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Sliding drops across alternating hydrophobic and hydrophilic stripes
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We perform a joint numerical and experimental study to systematically characterize the motion of 30 μl drops
of pure water and of ethanol in water solutions, sliding over a periodic array of alternating hydrophobic and
hydrophilic stripes with a large wettability contrast and a typical width of hundreds of microns. The fraction of
the hydrophobic areas has been varied from about 20% to 80%. The effects of the heterogeneous patterning can
be described by a renormalized value of the critical Bond number, i.e., the critical dimensionless force needed to
depin the drop before it starts to move. Close to the critical Bond number we observe a jerky motion characterized
by an evident stick-slip dynamics. As a result, dissipation is strongly localized in time, and the mean velocity of the
drops can easily decrease by an order of magnitude compared to the sliding on the homogeneous surface. Lattice
Boltzmann numerical simulations are crucial for disclosing to what extent the sliding dynamics can be deduced
from the computed balance of capillary, viscous, and body forces by varying the Bond number, the surface
composition, and the liquid viscosity. Beyond the critical Bond number, we characterize both experimentally
and numerically the dissipation inside the droplet by studying the relation between the average velocity and the
applied volume forces.
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I. INTRODUCTION

In the past 10 years surface topography has proved to
be a promising tool for controlling wettability [1–4] and
liquid transport [5]. Nevertheless many challenges must still
be tackled. In particular, although it is well known that the
shape of a sessile drop can be controlled by the balance
between capillary forces and gravity [6,7], there is still a
lack of understanding on the role played by wetting and
dewetting phenomena arising from the interaction with the
solid substrate [8].

The problem of the contact line dynamics and drop motion
on structured substrates has been investigated in a number
of theoretical and numerical studies [9–18]. In a series of
works by Thiele and coworkers [10–12], the depinning process
corresponding to the loss of stability of drops moving over
a heterogeneous pattern has been studied in the limit of
small contact angles and small wettability contrasts, with the
emergence of a stick-slip motion during which the contact
line jumps from one wetting defect to another [13,14]. Using
lattice Boltzmann (LB) numerical simulations, Kusumaatmaja
and coworkers [14,15] explored the feasibility of using
chemical patterning to control the size and polydispersity
of micrometer sized drops: In agreement with other authors
[13], the stick-slip motion of the contact line was recorded
in the simulations. Wang and coworkers [16] simulated the
moving contact line in two-dimensional chemically patterned
channels using a diffuse-interface model with the generalized
Navier boundary condition: The motion of the fluid-fluid
interface has been found to be modulated by the chemical
pattern on the surfaces, leading to a stick-slip behavior of
the contact line. In addition, molecular-dynamics simulations

*sbragaglia@roma2.infn.it
†matteo.pierno@unipd.it

[17] and the Stokes equations employing a boundary element
method [18] have been applied to the problem. From the
experimental side, the sliding of a drop on a chemically
striped surface has been studied [19,20]. Morita et al. [19]
have produced micropatterned surfaces with alternating stripes
of different wettability having a width ranging from 1 to
20 μm. Their attention is focused on the anisotropic behavior
of drops sliding in the direction parallel and orthogonal to
the stripes. Suzuki et al. [20] realized micropatterned surfaces
with alternating stripes having widths of 100 or 500 μm and
a wettability contrast of about 10◦. They report smooth oscil-
lations in the advancing and receding contact angles for the
500-μm stripes and practically constant angles for the narrow
stripes. For the former pattern, fluctuations in the velocity are
reported.

Despite such an ample amount of works dealing with drops
moving on chemically patterned surfaces, a joint numerical
and experimental systematic investigation of the stick-slip
regime, the role of the energy balance, and the effect of the
patterning at the mesoscale is still lacking. Given this state
of affairs, we started a systematic and comprehensive study
to explore the dynamics of drops sliding down an inclined
plane (see Fig. 1) consisting of a periodic array of alternating
hydrophobic and hydrophilic stripes with a large wettability
contrast (about 70◦). This is a case where the usual theoretical
approaches relying on a long-wavelength limit of hydrody-
namics [11,12,21] cannot provide quantitative answers, as
they restrict themselves to drops with small contact angles
and small wettability contrasts. For small velocities, a jerky
motion featuring an evident stick-slip dynamics is observed
[22]. The mean sliding velocity is found to be systematically
affected by the patterning details, with a slowing down that
can easily reach up to an order of magnitude with respect
to the corresponding homogeneous coating with the same
static morphology (the same equilibrium contact angle). To
investigate a more ample interval of contact angles and extend
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FIG. 1. (Color online) Sliding drop on an inclined plane tilted by
an angle α. The characteristic sliding velocity U is governed by the
down-plane component of the gravitational acceleration g sin α. The
advancing contact angle θA is found to be larger than the receding
angle θR (contact angle hysteresis). The surfaces may be chemically
homogeneous (top panel) or functionalized with stripes of alternating
wettability with periodicity W (bottom panel).

the experimental observation in Ref. [22], we studied sliding
drops of water and ethanol in water mixtures. Numerical
simulations performed in close synergy with the experiments
are crucial for disclosing the physical mechanisms behind
the sliding dynamics, elucidating the relative importance
of capillary, viscous, and body forces, quantities otherwise
impossible to obtain in the experiments.

The paper is organized as follows: in Sec. II A we de-
scribe the experimental details for realizing the heterogeneous
patterns and studying the sliding drops (Sec. II B). Numerical
results are presented in Sec. III. Conclusions follow in Sec. IV.
In the Appendix (Sec. V) we report the details of the LB
method used.

