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We invoke mean-field density functional theory (DFT) to investigate the phase behavior of an amphiphilic fluid
composed of a hard-sphere core plus a superimposed anisometric Lennard-Jones perturbation. The orientation
dependence of the interactions consists of a contribution analogous to the interaction potential between a pair
of “spins” in the classical, three-dimensional Heisenberg fluid and another one reminiscent of the interaction
between (electric or magnetic) point dipoles. At fixed orientation both contributions are short-range in nature
decaying as r−6 (r being the separation between the centers of mass of a pair of amphiphiles). Based upon two
mean-field-like approximations for the pair correlation function that differ in the degree of sophistication we
derive expressions for the phase boundaries between various isotropic and polar phases that we solve numerically
by the Newton-Raphson method. For sufficiently strong coupling between the Heisenberg “spins” both mean-field
approximations generate three topologically different and generic types of phase diagrams that are observed in
agreement with earlier work [see, for example, Tavares et al., Phys. Rev. E 52, 1915 (1995)]. Whereas the dipolar
contribution alone is incapable of stabilizing polar phases on account of its short-range nature it is nevertheless
important for details of the phase diagram such as location of the gas-isotropic liquid critical point, triple, and
tricritical points. By tuning the dipolar coupling constant suitably one may, in fact, switch between topologically
different phase diagrams. Employing also Monte Carlo simulations in the isothermal-isobaric ensemble the
general topology of the DFT phase diagrams is confirmed.

DOI: 10.1103/PhysRevE.89.012310 PACS number(s): 61.25.Em, 64.60.A−, 64.60.fd, 05.10.Ln

I. INTRODUCTION

Amphiphiles are chemical compounds consisting of moi-
eties with antithetic properties. An example are surfactants that
are composed of hydrophilic and hydrophobic parts. Because
of the presence of moieties with conflictive properties in
the same molecule amphiphiles exhibit a rather rich phase
behavior and a large variety of different structures that can
form through self-assembly [1]. A special class of amphiphiles
are Janus particles which are particles with chemically distinct
surfaces. These surfaces cause an orientation dependence of
the interaction potential [2,3]. Advances in chemical synthesis
nowadays permit to fabricate Janus particles with sizes all the
way down to the nanometer length scale [4].

In a recent study we investigated the formation of ordered
liquid phases in an amphiphilic fluid [5]. Polarity of the ordered
phase is promoted by orientation dependent intermolecular
interactions resembling those characteristic of the interaction
between a pair of “spins” in the classical, three-dimensional
Heisenberg model (coupling constant εH) with superimposed
“dipolar” interactions (coupling constant εD). In our model
both the “spin-spin” and the “dipole-dipole” interactions are
short-range, that is at fixed relative orientation of an am-
phiphilic pair the intermolecular interaction potential decays
proportional to r−6 where r denotes the distance between the
centers of mass of the amphiphiles. As was argued earlier
by Erdmann et al., who introduced this model, chains of
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amphiphiles should form under favorable thermodynamic
conditions if both εH and εD are positive [6]. Ideally, in these
chains the North Pole of any given amphiphile would then be
facing the South Pole of its neareat neighbor along the chain
and vice versa (see Fig. 1 and Table 1 of Ref. [6]). Employing
Landau theory we could show that in our model a line of critical
points exists separating isotropic from polar liquid phases
similar to the Curie line in ferroelectrics [5]. However, so
far it is not known whether and how these second-order phase
transitions interfere with other fluid-fluid transitions such as
condensation.

In our earlier study we could also demonstrate that the
formation of the ordered phase is almost exclusively driven
by the Heisenberg contribution to the interaction potential
whereas the “dipolar” one is negligible [see Eqs. (3.26)
and (3.33) of Ref. [5]]. This is consistent with the observation
that our model pertains to the three-dimensional Heisenberg
universality class [7]. The negligible influence of the “dipolar”
part of the interaction potential on the formation of a polar
liquid phase is also not surprising because of the short-
range character of the “dipolar” interactions. This is in
contrast to fluids in which molecules carry true electric or
magnetic (point) dipoles where at fixed relative orientation the
interaction potential is long range decaying in proportion to
r−3 instead [8–10].

