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The efficiency of crystal growth in alloys is limited by the morphological instability, which is caused by a
positive feedback between the interface deformation and the diffusive flux of solute at the front of the phase
transition. Usually this phenomenon is described in the framework of the normal diffusion equation, which
stems from the linear relation between time and the mean squared displacement of molecules 〈x2(t)〉 ∼ K1t

(K1 is the classical diffusion coefficient) that is characteristic of Brownian motion. However, in some media
(e.g., in gels and porous media) the random walk of molecules is hindered by obstacles, which leads to another
power law, 〈x2(t)〉 ∼ Kαt

α , where 0 < α � 1. As a result, the diffusion is anomalous, and it is governed by
an integro-differential equation including a fractional derivative in time variable, i.e., a memory. In the present
work, we investigate the stability of a directional solidification front in the case of an anomalous diffusion. Linear
stability of a moving planar directional solidification front is studied, and a generalization of the Mullins-Sekerka
stability criterion is obtained. Also, an asymptotic nonlinear long-wave evolution equation of Sivashinsky’s type,
which governs the cellular structures at the interface, is derived.
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I. INTRODUCTION

The morphological instability of a solidification front [1,2],
which is caused by a positive feedback between the solidifica-
tion front distortion and the heat or solute flux disturbance at
the front of the phase transformation, is a paradigmatic exam-
ple of the pattern formation in nonequilibrium systems that has
been studied for several decades (for a comprehensive review,
see Ref. [3]). Among the basic achievements of the nonlinear
theory of the morphological instability, let us mention the
derivation of the long-wave evolution equation for front distor-
tions known as the Sivashinsky equation [4]. It has been found
that in contradistinction to another basic example of pattern
formation, the Rayleigh-Bénard convection, where the insta-
bility leads to formation of steady patterns, in the case of mor-
phological instability an unbounded growth of disturbances
takes place [5], which leads to formation of deep cells, fingers,
and dendrites. In the works mentioned above, the diffusion
of the solute was governed by the standard diffusion equation,
which describes the macroscopic limit of a Markovian random
walk characterized by a linear relation between the mean
squared displacement of molecules and time, 〈x2(t)〉 ∼ t .

During the last decades, the solidification processes in
gels and colloidal suspensions have become a subject of
investigation. It has been found that those processes can
lead to formation of dendrites [6–8] and other kinds of
structures [9,10]. Usually the analysis is done under the
assumption of normal diffusion of components. However, it
has been found recently that diffusion in gels (as well as
ceramic suspensions, porous media, and biological materi-
als) may have some unusual features: because the random
walk of molecules is significantly influenced by obstacles,
another relation, 〈x2(t)〉 ∼ tα , where 0 < α < 1, is observed
[11–13]. This phenomenon is called subdiffusion [14]. In the
case of subdiffusion, the diffusion equation is replaced by
an integro-differential equation, which includes a memory
effect expressed by a fractional derivative in time variable.

The manifestation of subdiffusion in physical, chemical, and
biological processes has been a subject of several books
[15,16]. Specifically, the influence of the diffusion anomalies
on the propagation of reaction-diffusion fronts has been
studied extensively (for review, see Ref. [17]).

The implication of subdiffusion on the propagation of phase
transition fronts are still hardly explored. Some exact solutions
of the Stefan problem, which describes the propagation of
plane melting front in the case of subdiffusion, have been
found [18,19]. In Ref. [20], the particle growth due to the
subdiffusion of a dissolved component has been studied,
and exact self-similar solutions have been obtained. The
stability of a plane front propagation has been investigated,
and an instability similar to the well-known Mullins-Sekerka
instability has been revealed.

In the present paper we revisit the classical problem of
the propagation of a directional solidification front and its
instability considering the case where the solute is subject to
a subdiffusion process governed by the fractional diffusion
equation. In contradistinction to the free front propagation
considered in Ref. [20], in the case of the directional solidi-
fication the front velocity is prescribed by the motion of the
solidifying body in a stationary temperature field. Section II
contains the formulation of the problem. In Sec. III we analyze
the linear stability of a plane solidification front. In Sec. IV
an asymptotic nonlinear equation is derived in the limit of
long waves. It turns out that it is identical to the Sivashinsky
equation known in the case of the normal diffusion.