II. EXPERIMENTS

A liquid drop of volume V sliding down an inclined plane
tilted by an angle α is subject to the gravity force, interfacial
forces, and the viscous drag. The down-plane component of
the drop weight is ρgV sin α, ρ being the fluid density and g

the gravity acceleration. The interfacial force is proportional
to γLGV 1/3�θ , where γLG is the liquid-gas surface tension
and �θ is a nondimensional factor depending on the contact
angle distribution along the perimeter and on the perimeter
shape. The viscous drag force is of the order of c(θd )ηV 1/3U ,
where U is the drop velocity and η is the viscosity of the
liquid drop while the function c(θd ) depends on the dynamical
contact angle distribution θd along the perimeter of the moving
droplet in contact with the surface. The function c(θd ) results
from the viscous dissipation in the wedge and encodes the

general feature that smaller contact angles are associated with
higher viscous dissipation [23,24]. Bulk dissipation is usually
smaller than the dissipation close to the contact line [24].
In addition, the difference between the advancing and the
receding contact angle (as shown in Fig. 1) does not necessarily
vanish for small velocities, a feature that is known as contact
angle hysteresis. The hysteresis results in the presence of a
critical angle αc, below which the drop is pinned [6]. Above
this threshold the force balance among gravity, viscous, and
capillary forces implies the following scaling law [23,24]
between the capillary number Ca = η U/γLG and the Bond
number Bo = (3V/4π )2/3ρg sin α/γLG,

Ca ∝ Bo − Boc

c(θd )
, (1)

where Boc = (3V/4π )2/3ρg sin αc/γLG depending on the wet-
ting hysteresis through �θ . It is reasonable to approximate
θd ≈ θeq, the equilibrium contact angle on the homogeneous
surface, either when dynamic contact angles do not deviate
severely from θeq or when the arithmetic mean of the advancing
and receding contact angles is close to θeq [24].

When drops are deposited on a surface functionalized with
stripes of alternating wettability, they may assume elongated
shapes, which are characterized by different contact angles
in the directions perpendicular and parallel to the stripes.
This morphological anisotropy has been the object of intense
scrutiny in a variety of situations [19,25–28]. The equilibrium
properties are well described by the Cassie-Baxter equation
[29],

cos θhete = f1 cos θ1 + f2 cos θ2, (2)

which averages over the surface contact angles and f1 and
f2 are the fractions of the surface with intrinsic equilibrium
contact angle θ1 and θ2, respectively. We will indicate with
subscript “1” the more hydrophobic component. Regardless
of the anisotropy of the drop, the only important require-
ment is that the drop should be large enough to cover
at least 10 different stripes, a condition which could be
reasonably assumed as representative of the whole sample
composition.

A. Materials and methods

Chemically patterned surfaces, featuring alternating hy-
drophilic and hydrophobic stripes, are realized through mi-
crocontact printing: masters with rectangular grooves are
produced by photolithography and replicated in polydime-
thilsiloxane to obtain the stamp for the printing of a solution of
octadecyltrichlorosilane (OTS) in toluene on a glass substrate.
The result is a surface presenting hydrophobic stripes (OTS
regions) alternated with hydrophilic stripes (uncoated glass
regions). Sample characterization is performed by condensing
water vapor, as shown in Fig. 2, where parallel stripes of
different wettability can be clearly evinced having a periodicity
W ∼ 200 μm.

The printed pattern is also analyzed in terms of contact
angle measurements through the Cassie-Baxter equation [29],
as reported in Table I. We measured simultaneously the
equilibrium contact angle both parallel (θ‖) and perpendicular
(θ⊥) to the stripes (see cartoons in Table I) of 4 μl water
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FIG. 2. (Color online) Vapor condensation on the heterogeneous
surfaces featuring hydrophilic glass and hydrophobic OTS parallel
stripes: Smaller drops form on the hydrophobic areas, whereas bigger
drops on the hydrophilic ones. These three patterns are characterized
by the same periodicity W ∼ 200 μm (corresponding to the scale
bar), but different fractions of OTS and glass: (a) 19% OTS and 81%
glass (f1 = 0.19, f2 = 0.81), (b) 50% OTS and 50% glass (f1 = 0.5,
f2 = 0.5), and (c) 83% OTS and 17% glass (f1 = 0.83, f2 = 0.17).

drops (which cover about 12–14 W ), using the experimental
apparatus described in Ref. [30]. The contact angle evaluation

is the mean of the values measured for at least five independent
droplets deposited on different positions on the surface and
the error is their standard deviation. In agreement with
Refs. [19,28], only the equilibrium contact angle parallel
to the stripes is compatible with the theoretical prediction
calculated through the Cassie-Baxter equation (see Table I)
and the asymmetry is more pronounced in the case of the more
hydrophilic surfaces.

To compare the sliding of drops between heterogeneous
and homogeneous surfaces, different coatings of glass slides
have been produced with a variety of molecules and methods:
OTS, n-octyltrimethoxysilane, and trichloro(1H,1H,2H,2H-
perfluorooctyl)silane deposited from the vapor phase or by
immersion in a solution of toluene, obtaining contact angles
ranging from θeq = 71◦ ± 2◦ to θeq = 115◦ ± 2◦. Sliding
measurements on these surfaces are performed with drops of
distilled water (ρ = 1000 kg m−3, η = 1 cP, γLG = 72.8 mN
m−1, and V ≈ 30 μl, corresponding to a contact area about
30 W long) and drops of a solution of ethanol in water 30%
w/w (ρ = 954 kg m−3, η = 2.5 cP, γLG = 35.5 mN m−1 [31],
and V ≈ 30 μl, with a length of about 30–35 W ) through a
setup similar to that in Ref. [32]. Drops of desired volume are
deposited by means of a vertical syringe pump on the already
inclined surface, placed on a tiltable support whose inclination
angle α can be set with 0.1° accuracy. A mirror mounted
under the sample holder at 45° with respect to the surface
allows viewing of the contact line and the lateral side of the
drop simultaneously [32]. The drop is lightened by two white
LED backlights and is observed through a complementary
metal-oxide semiconductor (CMOS) camera equipped with
a macro zoom lens. Acquired sequences of images, where
drops appear dark on a light background, are analyzed through
a custom-made program which identifies the drop contour
and then fits it with a polynomial function, subsequently
used to evaluate the front and rear contact points and
angles [33].