The long-range nature of the interaction potential between
electric or magnetic dipoles has fascinated many researchers
in the past because it poses special problems to theoretical
approaches. For example, Groh and Dietrich demonstrated that
in the polar phase the free-energy density depends crucially
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on the shape of the domain under consideration and also
on the dielectric permittivity of the surrounding medium
into which these domains are embedded [11]. By means of
integral-equation approaches and a related density functional
theory (DFT) Klapp and coworkers [12,13] could demonstrate
later that for a system of dipolar hard spheres the ferroelectric
fluid phase could be suppressed in favor of a stable ferroelectric
solid [14,15]. In a later study Range and Klapp [16] employed
modified mean-field (MMF) DFT [11,17–19] to investigate
the full phase behavior of binary hard-sphere mixtures with
embedded point dipoles. In addition, dipolar fluids under
nanoconfinement conditions have also been investigated by
means of integral-equation approaches [20], DFT [21], and
Monte Carlo (MC) computer simulations [22].

The variety of fascinating scientific problems tackled in
these earlier works on dipolar fluids clearly exemplifies the
richness of the physics of these fluids. Similarly, quite a
bit of attention has been devoted to fluids in which the
orientation dependence of the intermolecular interactions is
purely of the Heisenberg type [19,23–33]. In view of the
present study the earlier works by Tavares et al. [19] and
of Weis et al. [31] are particularly relevant because they
show that for a ferromagnetic Heisenberg fluid the Curie line
separating isotropic and polar liquid phases may either end
in a tricritical or in a critical end point where the specific
situation encountered depends on the coupling strength of
the “spin-spin” interaction. On the other hand, Lomba et al.
ruled out the termination of the Curie line at a tricritical
point [30]. Using a combination of computer simulations and
integral equations these latter authors suggest that the Curie
line terminates at a critical end point instead.

In all these earlier works that we briefly reviewed here the
orientation dependence of the intermolecular interactions is
exclusively either dipolar in nature or of the Heisenberg type.
On the contrary, in our model both orientation dependencies
of the intermolecular interactions are present simultaneously.
In fact, as we shall demonstrate and discuss here both contri-
butions cooperate in a nontrivial fashion. As a consequence
the phase behavior of the amphiphilic fluid is characterized
by subtle effects. Even though the (short-range) “dipolar”
contribution to the overall interaction potential does not seem
to affect the isotropic-polar transition in the liquid phase to any
significant extent, the natural question arises: Is that also true
for the entire phase diagram of the amphiphilic fluid? Another
motivation for carrying out the present work is to investigate in
more detail the role of the specific mean-field approximation
needed to evaluate the expression for the excess free energy in
the DFT approach on which our study is based. For example,
we already showed that at MMF level the “dipolar” coupling
constant enters the description of the Curie line quadratically in
leading order whereas this is not so for a simplified version of
the mean-field DFT. What impact does this simplified version
of the theory then have on other parts of the phase diagram of
the amphiphilic fluid?

To address these questions we have organized the remainder
of our paper as follows. We begin in Sec. II by introducing the
model on which this study is based. Section III is devoted
to a summary of the DFT approaches employed here. Some
mathematical details of key equations and details of the
numerical procedure to solve them are deferred to Appendix A

and B, respectively. A detailed account of our results is given
in Sec. IV. In Sec. V we compare our DFT results with MC
simulations carried out in the isothermal-isobaric ensemble.
Finally, we discuss our results and put them into perspective
in the concluding Sec. VI.

II. MODEL

We consider a fluid composed of N amphiphiles interacting
with each other in a pairwise additive fashion. On account
of the amphiphilic nature of the molecules their interaction
potential depends on their orientations ω1 and ω2 and the
distance vector r12 connecting the centers of a molecular
pair. Here and below ωi = (θi,φi) (i = 1,2) where θi and
φi are Euler angles specifying the orientation of the prolate
amphiphile i. More specifically, we assume the intermolecular
interaction to be described by the potential