II. FORMULATION OF THE PROBLEM

Directional solidification is a process by which a liquid
sample is pulled through a temperature gradient, with a part of
the sample at a temperature below the freezing temperature.

Consider directional solidification of a binary gel with the
solute subdiffusion (see Fig. 1). In the laboratory reference
frame (X,y,z), a constant temperature gradient G > 0 is
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FIG. 1. (Color online) An illustration of directional solidification
of a binary gel.

imposed, and the temperature distribution does not depend on
time. The sample is pulled along the X axis with constant speed
v (i.e., in the direction of the cold region). The location of the
solidification front is described by the function X = h(y,z,t)
(see Fig. 1).

In the reference frame connected with the pulled body,
(x,y,z), X = x − vt , the location of the solidification front is
determined by the relation

x = x∗(y,z,t), x∗(y,z,t) = vt + h(y,z,t). (1)

The subdiffusion takes place in a semi-infinite domain x >

x∗(y,z,t), −∞ < y,z < ∞. The goal of the present paper is
to investigate the dynamics of a solidification front.

A. The case of classical diffusion

First, let us recall the formulation of the problem in the case
of the normal diffusion. In the reference frame connected with
the pulled body, the diffusive flux of the component with the
concentration c is determined by Fick ‘s law

j = −D∇c, (2)

where D is the diffusion coefficient. Due to the continuity
equation

∂tc = −∇ · j

one obtains the normal diffusion equation,

∂tc = D∇2c, x > x∗(y,z,t). (3)

The heat balance on the interface yields the Gibbs-Thomson
condition [3]

m(c − c0) = θmγ

Lυ

2H + Gh, x = x∗(y,z,t), (4)

where m < 0 is the liquidus slope, c0 is the solute concentration
on the liquid side of the equilibrium phase transition front, θm

is the equilibrium melting temperature for concentration c0, Lυ

is the latent heat per unit volume, and H is the mean curvature
of the interface,

2H = −∇2h + hyyh
2
z − 2hyzhyhz + hzzh

2
y

[1 + |∇h|2]3/2
.

The flux balance on the interface yields the Stefan condition

(k − 1)c
∂tx

∗√
1 + (∇x∗)2

= D∂nc, (5)

where ∂n is the directional derivative in the direction of the
normal vector of the front surface pointing into the liquid
phase.

The condition at infinity is

c = c∞ = kc0, x → ∞, (6)

where c∞ = kc0 is the concentration on the solid side of the
front (k is the segregation coefficient). For more details, see
Refs. [3,21].

B. The case of subdiffusion

Let us discuss now the modification of the problem (3)–(6)
in the case of subdiffusion. In the reference frame connected
with the pulled body, the subdiffusive flux is determined by
the expression [14]

j(x,y,z,t) = −D∇t0D
1−α
t c(x,y,z,t), 0 < α < 1, (7)

where

t0D
1−α
t c(x,y,z,t) = 1

�(α)

d

dt

∫ t

t0

(t − τ )α−1c(x,y,z,τ ) dτ

(8)

is the Riemann-Liouville fractional derivative. Here t0 is
the time instant when the subdiffusion process starts. Be-
cause we are interested in the behavior of the system at large t ,
later we take t0 = −∞. Then diffusion equation (3) is replaced
by the subdiffusion equation

∂tc(x,y,z,t) = D
�(α)

∇2∂t

∫ t

−∞
(t − τ )α−1c(x,y,z,τ ) dτ,

(9)
x > x∗(y,z,t),

or alternatively

∂tc = D∇2 −∞D1−α
t c, x > x∗(y,z,t). (10)

On the interface x = x∗(y,z,t), the mass conservation leads
to the following boundary condition:

(k − 1)c(x∗(y,z,t),y,z,t)vn = −jn, (11)

where vn is the normal velocity of the solidification front,
and jn is the normal component of the mass flux. Taking into
account the expressions (7) and (8) for the subdiffusive flux
and the relation

vn = ∂tx
∗(y,z,t)√

1 + (∇x∗)2
, (12)

we obtain the following flux balance condition on the interface:

(k − 1)c(x∗(y,z,t),y,z,t)
∂tx

∗(y,z,t)√
1 + (∇x∗)2

= D
�(α)

∂n∂t

[∫ t

−∞
(t − τ )α−1c(x,y,z,τ )dτ

]∣∣∣∣
x=x∗(y,z,t)

.