TABLE I. (Color online) Static contact angles of both homogeneous and heterogeneous surfaces of glass [red (dark)] and OTS [yellow
(light)]. Heterogeneous samples are labeled with the corresponding OTS percentage. In agreement with Refs. [19,28] only the static contact
angle parallel to the stripes is compatible with the theoretical prediction calculated through the Cassie-Baxter equation (2).

f1 f2 Cassie-Baxter
ID Sample Cartoon (fOTS) (fglass) Equilibrium contact angle prediction

GLASS Homogeneous 0 1 32◦ ± 3◦ –

OTS Homogeneous 1 0 110◦ ± 3◦ –

OTS 19% Heterogeneous 0.19 0.81 θ⊥ = 74◦ ± 3◦ θ|| = 58◦ ± 4◦ 52◦ ± 2◦

OTS 50% Heterogeneous 0.50 0.50 θ⊥ = 83◦ ± 2◦ θ|| = 72◦ ± 2◦ 75◦ ± 2◦

OTS 83% Heterogeneous 0.83 0.17 θ⊥ = 100◦ ± 3◦ θ|| = 100◦ ± 3◦ 98◦ ± 2◦
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B. Experimental results

The sliding of water drops down the heterogeneous samples
has been observed in the direction perpendicular to the stripes,
as shown in Fig. 1. In the case of surfaces with wider stripes
of glass [Fig. 2(a)], drops assume an asymmetric shape,
elongated in the direction of the stripes, and get pinned for
every inclination angle up to 90◦ so sliding measurements
are not possible. Drops on surfaces with stripes of glass and
OTS of equal width [Fig. 2(b)] and on surfaces with larger
stripes of OTS [Fig. 2(c)] are not affected by this pronounced
asymmetry and the motion is studied for various inclinations α

of the sample. To extend the range of static wettability on the
heterogeneous samples, we also studied the sliding of ethanol
in water drops (see Sec. II A) down the surface with stripes
of equal width. An example of the particular drop dynamics
in these three different situations is shown in Fig. 3. The drop
clearly advances with a stick-slip behavior, with jumps of the
order of the pattern periodicity W , on the surface formed by
OTS and glass stripes of equal width (see the upper and middle
panels of Fig. 3). The time period T is defined as the time
required to a drop for a displacement equal to W . Considering
point (a) in the top graph of Fig. 3 as the beginning of T ,
at point (b) the front of the drop suddenly jumps forward
by a distance almost equal to W/2, while the rear contact
line is pinned. After the jump, the front line slowly advances
and subsequently the rear line jumps by a distance equal to
W , corresponding to points (c) and (d). The period T ends
when the front contact point covers a length of W/2 before
performing the next jump. The process then repeats itself.
In correspondence to the leap of the front line, a fall in θA

occurs, whereas θR reaches the minimum value just before
the depinning of the rear contact point and then jumps to the
maximum value in correspondence with the crossing of W and,
finally, during the subsequent pinning, gradually decreases. We
point out that the pinning-depinning transition occurs through
a discontinuity both in the position and in the contact angle,
which is more pronounced in the rear of the drop. This behavior
is observed both in the case of ethanol in water and pure water
drops on the same surface (OTS 50%), differing only by the
contact angle values that are higher in the case of water drops.
On the other hand, the behavior of water drops on surfaces
with larger stripes of OTS differs substantially (see the bottom
panel of Fig. 3): Even if drop motion is characterized by the
same space periodicity W , the trend of the front and the rear
contact points is smoother and does not feature any net jump.
Also θA and θR exhibit only oscillations without any marked
discontinuity.

By performing sliding measurements we can derive the
relationship between the drop mean velocity U and the
inclination angle α of the surface. Figure 4 reports data of
water drops sliding on striped surfaces OTS 50% and OTS
83% and on homogeneous surfaces with similar wettabilities.
Above the critical angle αc the sliding velocity U scales
linearly with sin α, as described by Eq. (1). We point out
that experimentally we still observe motion even for tilt a
few degrees (�5◦) smaller than αc, a condition in which the
drop is moving at low Ca where the viscous dissipation is
negligible and the prediction of Eq. (1) is no more applicable.
Nonetheless, the determination of αc has been performed by

FIG. 3. (Color online) Time dependence of the front and rear
contact points (left axis) and the advancing and receding contact
angles (right axis). Space is expressed in units of the pattern
periodicity W and time in units of the period T (the time required
for a displacement of the drop equal to W ). Top: Measurement of a
30-μl drop of ethanol in water (30% w/w) sliding down the sample
with stripes of equal width (OTS 50%); middle: data for a 30-μl
water drop on the surface OTS 50% formed by the same percentage
of glass and OTS (f1 = f2 = 0.5); bottom: measurement of a 30-μl
water drop on the sample OTS 83% featuring larger stripes of OTS
(the hydrophobic part) with f1 = 0.83, f2 = 0.17. Boxes on the left
report corresponding experimental details.