ϕtot (r12,ω1,ω2) = ϕhs (r12) + ϕ (r12,ω1,ω2) (2.1)

where r12 = |r12| and

ϕhs (r12) =
{∞, r12 < σ

0, r12 � σ
(2.2)

is the interaction potential between hard spheres of diameter
σ . Moreover,

ϕ(r12,ω1,ω2) = ϕiso (r12) + ϕanis(r12,ω1,ω2) (2.3)

may be thought of as a perturbation due to longer-range
(compared with the vanishing range of ϕhs) orientation depen-
dent interactions. These longer-range anisotropic interactions
between an amphiphilic pair consist of an isotropic part which
we model via the standard Lennard-Jones potential

ϕiso (r12) = 4ε

[(
σ

r12

)12

−
(

σ

r12

)6
]

≡ ϕrep (r12) + ϕatt (r12 ) (2.4)

In Eq. (2.4), ϕrep and ϕatt represent repulsive and attractive
contributions and ε is the depth of the attractive well of ϕiso.

The anisotropic part of the perturbation potential given in
Eq. (2.3) is described by

ϕanis(r12,ω1,ω2) = ϕatt (r12) � (̂r12,ω1,ω2) (2.5)

and therefore has the same distance dependence as the attrac-
tive part of ϕiso such that ϕanis is short range. In Eq. (2.5) and
below the caret is used to indicate a unit vector. The orientation
dependence of the interaction between an amphiphilic pair
enters Eq. (2.3) via the anisotropy function [see Eq. (2.5)]

� (̂r12,ω1,ω2) = − (4π )3/2 (
√

3 εH 
110 + εD 
112) (2.6)

where εH and εD are coupling constants and


l1l2l (ω1,ω2,ω) ≡
∑

m1m2m

C (l1l2l; m1m2m)

×Yl1m1 (ω1) Yl2m2 (ω2) Y ∗
lm (ω) (2.7)

is a rotational invariant [34,35].
In the previous expression C (l1l2l; m1m2m) is a Clebsch-

Gordan coefficient, Y is a spherical harmonic, and ω denotes

012310-2



PHASE BEHAVIOR OF AN AMPHIPHILIC FLUID PHYSICAL REVIEW E 89, 012310 (2014)

the set of Euler angles needed to specify the orientation of
r̂12 in a space-fixed frame of reference. The asterisk on the
last term in Eq. (2.7) denotes the complex conjugate. Integers
li (i = 1,2) and l on the one hand and mi and m on the
other hand are related because mi ∈ [−li , . . . ,li] and m ∈
[−l, . . . ,l]. According to Eqs. (A.130) and (A.131) of Ref. [35]
the Clebsch-Gordan coefficients vanish unless m = m1 + m2

and the triangle relation |l1 − l2| � l � l1 + l2 are satisfied
simultaneously. Using these properties and Eq. (2.7) it turns out
that the two rotational invariants on the right side of Eq. (2.6)
may be recast as [see also Eq. (A.62) of Ref. [35]]:


110 = − (4π )−3/2
√

3û (ω1) · û (ω2) , (2.8a)


112 = − (4π )−3/2

√
15

2
{3[̂u (ω1) · r̂12][̂u (ω2) · r̂12]

− û(ω1) · û(ω2)}, (2.8b)

where û is a unit vector describing the orientation of an
amphiphile. In Eqs. (2.8) we have dropped the arguments of
the rotational invariants for notational convenience.

From Eqs. (2.8) and for positive values of the coupling
constants εH and εD it is then apparent that the anisotropic
part of our perturbation potential [see Eq. (2.5)] consists
of a contribution corresponding to the interaction between
“spins” in a classical, three-dimensional Heisenberg fluid in
the absence of a magnetic field [see Eq. (2.8a)] and a second
contribution reminiscent of the potential between a pair of
electrostatic point dipoles [see Eq. (2.8b)]. To realize the latter
we remind the reader that ϕatt < 0 in Eq. (2.5). However, it
needs to be emphasized at this stage that at fixed orientation
the distance dependence of the anisotropic interaction between
an amphiphilic pair is short-range in the model that we adopt
in this work. This can easily be seen from Eqs. (2.4) and (2.5),
which reveal that for fixed ω1, ω2, and ω, ϕanis ∝ r−6

12 . This
short-range character of ϕanis is particularly convenient in the
development of the mean-field DFT on which this work is
based. Moreover, we notice that the amphiphiles are not exactly
spherical but are, in fact, ellipsoids of revolution on account of
the anisotropy function which shifts the zero of ϕ depending
on the relative orientation of an amphiphilc pair. However,
the aspect ratio of the ellipsoids is usually small and amounts
typically to 1.20–1.30 depending on the values of εH and εD.

