)e−iωt , (24)

where

ϕ(x) = arccos[(p0,x(x)], (25)

and ω is the frequency of the external AC field, equal to the
relaxation frequency. We insert Eqs. (20) to (24) into Eq. (8)
and integrate from 0 to 1 and obtain an expression for the
dimensionless free energy, which contains the equilibrium part
(F̃eq) and the part depending on δp2

0,

F̃ = F̃eq + Aδp2
0, (26)

where

A = [2.36 + 1.32κ + 0.22(L/ξ )2]

+ δp2
E[−1.51 + 2.47κ − 0.19(L/ξ )2]. (27)

The relaxation frequency is proportional to AKpS/(γL2) [the
factor can be deduced from Eq. (17)], so we finally obtain

ω

ω∞
= [1 + (ξ/L)2(10.7 + 6.0κ)]

+ δp2
E[−0.9 + (ξ/L)2(−6.9 + 11.2κ)], (28)

where ω∞ is the relaxation frequency in bulk and zero bias field
(however, note that in bulk, i.e., L → ∞, the approximation
is not valid, because we assumed linear variation of the polar
director across the cell).

Let us inspect Eq. (28). The first part gives the relaxation
frequency in zero bias field. As expected, it increases if the
cell thickness decreases and if the bend elastic constant (and
thus κ) increases. The second part gives the effect of the bias
field on the relaxation frequency. At each cell thickness there
exists a critical value of κ above which the frequency increases
with increasing bias field. At a given κ there can exist a critical
cell thickness below which the frequency will increase with
increasing bias field. Figure 9 shows the change of relaxation
frequency 	ω with bias field. The analytically obtained results
show the same dependence as the ones calculated numerically;
however, numerically we showed that such dependencies can
be expected also at finite surface anchoring and at a general
cell thickness.

C. Comparison with experimental results

Finally, we compare the theoretical results with the exper-
iment. Figure 10 shows the relaxation frequency (ω) and the
imaginary part of the dielectric permittivity (ε′′) as a function
of the voltage applied across the cell (the data is deduced
from Fig. 6 in Ref. [8]). We observe that the dependencies

FIG. 9. Analytically calculated change in the relaxation fre-
quency ω/ω(0) as a function of bias field ẼB at infinitely strong
polar surface anchoring. (a) The effect of the ratio between the bend
and splay elastic constants (κ); L/ξ = 3. (b) The effect of the cell
thickness (L/ξ ); κ = 0.3.

of the phase mode frequency and the dielectric permittivity
on the voltage across the cell are qualitatively the same as the
dependencies of these two quantities on the bias field, obtained
by the model. The voltage (U ) across the cell is related to the
bias field (EB) as [11,12]

U = EBL −
∫ L

0
pxdx, (29)

FIG. 10. Experimentally obtained values for the relaxation fre-
quency (ω) (empty circles) and the imaginary part of the dielectric
permittivity (ε′′) (full circles) as a function of the voltage applied
across the cell (U ). Both ω and ε′′ are normalized by the corresponding
value at zero bias field. The data is deduced from Fig. 6 in Ref. [8];
measurements were performed on a 10-μm-thick cell.
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where we have neglected the surface dielectric layer, the
thickness of which (approximately 50 nm) is usually much
thinner that the cell thickness. EB is the electric field due to
the surface charge σ : EB = σ/εε0. This definition includes
only the influence of induced dipoles. Due to the reorientation
of the permanent dipoles, the electric field inside the cell is
further reduced, which significantly reduces the voltage across
the cell. By expressing Eq. (29) with dimensionless parameters
[Eq. (6)] and using Eq. (14), we find

U = U0(ẼB − 〈px〉), (30)

where U0 = P0L/εε0. By taking ε ∼ 10, P0 ∼ 10−3 C/m2,
L ∼ 10 μm, one finds U0 ∼ 102 V. We are interested in the
value of U at which ω/ω(0) ≈ 0.5. Experimentally, in a 10-μm
cell, this is at U ∼ 1 V (see Fig. 10). Theoretically, we thus
search for such a set of parameters L/ξ , κ , and W̃S at which
(ẼB − 〈px〉) at ω/ω(0) ≈ 0.5 is of the order of 10−2.

It is impossible to fit the model to the experimental data,
because each point in the graph of ω/ω(0) versus ẼB is
obtained by an extensive set of numerical calculations (see the
introduction to Sec. III A). The procedure has to be repeated
for each point on the graph at each set of the parameters L/ξ ,
κ , and W̃S , varying ẼB . Considering also the crudeness of
the approximation used to calculate the phase mode frequency
and the dielectric permittivity, we cannot aim further than the
qualitative agreement between the model and the experiment.
In addition, a jump in the experimental data for ω/ω(0) could
be due to the bistability of the surface, the possibility that
we have not considered yet. However, we see (Fig. 7) that
ẼB − 〈px〉 at ω/ω(0) ≈ 0.5 reduces if the surface anchoring
strength, cell thickness, and κ decrease. For example, at
L/ξ = 7, κ = 0.3, and W̃S = 2, we find (ẼB − 〈px〉) = 0.05.
We can thus predict that the surface anchoring is moderately
strong and that ξ is of the order of μm rather than 10 μm (as
predicted in Ref. [8]).

We also note that the theoretically calculated phase mode
frequency starts to increase at high enough bias fields (see

Fig. 6). Comparing Figs. 4(c) and 6 we conclude that this
effect dominates when the polar director is uniform (px ≈ 1)
in approximately 75% of the cell. In such a cell the dielectric
response is already very low and we suggest that this is the
reason why only a reduction in the relaxation frequency was
experimentally observed.

IV. CONCLUSIONS

We have presented a theoretical study of the polar director
structure and dielectric response in thin planar cells filled
with a bent-core liquid crystal in the ferroelectric smectic-A
phase (Sm-AP F ). We calculated the effect of the external
DC bias electric field on the spatial dependence of the polar
director, as a function of the cell thickness, polar anchoring
strength, and the ratio between the bend and splay elastic
constants. The major part of the paper reports on the study
of the dielectric response. Numerical results show that, in
general, the phase mode frequency decreases with increasing
bias field. Changes in the cell thickness and surface anchoring
affect the amount of the decrease. At a given cell thickness
there exists a critical value of the ratio between the bend and
splay elastic constant, above which the relaxation frequency
increases with increasing bias field. The effect of the bias field
on the dielectric response was also obtained analytically in the
limit of infinitely strong anchoring, thin cells, and low bias
field. The analytical results agree well with the numerically
obtained results, which enable calculation of the dielectric
response at general anchoring strengths, cell thicknesses, and
bias fields.
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W. Weissflog, Phys. Rev. E 74, 021702 (2006).

[5] H. Takezoe and Y. Takanishi, Jpn. J. Appl. Phys. 45, 597
(2006).

[6] R. A. Reddy and C. Tschierske, J. Mater. Chem. 16, 907
(2006).

[7] R. A. Reddy, C. Zhu, R. Shao, E. Korblova, T. Gong, Y. Shen,
E. Garcia, M. A. Glaser, J. E. Maclennan, D. M. Walba, and
N. A. Clark, Science 332, 72 (2011).

[8] L. Guo, E. Gorecka, D. Pociecha, N. Vaupotič, M. Čepič,
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