(13)

Equations (4) and (6) remain unchanged.
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C. Laboratory reference frame

It is convenient to consider the process in the laboratory
reference frame, v, i.e., applying the coordinate transformation
X = x − vt and T = t . Here x is the coordinate in the
reference frame connected with the pulled body, whereas X is
the relative position with respect to the laboratory reference
frame. The temperature distribution along the sample does not
depends on time, and it is described by the relation

θ = θm + GX. (14)

Define

c(x,y,z,t) = C̄(x − vt,y,z,t) = C̄(X,y,z,T ), (15)

then

c(x,y,z,τ ) = C̄(x − vτ,y,z,τ ) = C̄(X + v(T − τ ),y,z,τ )

The subdiffusion equation takes the form

(∂T − v∂X)C̄(X,y,z,T )

= D
�(α)

(
∂2
X + ∂2

y + ∂2
z

)
(∂T − v∂X)

×
∫ T

−∞
(T − τ )α−1C̄(X + v(T − τ ),y,z,τ ) dτ. (16)

It is convenient to define ξ = v(T − τ ), then Eq. (16) becomes

(∂T − v∂X)C̄ = D
�(α)

(
∂2
X + ∂2

y + ∂2
z

)
(∂T − v∂X)

× 1

vα

∫ ∞

0
ξα−1C̄

(
X + ξ,y,z,T − ξ

v

)
dξ.

(17)

Similarly, the flux balance condition (13) on the front X =
h(y,z,T ) becomes

C̄(h(y,z,T ),y,z,T )(k − 1)
v + ∂T h√
1 + (∇h)2

= D
�(α)

∂n(∂T − v∂X)
1

vα

×
∫ ∞

0
ξα−1C̄

(
X + ξ,y,z,T − ξ

v

)
dξ, (18)

where ∂n = (∂X,∂y,∂z) · n̂.
Note that the structure of problem (17) and (18) is rather

nontrivial. In addition to memory terms, which are calculated
along the trajectories of material points, it includes convective
terms caused by the imposed motion of the body with respect
to the fixed temperature distribution. While the fractional
diffusion is time subordinated to the normal diffusion process,
the imposed motion of the solidification front does not
obey the corresponding time scale change. Therefore, in a
contradistinction to the case of fractional diffusion without
solidification, the problem under consideration has no self-
similar solutions.

D. Dimensional analysis

Let L, T , and c0 be the length, time, and concentration
scales, respectively. Taking into account that the natural scale

of the subdiffusion coefficient D is L2/T α , and that of the
velocity is L/T , we choose the length and time scales as

L = D1/(2−α)

vα/(2−α)
, T = D1/(2−α)

v2/(2−α)
. (19)

We define

C̄(X∗,y∗,z∗,T ∗) = C̄

(
LX,Ly,Lz,

L

v
T

)
= c0C(X,y,z,T ),

C̄

(
X∗ + ξ ∗,y∗,z∗,T ∗ − ξ ∗

v

)
= c0C(X + ξ,y,z,T − ξ ),

and obtain the following problem in the nondimensional form:

(∂T − ∂X)C(X,y,z,T )

= 1

�(α)

(
∂2
X + ∂2

y + ∂2
z

)
(∂T − ∂X)

×
∫ ∞

0
ξα−1C(X + ξ,y,z,T − ξ ) dξ, X > h, (20)

C = 1 − β(1 − k)2H − w(1 − k)h, X = h, (21)

(k − 1)
(1 + ∂T h)C√

1 + (∇h)2
= 1

�(α)
∂n(∂T − ∂X)

×
∫ ∞

0
ξα−1C(X + ξ,y,z,T − ξ ) dξ, X = h, (22)

C = k, X → ∞. (23)

The obtained problem contains two nondimensional param-
eters,

β = θmγ vα/(2−α)

Lυmc0D1/(2−α)(k − 1)
,

w = GD1/(2−α)

mc0vα/(2−α)(k − 1)
,

which are the surface energy number and the morphological
number, respectively.