extrapolating the linear trend in the dissipative sliding up to
zero velocity. Indeed the stick-slip regime is typically well
observed close to αc. Considering the heterogeneous and
homogeneous surfaces with similar equilibrium contact angle,
we observe two distinctive features: (i) at the same inclination
α, the velocity is always lower on the heterogeneous surface
than on the homogeneous one and the angle αc is higher
for the heterogeneous surfaces which are characterized by
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FIG. 4. (Color online) Top: Mean velocity of 30-μl water drops
sliding down the heterogeneous (open symbols) surfaces OTS 50%
(f1 = f2 = 0.5, θhete = 72◦) and OTS 83% (f1 = 0.83, f2 = 0.17,
θhete = 100◦) and down homogeneous (filled symbols) surfaces of
similar wettabilities, inclined by several angles α. Lines are linear
fit to the data taken on a range where viscous dissipation is not
negligible. The intercept at U = 0 defines the critical angle αc.
Bottom: Ca vs (Bo − Boc) curves for homogeneous (filled symbols)
and heterogeneous (open symbols) surfaces of different wettability.
Measures on heterogeneous surfaces (open symbols) are performed
with water drops on samples OTS 50% (f1 = f2 = 0.5) and OTS
83% (f1 = 0.83, f2 = 0.17) and with ethanol in water (30% w/w)
drops on sample OTS 50% (f1 = f2 = 0.5), as reported in Fig. 3. The
experimental data and the corresponding fits are horizontally shifted
by Boc.

a larger pinning and (ii) the slope of the curve U versus
sin α is the same for similar wettability, regardless of the
composition of the surface, and is higher for the surfaces
characterized by higher equilibrium contact angle. To better
understand the dependence of the curve U versus sin α on
the static wettability, we extended these measurements to
several homogeneous samples featuring different equilibrium
contact angles. Such data are collected in the bottom panel
of Fig. 4 and expressed in terms of the dimensionless
numbers Ca and Bo − Boc in order to better appreciate the
range of slopes of the curves. We underline how the slope
�Ca/�Bo, being inversely proportional to the dissipation (see

Sec. II), clearly increases as the hydrophobicity of the surfaces
increases [7,24].

III. NUMERICAL RESULTS

For the numerical simulations we employ a mesoscopic LB
model [34] to reproduce the diffuse interface dynamics of a
binary mixture. LB turned out to be a very effective method
to describe mesoscopic physical interactions and nonideal
interfaces coupled to hydrodynamics. Many multiphase and
multicomponent LB models have been developed on the
basis of different points of view, including the Gunstensen
model [35], the free-energy model [36], and the “Shan-
Chen” model [37], the latter being widely used thanks to its
simplicity and efficiency in representing interactions between
different species and different phases [38–44]. The numerical
simulations with the LB models (see the appendix) are used to
reveal the importance of the various terms in the equations of
motion. In particular, these numerical simulations are crucial
to elucidate the relative importance of capillary, viscous, and
body forces in the dynamical evolution of the drop. We
will analyze the case of a cylindrical drop on a chemically
striped surface with the drop radius such that R ≈ 10W .
Simulating two-dimensional drops allows us to better resolve
the hydrodynamics inside the drop and approach with higher
accuracy the hydrodynamic limit of the LB equations (see the
appendix). We will first present results with a viscous ratio
χ = ηin/ηout = 1, where ηin, ηout are the dynamic viscosities
inside (inner viscosity) and outside (outer viscosity) the drop,
respectively. Later, we will also elaborate on the case of
different dynamic viscosities for better comparison with the
experimental results. The dynamic equations we reproduce are
the continuity equations and the Navier-Stokes equations of a
fluid mixture with two components ζ = A,B, with A the rich
component in the drop phase. As for the momentum equation,
in the limit of very small Reynolds number, we integrate in
time the following equation (x is the down plane coordinate
and repeated indexes are summed on):

ρ
∂ux

∂t
= −∂Pxβ

∂rβ

+ ∂σxβ

∂rβ

+ ρAg sin αδix, (3)

where ρζ is the density of the ζ -th component (ρ = ∑
ζ ρζ is

the total density), uα refers to the α-th projection of the fluid
velocity, σαβ is the viscous stress tensor, and Pαβ is the pressure
tensor [45] encoding both the nonideal effects at the interface
(liquid-gas surface tension) and the interation with the solid
wall (wettability). All the details of the model are reported
in the appendix. The diffuse interface time-dependent Stokes
equation (3) is integrated over the drop volume and made
dimensionless with respect to the surface tension force RγLG.
We end up with the following balance:

Ma(t) = Fcap(t) + D(t) + Fg, (4)

where a(t) is the acceleration of the drop with mass M and Fg

is the down-plane component of the gravitational force. The
term Fcap (calculated as the integral of the pressure tensor term)
accounts for the nonuniform pressure and curvature distortion
as well as the capillary force on the drop at the contact line.
The function D(t) (the integral of the viscous stress term)
quantifies the drag force due to viscous shear.
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FIG. 5. (Color online) Density snapshots (left column) during the stick-slip dynamics for a situation with the same fraction of hydrophilic
and hydrophobic areas, i.e., f1 = f2 = 0.5, and for a Bond number Bo = 0.017. The orange (light) [blue (dark)] color is associated to high-
(low-) density regions. The four snapshots (a)–(d) refer to four different time steps as reported in the top panel of Fig. 6. The corresponding
velocity-magnitude snapshots (middle column) are also reported. All data are reported in lbu (LB units). In the right column panel we report
momentum field in the center-of-mass frame.