III. DENSITY FUNCTIONAL THEORY

For a given temperature T , chemical potential μ, and in the
absence of external fields thermodynamic equilibrium states
of the model introduced in Sec. II are given by minima of
the grand potential functional [see, for example, Eq. (1) of
Ref. [19]]

� [ρ (r,ω)] = F [ρ (r,ω)] − μ

∫
d r dω ρ (r,ω) , (3.1)

where F is the total free energy functional and ρ (r,ω) is
the orientation dependent local density. For the interaction
potential ϕtot introduced in Eqs (2.1)–(2.6) we can decompose

F into three contributions according to

F = Fhs + For + F ex, (3.2)

where For is the difference in free energy due to a deviation
of the orientational distribution α (ω) in a polar fluid from
that of an isotropic one, Fhs is free energy of the hard-sphere
reference fluid, and F ex represents the change in free energy
(relative to Fhs) caused by the perturbation ϕ [see Eq. (2.3)].

A. Free-energy contributions

In this work we employ two types of mean-field approxi-
mations for the excess part of the free-energy functional F ex.
Within the simple mean-field (SMF) treatment, F ex is linear
in the perturbation ϕ. Specifically, one has [5]

βF ex
s = β

2

∫
r12�σ

d r1 d r2

∫
dω1 dω2 ρ (r1,ω1) ρ (r2,ω2)

×ϕ(r12,ω1,ω2), (3.3)

where β ≡ 1/kBT with kB being Boltzmann’s constant. In
the somewhat more sophisticated modified mean-field (MMF)
approach, the perturbation potential enters through the Mayer
f function, that is essentially through the Boltzmann factor
for an amphiphilic pair. Explicitly, one has

βF ex
m = 1

2

∫
r12�σ

d r1 d r2

∫
dω1 dω2 ρ (r1,ω1) ρ (r2,ω2)

× f (r12,ω1,ω2), (3.4)

where

f (r12,ω1,ω2) ≡ exp [−βϕ(r12,ω1,ω2)] − 1

= exp [−βϕiso(r12)]

× exp [−βϕanis(r12,ω1,ω2)] − 1 (3.5)

is the orientation-dependent Mayer f function [35] which we
have factorized into a spherically symmetric part proportional
to ϕiso and an orientation-dependent contribution proportional
to ϕanis.

Next, we realize that for a homogeneous bulk phase
the orientation dependent local densities appearing in the
integrand of Eqs. (3.3) and (3.4) can be recast as

ρ (rk,ωk) = ρα (ωk) , k = 1,2, (3.6)

where ρ is the (mean) number density and the orientation
distribution function α (ωk) must satisfy the normalization
condition ∫

dωk α (ωk) = 1, k = 1,2. (3.7)

In isotropic phases α (ωk) is constant such that Eq. (3.7)
implies α (ωk) = 1/4π thereby reflecting full rotational sym-
metry. Because the amphiphiles have uniaxial symmetry
[see Eqs. (2.5)–(2.8)] polar phases forming in our model
system will have this symmetry as well. Here we notice that
there is cylindrical symmetry of α (ω) with respect to the
so-called director which represents the net orientation of all
the spins of the amphiphiles. As in our previous work [5]
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we therefore expand α (ω) in terms of Legendre polynomials
{Pl (cos θ )} according to

2πα (ω) ≡ α (cos θ ) = 1

2
+

∞∑
l=1

αlPl (cos θ ) , (3.8)

where the set of expansion coefficients {αl} is related to the set
of order parameters {Pl} via the expression

αl = 2l + 1

2
Pl , l � 1. (3.9)

Here, 0 � Pl � 1 for all l � 1 and α0 = 1
2 such that α (cos θ )

meets the normalization requirement [see Eq. (3.7)] in the
isotropic phase where all order parameters vanish.