III. LINEAR STABILITY THEORY

A. General dispersion relation

The boundary value problem (20)–(23) has the base solution

Cb(X,y,z,T ) = k + (1 − k)e−X, hb = 0, (24)

which corresponds to a plane solidification front. Let the base
solution be perturbed,

C = Cb + Ĉ, h = ĥ. (25)

In the present section we consider the stability of solution
(24) with respect to disturbances (25) in the framework of a
linearized problem. By linearization of boundary conditions,
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we use relations

C(h,y,z,T ) ∼ Cb(0) + C ′
b(0)ĥ + Ĉ(0,y,z,T ), (26)

2H ∼ −
(
∂2
y + ∂2

z

)
ĥ

[1 + (∇ĥ)2]3/2
= −∇2ĥ + O(ĥ3). (27)

Substituting (25)–(27) into the system (20)–(23) and ne-
glecting nonlinear terms, we obtain the following linearized
problem for disturbances:

(∂T − ∂X)Ĉ(X,y,z,T )

= 1

�(α)

(
∂2
X + ∂2

y + ∂2
z

)
(∂T − ∂X)

×
∫ ∞

0
ξα−1Ĉ(X + ξ,y,z,T − ξ ) dξ X > 0, (28)

Ĉ = (1 − k)(1 − w)ĥ + β(1 − k)∇2ĥ, X = 0, (29)

(k − 1)[∂T ĥ + (k − 1)ĥ + Ĉ]

= (1 − k)ĥ + 1

�(α)
∂X(∂T − ∂X)

×
∫ ∞

0
ξα−1Ĉ(X + ξ,y,z,T − ξ ) dξ, X = 0, (30)

Ĉ(X,y,z,T ) = 0, X → ∞. (31)

Since the coefficients of this linear system are independent
of x,y,z, and T , we can introduce the normal modes

(Ĉ,ĥ) = (C0(X),h0)eiay+ibz+σT , q2 = a2 + b2, (32)

where s is the growth rate and q = (a,b) is the wave vector
of the disturbance. Substituting expressions (32) into the
linearized system (28)–(31), we obtain

(σ − ∂X)C0(X) = 1

�(α)

(
∂2
X − q2

) ∫ ∞

0
ξα−1[σC0(X + ξ )

− ∂XC0(X + ξ )]e−σξ dξ, X > 0, (33)

C0 = (1 − k)(1 − w − βq2)h0, X = 0, (34)

(k − 1)[(σ + k − 1)h0 + C0(0)]

= (1 − k)h0 + 1

�(α)
∂X

∫ ∞

0
ξα−1(σ − ∂X)

×C0(X + ξ )e−σξ dξ, X = 0, (35)

C0 → 0, X → ∞. (36)

Now we substitute the ansatz C0(X) = Ae−pX in (34) to
obtain the following equation:

1 = p2 − q2

�(α)

∫ ∞

0
ξ 1−αe−(σ+p)ξ dξ. (37)

In order to guarantee convergence of the integral in (37), we
have to impose the constraint Re(σ + p) > 0, and then after
calculating the integral we obtain the following transcendental
equation for p:

(σ + p)α = p2 − q2. (38)

Due to condition (36), we are interested in solutions with
Re(p) > 0. After we utilize the boundary conditions (34) and
(36), we obtain the characteristic equation,

(1 − w − βq2)[1 − k − p(σ + p)1−α] + k + σ = 0, (39)

which determines the dependence of the growth rate σ on the
wave number q and other parameters of the problem. In the
case α = 1, indeed Eqs. (38) and (39) reproduce the result
of Ref. [3] for the classical diffusion case. Note that in the
case of the subdiffusion, only solutions with Re(σ ) > 0 are
meaningful (otherwise the integrals over ξ diverge).