In Figs. 5 and 6 we show the emergence of the stick-slip
dynamics in the numerical simulations. We have reproduced
the same wettabilities experimentally investigated in Fig. 3 and
explored different values of the Bond numbers by changing the
value of g sin α. Figure 5 reports snapshots of the density and
velocity corresponding to the pinning and depinning transition
of the drop. In the left sequence (density snapshots), the
front contact line gets pinned before entering the hydrophobic
regions [Fig. 5(a)]. Then it penetrates slowly through the
hydrophobic area with an increasing advancing angle until
it enters the hydrophilic region performing a sudden jump
[Fig. 5(b)]. The rear contact line motion on the hydrophilic
and hydrophobic stripes is similar, the only difference being the
receding contact angle is decreasing as the drop stays pinned
and increases after the jump [Figs. 5(c) and 5(d)]. In parallel,
the middle sequence of velocity snapshots shows a velocity
magnitude close to zero during the pinning on hydrophobic
areas [Figs. 5(a) and 5(c)] and a spike in the correspondence

of the drop slip [Figs. 5(b) and 5(d)]. In the right sequence
we report the momentum field in (and around) the drop in
the reference frame of the center of mass. In a stationary
homogeneous case (not shown), we confirm the presence
of a well-established rotational flow [46–49]. On the other
hand, the sliding on heterogeneous surfaces is characterized
by rotational flow mostly near the depinning contact point,
as we can see from the snapshots corresponding to the rear
and front jumps (see Fig. 5). We point out that the jumps of
the front and rear contact lines do not take place at the same
instant, since the front sticks as the rear slips and vice versa, as
clearly confirmed both experimentally (Fig. 3) and numerically
(Fig. 6). Correspondingly, the top panel of Fig. 6 displays the
time evolution of the positions of the front and rear contact
points normalized to W for a situation with the same fraction
of hydrophilic and hydrophobic areas, i.e., f1 = f2 = 0.5, and
for a Bond number Bo = 0.017 [22]. The time lag T is the
characteristic period of the stick-slip dynamics, similarly to
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FIG. 6. (Color online) Top: Time evolution in dimensionless
units (see text for details) of the position of the rear and the front
contact points of a drop sliding down the heterogeneous surface for
a Bond number Bo = 0.017 and f1 = f2 = 0.5. The front contact
point position is translated for visualization. Letters refer to the
snapshots for density and velocity magnitude reported in Fig. 5.
The inset shows the corresponding situation with larger hydrophobic
stripes, achieved by simulating a case with f1 = 0.75, f2 = 0.25.
The bottom panel compares the position of the rear contact point
for the heterogeneous (f1 = f2 = 0.5) and the homogeneous case
at the same Bond number (Bo = 0.017), with the homogeneous
equilibrium contact angle chosen in agreement with the Cassie-Baxter
equation (2). The time scale T indicates the characteristic period of
the stick-slip dynamics at Bo = 0.017. The average speed of the
heterogeneous case is visibly an order of magnitude less than that of
the homogeneous case.

what is reported in Fig. 3. In the inset of the top panel of Fig. 6
we can appreciate the change in the dynamics induced by larger
hydrophobic stripes, achieved by simulating a case with f1 =
0.75, f2 = 0.25: Drop motion has the same space periodicity
W , but the front contact point motion is smoother, similarly
to what we have experimentally observed in the bottom panel
of Fig. 3. The rear contact point, instead, experiences more
frequent jumps forward. This may be seen as a signature
of the transition from the regular stick-slip dynamics to a
homogeneous stationary motion. In the bottom panel of Fig. 6
we compare the stick-slip dynamics of the heterogeneous case

with f1 = f2 = 0.5 with that of a homogeneous substrate at
the same Bond number (Bo = 0.017), with the homogeneous
equilibrium contact angle chosen in agreement with the Cassie-
Baxter equation (2). The mean velocity of the heterogeneous
case is visibly an order of magnitude less that that of the
homogeneous case.

Figure 7 presents the analysis of the balance equation (4),
comparing the sliding on homogeneous and heterogeneous
surfaces, for the same Bo and for a time frame 2T . The homo-
geneous case (top panel) is steady: the energy provided by Fg

is almost entirely transferred into dissipation, apart from the
deformation of the interface which causes a term Fcap smaller
by a factor ≈10 with respect to the heterogeneous case (middle
panel). As already reported [22], in the striped surface, when
the drop is pinned, Fg is almost balanced by Fcap (time step
(a) in Fig. 5). Immediately after, the front contact line jumps
forward and the drop depins (Fcap → 0) with a consistent dip in
the viscous drag force [the time step in Fig. 5(b)]. The process
repeats itself for the rear contact line (time steps in Figs. 5(c)
and 5(d)]. Overall, we see that the effective dissipation in the
heterogeneous case is strongly suppressed as compared with
the stationary homogeneous case. This is because the large
wettability contrast causes additional energy to be stored in
the nonequilibrium configuration of the drop which can pin
before the contact lines jump forward. The analysis of the
balance equation (4) helps also to understand the transition
from the stick-slip dynamics to the steady motion. The bottom
panel of Fig. 7 shows the effect of an increase in the Bond
number for the dynamics on the heterogeneous case, with the
time scale T still indicating the characteristic period of the
stick-slip dynamics at Bo = 0.017: As the Bond number is
increased, the jumps of the rear and the front contact points
become more frequent while the amplitude of the fluctuations
of Fcap and the acceleration a(t) do not change appreciably. The
change in Bo is compensated by an increase of the drag force
and, hence, an increase of the mean velocity. For even larger
Bo the drag force will dominate over Fcap, the variations in a(t)
and Fcap become negligible, and the motion of the drop can be
paralleled to that of a drop over a homogeneous substrate with
an effective equilibrium contact angle (see below). We point out
that when the Bo is significantly greater than Boc the relative
contribution of the terms in Eq. (4) becomes more similar to the
homogeneous case.