Inserting Eqs. (3.6) and (3.8) into the expressions for
the excess free energy Eqs. (3.3) and (3.4) one can carry
out the integrations over orientations of the amphiphilic pair
analytically as detailed in Ref. [5]. The final result of these
somewhat lengthy and involved derivations can then be cast
compactly as

βF ex

V
≡ βf ex = ρ2

∞∑
l=0

α2
l ul (3.10)

irrespective of whether we employ the SMF or MMF ap-
proximation to the pair correlation function. In Eq. (3.10),
f ex is the change in free-energy density (relative to that of
the hard-sphere reference fluid) caused by the perturbation ϕ

[see Eqs. (2.3)–(2.6)].
As we shall show below in Sec. III B the quantities {ul}l�0

on the far right side of Eq. (3.10) are related to ϕ. However,
their specific form does depend on whether we invoke the
SMF or the MMF approximation to the orientation dependent
pair correlation function. In particular, it is possible to derive
closed expressions for members of the set {ul}l�0 if one
uses the SMF approximation; within the framework of the
MMF approximation the final expressions have to be evaluated
numerically.

Next, for the hard-sphere contribution to the free energy in
Eq. (3.2) we employ the Carnhan-Starling expression [36]

βFhs

V
≡ βf hs = ρ[ln(ρ�5m/I) − 1] + ρ

4η − 3η2

(1 − η)2
,

(3.11)

where η ≡ ρσ 3π/6 is the packing fraction of the hard-sphere
reference fluid at density ρ, m is the molecular mass, I is
the moment of inertia of an amphiphile, � ≡

√
βh2/2πm is

the thermal de Broglie wavelength (h Planck’s constant), and
the exponent 5 reflects the three translational and two rotational
degrees of freedom of the molecular ellipsoids of revolution.
Finally, the orientational contribution to F in Eq. (3.2) is given
here by the expression

βFor

V
= ρ

∫ 1

−1
dx α (x) ln [2α (x)] , (3.12)

where x ≡ cos θ . Nonzero values of For reflect the loss in
orientational entropy as a polar phase begins to form. Finally,

from Eqs. (3.1), (3.2), (3.10), (3.11), and (3.12) we obtain

β�

V
= ρ[ln(ρ�5m/I) − 1] + ρ

4η − 3η2

(1 − η)2

+ ρ

∫ 1

−1
dx α (x) ln [2α (x)]

+ ρ2
∞∑
l=0

α2
l ul − βρμ, (3.13)

keeping in mind that α0 = 1
2 on the last line of Eq. (3.13).

B. Coupling coefficients

To determine the set of coupling coefficients {ul}l�0 in
Eq. (3.10) one expands the functions ϕ or f in terms of
rotational invariants, which has the advantage that one can
carry out the integrations over orientations analytically. This
approach is described in detail in our earlier publication [5].
Within the SMF approximation one then obtains [see Eq. (3.18)
of Ref. [5]]

ul = − (−1)l β√
π (2l + 1)3/2

∫ ∞

σ

dr12 r2
12 ϕll0 (r12) , l � 0,

(3.14)
where ϕll0 is a coefficient that results from the expansion of
ϕ in terms of rotational invariants and subsequent integration
over molecular orientations.

To proceed we restrict ourselves to the quantities u0 and u1

throughout this work such that in Eq. (3.14) the expansion
coefficients ϕ000 (r12) and ϕ110 (r12) are required. To limit
ourselves to these two terms is expected to be a reasonably
good approximation because they are the leading terms in the
expansion Eq. (3.8) [11]. At SMF level and from Eqs. (2.3)
and (2.7) it is easy to verify that

ϕ000 (r12) =
√

4πϕiso (r12) , (3.15)

where we also used 
000 = (4π )−3/2. Employing then
Eq. (2.4) together with Eq. (3.15) one finally arrives at

u0 = −64π

9
βεσ 3. (3.16)

In a similar fashion it is easy to show that

ϕ110 (r12) = 4 (4π )5/2
√

3εεH

(
σ

r12

)6

, (3.17)

which is a direct consequence of the form of ϕ [see Eqs. (2.3)–
(2.6)] and of the orthogonality of the rotational invariants.
Inserting this result into Eq. (3.14) and performing the one
integration left one obtains

u1 = −32π

9
βεεHσ 3 (3.18)

in agreement with Eq. (3.37) of Ref. [5]. Hence, at SMF level
the grand-potential density does not depend on the “dipolar”
contribution to ϕ.