Define s = (σ + p)α = p2 − q2. Then the dispersion rela-
tion can be written as

(1 − w − βq2)[1 − k − s(s + q2)1/2]

+ k + s1/α − (s + q2)1/2] = 0. (40)

B. Instability region

In order to determine the stability region in the (q,w)
plane for given values of α,β, and k, we consider the neutral
stability curve (σ → 0). In that limit the dependence p(q,α)
is determined by the relation

pα = p2 − q2. (41)

The value of p(q,α) decreases monotonically with the
decrease of α from p(q,1) = [1 +

√
1 + 4q2]/2 (the limit of

the normal diffusion) to p(q,0) =
√

1 + q2. In the small wave
number limit q � 1, one can find the asymptotic expansion
for the solution of equation (38)

p = 1 + q2

2 − α
+ o(q2). (42)

The neutral stability curve can be written as

w(q) = q2

[
1

kp(q,α)α + q2
− β

]
(43)

or

w(q) = q2

[
1

kp(q,α)2 + (1 − k)q2
− β

]
. (44)

For small q, the following asymptotic expansion for the
neutral curve is obtained:

w(q) = q2

k

[
1 − βk −

(
α

2 − α
+ 1

k

)
q2 + o(q2)

]
. (45)

The instability is possible as 1 − βk > 0, and this criterion
does not depend on α. In the opposite limit of large q,
p ∼ q, and w(q) ∼ 1 − βq2 < 0 for any β > 0, which is
incompatible with the physical condition w > 0. Thus, the
instability is possible only in a finite interval of q, 0 < q < qm.
Because kpα + q2 never tends to zero, function w(q) is
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FIG. 2. (Color online) Neutral curves for several values of α in
the case of zero surface energy (β = 0).

bounded in the interval 0 < q < qm. With the decrease of α

from 1 to 0, w(q,α) grows monotonically from

w(q,1) = q2

[
1

k(1 +
√

1 + 4q2)/2 + q2
− β

]

(the limit of the normal diffusion) to

w(q,0) = q2

(
1

k + q2
− β

)
.

Thus, with the decrease of α a certain destabilization
of the front takes place, but the qualitative behavior of the
neutral curve does not change. Typical neutral curves found
numerically are shown in Figs. 2 and 3.

Let us present also the dispersion relation (39) in the limit
of small k. Using the scaling [4]

w = 1 − ε2, k = κε4, σ = �ε4,
(46)

q = Qε, p = 1 + Pε2, 0 < ε � 1,
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FIG. 3. (Color online) Neutral curves for several values of α in
the case of nonzero surface energy (β = 5.88 × 10−2).

we obtain at the leading order:

P = Q2

2 − α
, � = −κ + Q2 − βQ4. (47)

It is remarkable that the expression for the rescaled growth
rate � at the leading order does not include α at all.

IV. LONG-WAVE NONLINEAR THEORY

Let us derive now the asymptotic equation governing
finite amplitude disturbances slowly changing in space and
time. First, following Ref. [4] we introduce the curvilinear
coordinates x̃ = X − h(y,z,T ), ỹ = y, z̃ = z, t̃ = T , and
define h̃ = h(x̃,ỹ,t̃):

C(X,y,z,T ) = C(x̃ + h̃,ỹ,z̃,t̃) = C̃(x̃,ỹ,z̃,t̃).

The governed equations (20)–(23) are transformed to the
following form:

[∂t̃ − (1 + h̃t̃ )∂x̃]C̃

= 1

�(α)
[∂t̃ − (1 + h̃t̃ )∂x̃]

× [
∂2
x̃ + ∂2

ỹ + ∂2
z̃ − ∇2h̃∂x̃ − 2∇h̃ · ∇∂x̃ + |∇h̃|2∂2

x̃

]
×

∫ ∞

0
ξα−1C̃(x̃ + ξ,ỹ,z̃,t̃ − ξ ) dξ, x̃ > 0, (48)

C̃ = 1 − β(1 − k)2H − w(1 − k)h̃, x̃ = 0, (49)

(k − 1)(1 + h̃t̃ )C̃

= 1

�(α)
[∂x̃ − ∇h̃ · ∇ + |∇h̃|2∂x̃][∂t̃ − (1 + h̃t̃ )∂x̃]