The top panel of Fig. 8 shows the position of the front
contact point as a function of time for different Bo. Increasing
Bo, we see that the net separation of time scales, characterizing
the pinning of the drop and the jump forward, is progressively
disappearing. The capillary number computed from the mean
velocity of the drop is displayed as a function of Bo in the
bottom panel of Fig. 8. We have chosen various wettabilities,
producing the same Cassie-Baxter angle in Eq. (2). At variance
with the experimental data of Fig. 4, sliding on homoge-
neous surfaces in numerical simulations is by construction
not affected by the hysteresis. Therefore, from Fig. 8 we
can appreciate the effect of the pattern in introducing a
critical Bond number for the onset of motion, representing
the increase of the static energetic barrier that must be
overwhelmed by gravity before the drop starts to move. The
slope �Ca/�Bo is basically unchanged if we keep fixed the
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FIG. 7. (Color online) Time evolution of the various terms in
the balance equation (4) for the homogeneous and heterogeneous
(f1 = f2 = 0.5) cases. Both the top panel (homogeneous case with
static angle θeq ≈ 85◦) and the middle panel (heterogeneous case
with θhete ≈ 85◦, with θ1 = 50◦, θ2 = 120◦) refer to Bo = 0.017. The
bottom panel shows the effect of an increase of the Bond number on
the dynamics for the heterogeneous pattern at Bo = 0.02. The time
lapse considered is the same for the three cases, with the time scale
T indicating the characteristic period of the stick-slip dynamics at
Bo = 0.017.

effective contact angle provided by the Cassie-Baxter equation
(2), at least for Bo reasonably larger than Boc [18]. This
can be understood in terms of a simple qualitative argument
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FIG. 8. (Color online) Top: Time evolution in dimensionless
units (see text for details) of the position of the front contact points for
the heterogeneous case with f1 = f2 = 0.5 at different Bo. The time
scale T indicates the period of the stick-slip dynamics at Bo = 0.017
(see text for details). Bottom: Relation between Ca and Bo for both
homogeneous and heterogeneous surfaces. In the heterogeneous case
the capillary number is computed from the mean velocity and different
intrinsic equilibrium contact angles θ1 and θ2 are chosen, all of them
leading to the same θhete in equation (2). The critical Bond number
is zero for the homogeneous case, while it differs from zero for the
heterogeneous case.

allowing us to identify an effective angle, parametrizing
the effective (average) dissipation at the contact line. For
the homogeneous surface, viscous dissipation develops at
the contact line and counterbalance the work done by the
external (gravity) force on the drop. The viscous dissipation
is parametrized by the dynamic angle θd , which is close to
the equilibrium angle θeq for small Ca and small hysteresis
(see Sec. II A). The stationary wedge is therefore identified by
the angle whose cosine projects the liquid-gas surface tension
(γLG) to balance the difference between the solid-gas and
solid-liquid surface tensions (γSG − γSL), i.e., Young equation
γLG cos θeq ≈ γSG − γSL. In the heterogeneous case, when we
seek the angle whose cosine projects the liquid-gas surface
tension to balance the difference between the solid-gas and
solid-liquid surface tensions averaged over the period, we end
up with the Cassie-Baxter prediction (2).

To check the validity of this argument against a change in
the viscous ratio between the inner and outer drop regions, as
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FIG. 9. (Color online) Slope of the Ca vs Bo curve as a function
of the equilibrium contact angle. Open (filled) symbols refer to
the heterogeneous (homogeneous) experimental values analyzed in
Fig. 4. Numerical simulations are performed with viscous ratios
χ = 1 and χ = 20 between the drop phase and the outer phase
for both the homogeneous and the heterogeneous cases. The dashed
line is the scaling law predicted by (1), calculated for small drops
sliding down homogeneous surfaces with a wedge dissipation as the
dominant dissipative contribution [7,22,24].

well as a change in the fractions f1 and f2, we conducted a
series of numerical simulations by changing the dynamic vis-
cosity of the outer phase, exploring cases with f1 = 1/4,f2 =
3/4; f1 = 1/2,f2 = 1/2; and f1 = 3/4,f2 = 1/4. This offers
the possibility of complementing the results presented in Fig. 4
and extending the results presented in Ref. [22] which are
limited to situations with f1 = 1/2,f2 = 1/2. In Fig. 9 we
display the slope �Ca/�Bo, including both the experimental
data of Fig. 4 as well as the numerical results with two viscous
ratios, χ = 1 and χ = 20. Similarly to what we have done for
the experiments, we have performed numerical simulations
for both homogeneous and heterogeneous samples. In all
mesoscale approaches, as already noticed elsewhere [15], the
nonideal interface is too wide (relative to the drop radius)
with respect to the experiments. The resulting contact line
velocity is larger and the drop therefore moves too quickly in
the simulations. This problem is accounted for by introducing
a scaling factor, the same for all the numerical simulations.
Such a scaling factor is found to be of the order of the ratio
log(ξLB/RLB)/ log(ξ/R) ≈ 0.2, with ξ the interface width
(quantities without subscript refer to experimental values), as
one would guess by looking at the solution of the laminar
flow equations in a wedge [7,24]. The numerical results with
χ = 1 do not show any appreciable variation of the slope
�Ca/�Bo with the equilibrium contact angle, indicating that
the dissipation is unchanged at changing the equilibrium
contact angle. For a drop sliding down a homogeneous surface
with equilibrium contact angle θeq, a flow develops in the
outer wedge angled by an angle π − θeq. Being the viscosity
of the inner and outer phase the same, the dissipation for a
system composed of a drop with equilibrium contact angle
θeq is therefore the same as that of a drop with equilibrium
contact angle π − θeq. This symmetry in changing the outer