×
∫ ∞

0
ξα−1C̃(x̃ + ξ,ỹ,z̃,t̃ − ξ ) dξ, x̃ = 0, (50)

C̃ = k, x̃ → ∞. (51)

The linear stability theory provides the appropriate scaling
for the variables and parameters. When the deviation of w from
its critical value w0 is O(ε2), ε2 � 1, the anticipated scaling
is as follows: x̃ = χ, ỹ = εη, z̃ = εζ, t̃ = ε4τ, k = ε4κ , and
w = w0(1 − ε2). We substitute the asymptotic expansions

C̃ = N0(χ,η,ζ,τ ) + ε2N2 + ε4N4 + ε6N6 + · · · ,

h̃ = ε2(H 0(χ,η,ζ,τ ) + ε2H 2 + ε4H 4 + · · · )

into (48)–(51) and collect the terms of the same order.
At the leading order, we obtain a homogeneous integro-

differential equation with three boundary conditions:

∂χN0 − 1

�(α)

∫ ∞

0
ξα−1∂3

χN0(χ + ξ,η,ζ,τ − ξ ) dξ = 0

χ > 0,

N0(0,η,ζ,τ ) = 1,

N0 = 1

�(α)

∫ ∞

0
ξα−1∂2

χN0(χ + ξ,η,ζ,τ − ξ ) dξ, χ = 0,

N0 = 0, χ → ∞.
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The solution of the obtained problem exists: N0 = e−χ . Note
that this solution does not depend on time and the transverse
spatial coordinates.

At order O(ε2), we obtain a homogeneous integro-
differential equation with three boundary conditions:

∂χN2 − 1

�(α)

∫ ∞

0
ξα−1∂3

χN2(χ + ξ,η,ζ,τ − ξ ) dξ = 0,

χ > 0,

N2(0,η,ζ,τ ) = −w0H
0,

N2 = 1

�(α)

∫ ∞

0
ξα−1∂2

χN2(χ + ξ,η,ζ,τ − ξ ) dξ, χ = 0,

N2 = 0, χ → ∞.

The solution is N2 = −w0H
0e−χ , like in the case of a normal

diffusion.
At order O(ε4), we obtain an inhomogeneous equation with

three boundary conditions

∂χN4 − 1

�(α)

∫ ∞

0
ξα−1∂3

χN4(χ + ξ,η,ζ,τ − ξ ) dξ

= −(1 − w0)∇2H 0e−χ , χ > 0,

N4(0,η,ζ,τ ) = −w0H
2 + w0H

0 + β∇2H 0,

N4 − κ = 1

�(α)

∫ ∞

0
ξα−1∂2

χN4(χ + ξ,η,ζ,τ − ξ ) dξ,

χ = 0,

N4 = κ, χ → ∞.

The solvability condition of that problem gives

(w0 − 1)∇2H 0 = 0.

In an infinite region, or in the case of periodic boundary
condition, a bounded solution H 0 cannot be a harmonic func-
tion, hence w0 = 1 and N4 = m + (−H 2 + H 0 + β∇2H 0 −
m)e−χ . Note that the obtained expression for N4 is identical
for that in the case of normal diffusion.

Finally, collecting the terms of order O(ε6) in (48), we
obtain the following equation:

∂χN6 − 1

�(α)

∫ ∞

0
ξα−1∂3

χN6(χ + ξ,η,ζ,τ − ξ ) dξ

= 1

�(α)

∫ ∞

0
ξα−1

[ − H 0
τ ξe−χ−ξ

+∇2∂χN4(χ + ξ,η,ζ,τ − ξ )

+ (H 0∇2H 0 + |∇H 0|2 + ∇2H 2)e−χ−ξ
]
dξ, χ > 0.