fluid with the inner fluid is responsible for the independence
of �Ca/�Bo on the contact angle. Repeating the simulations
with the heterogeneous cases, we obtain the same value of
�Ca/�Bo, witnessing that the average dissipation for the
patterned surfaces grows in a similar way at increasing the
Bond number. To observe a variation of the slope with respect
to a change in the equilibrium contact angle, we need to
change the viscous ratio χ . Numerical results are shown for
the case χ = 20: The change in the slope that we achieve
is not as large as the one that we get in the experiments,
and the reason is probably because such a viscous ratio is still
smaller than the experimental values. Unfortunately, numerical
simulations with very large χ are quite unstable and technical
improvements are needed to cure such numerical instabilities.
At a very large viscous ratio the dependence of the slope
�Ca/�Bo as a function of the equilibrium contact angle
θeq can be described by the scaling law Eq. (1) with c(θeq)
calculated through the so-called wedge flow approximation
[7,22,24]: Such a scaling law is reported for comparison with
the experimental and numerical data. One has also to note that
the usual rescaling factor used in the numerical simulation
is intimately connected to the idea that viscous dissipation
is dominated by contact line dissipation. A recent detailed
numerical study of dissipation loss inside sliding drops [46]
shows non-negligible contributions from the region below
the drop’s center of mass. This leads to a refined scaling
law for the droplet velocity as a function of Bo, which
differs from the traditional scaling [7]. This can also be a
source of discrepancy between the numerical results and the
experiments for large contact angles. Here we recall that
the scaling of �Ca/�Bo encodes the general feature that
smaller contact angles are associated with higher viscous
dissipation (see Sec. II). Overall, the numerical simulations
provide evidence that the slope �Ca/�Bo is well parametrized
by the equilibrium contact angle, either homogeneous or
heterogeneous, even in situations where the outer phase has a
non-negligible viscosity with respect to the drop phase.

IV. CONCLUSIONS

We have characterized both experimentally and numerically
the motion of drops sliding across alternating stripes having a
large wettability contrast. For Bond numbers close to a critical
Bond number, these drops undergo a characteristic nonlinear
stick-slip motion whose average speed can easily be an order
of magnitude smaller than that measured on a homogeneous
surface having the same equilibrium contact angle. The slow-
down is the result of the pinning-depinning transition of the
contact line, which causes energy dissipation to be localized
in time and a large part of the driving energy to be stored in the
periodic deformations of the contact line when crossing the
stripes. We have quantified the change of dissipation inside
the drop as a function of the increasing Bond number by
comparing the motion of the drops on heterogeneous patterns
with those on homogeneous substrates: the main effects of the
heterogeneous patterning can be readsorbed in a renormalized
value of the critical Bond number, representing the increase of
the static energetic barrier that must be overcome by gravity
before the drop starts to move. Our findings suggest workable
strategies to passively control the motion of drops by a suitable
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tailoring of the chemical pattern. It is also worth underscoring
the essential role played by numerical simulations, which offer
great flexibility in investigating a variety of load conditions
and performing local measurements of capillary, viscous, and
body forces, which are otherwise impossible to obtain by
experimental means. This would provide invaluable insights
in the engineering of chemical patterns in open microfluidic
devices.
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APPENDIX

The LB equation evolves in time the discretized probability
density function fζi(r,t) to find at position r and time t a fluid
particle of component ζ = A,B with velocity ci according to
the LB updating scheme

fζi(r + τ ci ,t + τ ) = f ∗
ζ i(r,t) = fζi(r,t) + �ζi + �

g

ζi,

(A1)

with the time step τ set to a unitary value. The (linear)
collisional operator expresses the relaxation of the probability
distribution function towards the local equilibrium f

(eq)
ζj [the ∗

in (A1) indicates the postcollisional probability density]

�ζi =
∑

j

Lij

(
fζj − f

(eq)
ζj

)
, (A2)

where the expression for the equilibrium distribution is a result
of the projection onto the lower-order Hermite polynomials
[50,51] and the weights wi are a priori known through the
choice of the quadrature

f
(eq)
ζ i = wiρζ

[
1 + u · ci

c2
s

+ uu : (ci ci − I)

2c4
s

]
, (A3)

wi =
⎧⎨
⎩

1/3 i = 0
1/18 i = 1 . . . 6
1/36 i = 7 . . . 18

, (A4)

where cs is the isothermal speed of sound (a constant in the
model) and u is the fluid velocity. Our implementation features
a D3Q19 model with 19 velocities,

ci =

⎧⎪⎨
⎪⎩

(0,0,0) i = 0

(±1,0,0),(0,±1,0),(0,0,±1) i = 1 . . . 6

(±1,±1,0),(±1,0,±1),(0,±1,±1) i = 7 . . . 18

.

(A5)

The operator Lij in Eq. (A2) is the same for both components
(this choice is appropriate when we describe a symmetric

binary mixture) and is constructed to have a diagonal represen-
tation in the so-called mode space: The basis vectors ek (k =
0, . . . ,18) of mode space are constructed by orthogonalizing
polynomials of the dimensionless velocity vectors [50,51]. The
basis vectors are used to calculate a complete set of moments,
the so-called modes mζk = ∑

i ekifζ i (k = 0, . . . ,18). The
lowest-order modes are associated with the hydrodynamic
variables. In particular, the zeroth-order momenta give the
densities for both components,

ρζ = mζ0 =
∑

i

fζ i , (A6)

with the total density given by ρ = ∑
ζ mζ0 = ∑

ζ ρζ . The
next three momenta m̃ζ = (mζ1,mζ2,mζ3), when properly
summed over all the components, are related to the velocity of
the mixture

u ≡ 1

ρ

∑
ζ

m̃ζ + 1

2ρ
τ g = 1

ρ

∑
ζ

∑
i

fζ i ci + 1

2ρ
τ g. (A7)

The other modes are the bulk and the shear modes (associated
with the viscous stress tensor) and four groups of kinetic modes
which do not emerge at the hydrodynamical level [50]. Since
the operator Lij is diagonal in mode space, the collisional term
describes a linear relaxation of the nonequilibrium modes

m∗
ζk = (1 + λk)mζk + m

g

ζk, (A8)

where the relaxation frequencies −λk (i.e., the eigenvalues of
−Lij ) are related to the transport coefficients of the modes. The
term m

g

ζk is related to the k-th moment of the forcing source
�

g

ζi associated with a forcing term with density gζ (r,t). While
the forces have no effect on the mass density, they transfer
an amount gζ τ of total momentum to the fluid in one time
step. The forcing term is determined in such a way that the
hydrodynamical equations (A11) and (A12) are recovered and
can be written as [52]

�
g

ζi = wiτ

c2
s

(
2 + λM

2

)
gζ · ci + wiτ

c2
s

[
1

2c2
s

G :
(
ci ci − c2

s I
)]

,

(A9)

where the components of tensor G are defined as

Gαβ = 2 + λs

2

(
uαgζβ + gζαuβ − 2

3
uγ gζγ δαβ

)

+ 2 + λb

3
uγ gζγ δαβ. (A10)

Using the LB model we are able to reproduce the continuity
equations and the Navier-Stokes equations for both densities
(repeated indexes denote that they are summed upon) [53]

∂

∂t
ρζ + ∂

∂rβ

(ρζ uβ) = ∂βDζβ, (A11)

ρ

[
∂uα

∂t
+ uβ

∂uα

∂rβ

]
= − ∂p

∂rα

+ ∂σαβ

∂rβ

+ gζα. (A12)

In the above equations, ρ = ∑
ζ ρζ is the total density and

p = ∑
ζ pζ = ∑

ζ c2
s ρζ is the internal pressure of the mixture.

The α-th projection of the velocity is denoted with uα . The term
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∑
ζ gζα refers to all the contributions coming from internal

and external forces. As for the internal forces, we will use the
Shan-Chen model [37] for multicomponent mixtures,

gζα(r) = −ρζ (r)
∑

i

∑
ζ ′ �=ζ

wigABρζ ′(r + τ ci)ciα ζ,ζ ′ = A,B,

(A13)

where gAB is a function that regulates the interactions between
different pairs of components. The sum in Eq. (A13) extends
over a set of interaction links coinciding with those of the LB
dynamics [see Eq. (A5)]. When the coupling strength parame-
ter gAB is sufficiently large, demixing occurs and the model can
describe stable interfaces with a surface tension. The effect of
the internal forces can be recast into the gradient of the pressure
tensor P

(int)
αβ [45], thus modifying the internal pressure of

the model, i.e., Pαβ = p δαβ + P
(int)
αβ . The thermodynamic

properties of the drop are input via such a pressure tensor:
This accounts for the surface tension at the interface between
the two fluids, as well as the capillary forces at the contact
line via a suitable imposition of wetting boundary conditions
for the densities at the wall. The diffusion current Dζ and the
viscous stress tensor σ in Eqs. (A11) and (A12) are given by

Dζα = μ

[(
∂pζ

∂rα

− ρζ

ρ

∂p

∂rα

)
−

(
gζα − ρζ

ρ
gα

)]
,

σαβ = ηs

(
∂uβ

∂rα

+ ∂uα

∂rβ

− 2

3

∂uγ

∂rγ

δαβ

)
+ ηb

∂uγ

∂rγ

δαβ. (A14)

The relaxation times of the momentum (λM ), bulk (λb), and
shear (λs) modes in Eq. (A2) are related to the transport
coefficients of hydrodynamics as

μ = −τ

(
1

λM

+ 1

2

)

ηs = −ρc2
s τ

(
1

λs

+ 1

2

)
(A15)

ηb = −2

3
ρc2

s τ

(
1

λb

+ 1

2

)
,

where μ is the mobility and ηb, ηs the bulk and shear vis-
cosities, respectively. We introduce the effect of gravity in the
Navier-Stokes equation with a body force density, ρAg sin α,
applied to the A phase along the x direction. For the numerical
simulations presented we have used gAB = 1.5 lbu (LB units)
in Eq. (A13) corresponding to a surface tension γLG = 0.2 lbu
and associated bulk densities ρA = 2.3 lbu and ρB = 0.06 lbu
in the A-rich region. The relaxation frequencies in Eq. (A15)
are such that λM = λs = λb = −1.0 lbu, corresponding to a
viscous ratio χ = ηin/ηout = 1, where ηin, ηout are the dynamic
viscosities inside (inner viscosity) and outside (outer viscosity)
the drop, respectively. The cases with χ �= 1 are obtained
by letting λs depend on the component ζ , thus allowing us
to model an inner dynamic viscosity that is larger than the
outer one.
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