Substituting the expression for N4 into (52) and calculating
integrals, we find for χ > 0:

∂χN6 − 1

�(α)

∫ ∞

0
ξα−1∂3

χN6(χ + ξ,η,ζ,τ − ξ ) dξ = Re−χ ,

(52)

where

R = −[
αH 0

τ + ∇2H 0 + β∇4H 0 − ∇ · (H 0∇H 0)
]
. (53)

Equation (53) has to be solved with boundary conditions

N6(0,η,ζ,τ ) = −H 4 + H 2 + κH 0 + β∇2H 2, (54)

N6 − 1

�(α)

∫ ∞

0
ξα−1∂2

χN6(χ + ξ,η,ζ,τ − ξ ) dξ

= −κH 0 − (1 − α)H 0
τ , χ = 0, (55)

N6 = 0, χ → ∞. (56)

Solving Eq. (53) with boundary condition (54) and (56), we
find

N6 = (−H 4 + H 2 + κH 0 + β∇2H 2)e−χ

+ 1

α − 2

[ − αH 0
τ − ∇2H 0 − β∇4H 0

+∇ · (H 0∇H 0)
]
χe−χ .

Substituting the obtained solution into the flux continuity
condition (55), we obtain an amplitude equation identical to
the Sivashinsky equation [4] derived in the case of the normal
diffusion,

H 0
τ + κH 0 + ∇2H 0 + β∇4H 0 − ∇ · (H 0∇H 0) = 0. (57)

The absence of the subdiffusion parameter α in the linear
terms of Eq. (57) is the consequence of formula (47) for the
linear growth rate of long-wave disturbances in the limit of a
small segregation coefficient. The nonlinear term in (57) has
a geometric origin, and therefore it is not influenced by the
subdiffusion parameter either.

V. CONCLUSIONS

We have investigated the development of the Mullins-
Sekerka instability of a directional solidification front in a
subdiffusive medium. Though the analysis is more technically
involved than in the case of the normal diffusion, it turns out
that in the limit of a small segregation coefficient the results
are surprisingly similar. The temporal and spatial scaling of
long-wave disturbances is the same in both cases. The long-
wave limit for the growth rate and even the weakly nonlinear
equation governing the evolution of long-wave disturbances
do not include the subdiffusion parameter α.

The development of the Mullins-Sekerka instability in the
case of a directional solidification can be contrasted to the
case of a solid nucleus growth studied in Ref. [20]. The main
physical difference is as follows. The front velocity of a free
nuclear growth is determined by the subdiffusion process itself.
The motion of the directional solidification front is induced
by the externally imposed motion of the body. In the former
case, the dispersion relation that determines the development
instability contains only the power of the growth rate, σα ,
rather than σ itself, which is the consequence of the time
subordination of subdiffusion to the normal diffusion process.
In the case of the directional solidification, the structure of
the dispersion relation (40) is more complex. Though the
expression in the left-hand side of (40) has some singular
points, the long-wave expansion (47) turns out to be perfectly
analytical, like in the case of the normal diffusion. This is the
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origin of the similarity of the development of the long-wave
instability in the subdiffusion case and the normal diffusion
case.

ACKNOWLEDGMENT

The work has been partially supported by the Israel Science
Foundation (Grant No. 680/10).

[1] W. W. Mullins and R. F. Sekerka, J. Appl. Phys. 34, 323
(1963).

[2] W. W. Mullins and R. F. Sekerka, J. Appl. Phys. 35, 444 (1964).
[3] S. H. Davis, Theory of Solidification (Cambridge University

Press, Cambridge, 1999).
[4] G. I. Sivashinsky, Physica D 8, 243 (1983).
[5] A. J. Bernoff and A. L. Bertozzi, Physica D 85, 375 (1995).
[6] J. Maurer, B. Perrin, and P. Tabeling, Europhys. Lett. 14, 575

(1991).
[7] V. Emsellem and P. Tabeling, Europhys. Lett. 25, 277

(1994).
[8] N. O. Shanti, K. Araki, and J. W. Halloran, J. Am. Ceram. Soc.

89, 2444 (2006).
[9] O. Miyawaki, T. Fujii, and Y. Shimiya, Food Sci. Technol. Res.

10, 437 (2004).
[10] H. Zhang and A. I. Cooper, Adv. Mater. 19, 1529 (2007).
[11] T. Kosztolowicz, K. Dworecki, and St. Mrówczyński, Phys. Rev.
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