At MMF level [see Eq. (3.4)] we arrive at an expression for
ul similar to Eq. (3.14) where the expansion coefficient ϕll0

in the integrand is replaced by the corresponding coefficient
fll0. Notice, that in this case the factor β on the right side of
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Eq. (3.14) does not appear on account of Eq. (3.4). To derive
expressions corresponding to u0 and u1 but at MMF level we
proceed as in our earlier work [5] and expand the anisotropic
part of the Mayer f function [see Eq. (3.5)] retaining terms up
to third order in βϕanis. This yields

f000 (r12) = (4π )3/2

{
fiso (r12) + [βϕatt (r12)]2

× 3ε2
H + 5ε2

D

2
exp [−βϕiso (r12)]

}
, (3.19)

where

fiso (r12) ≡ exp [−βϕiso (r12)] − 1. (3.20)

Inserting this expression into Eq. (3.14) one finally arrives at

u0 = −8π

∫ ∞

σ

dr12 r2
12fiso (r12) − 4π

(
3ε2

H + 5ε2
D

)
β2I (2).

(3.21)

As we already showed in Ref. [5] the corresponding expres-
sions

f110 (r12) = (4π )3/2
√

3 exp [−βϕiso (r12)]

×
{
βϕatt (r12) εH + 9

10
[βϕatt (r12)]3

×
(

ε3
H + 3εHε2

D − 1

3

√
10

3
ε3

D

)}
(3.22)

and

u1 = 8π

3

{
βI (1)εH + 9

10
β3I (3)

×
(

ε3
H + 3εHε2

D − 1

3

√
10

3
ε3

D

)}
(3.23)

can be obtained in a similar fashion where the integrals

I (n) ≡
∫ ∞

σ

dr12 r2
12 [ϕatt (r12)]n exp [−βϕiso (r12)] (3.24)

in Eqs. (3.21)–(3.23) have to be evaluated numerically. Hence,
at MMF level, the resulting expressions for u0 and u1 in
Eqs. (3.21) and (3.23) depend on both coupling constants εH

and εD unlike their SMF counterparts in Eqs. (3.16) and (3.18).

C. Thermodynamic states

At fixed T thermodynamic equilibrium states of our model
are characterized by minima of the grand potential [see
Eq. (3.13)] with respect to ρ and α (x). Hence, we are seeking
simultaneous solutions of the equations

β

V

(
∂�

∂ρ

)
= 0, (3.25a)

β

V

δ�

δα (x)
= λ (T ,ρ) , (3.25b)

where λ is a Lagrangian multiplier introduced to ensure that
α (x) satisfies Eq. (3.7). Using Eq. (3.13) it is straightforward

to show that Eq. (3.25a) can be recast as

βμhs (T ,ρ) +
∫ 1

−1
dx α (x) ln [2α (x)]

+ 2ρ

∞∑
l=0

ulα
2
l − βμ = 0, (3.26)

where the chemical potential of the hard-sphere fluid is given
by

βμhs (T ,ρ) ≡ β

(
∂f hs

∂ρ

)
T ,V

= ln(ρ�5m/I) + 8η − 9η2 + 3η3

(1 − η)3 . (3.27)

To solve Eq. (3.25b) we invoke the fact that the Legendre
polynomials form a complete orthonormal set of functions
such that

αl = 2l + 1

2

∫ 1

−1
dx α (x) Pl (x) . (3.28)

Thus, α (x) arises in the third and fourth term on the right
side of Eq. (3.13). Performing the variational differentiation in
Eq. (3.25b) we then have

α (x) = 1

2
e[λ(T ,ρ)−ρ]/ρ exp

[
−ρ

∞∑
l=0

(2l + 1) ulαlPl (x)

]
,

(3.29)

which automatically satisfies Eq. (3.7) so that

1

2
e[λ(T ,ρ)−ρ]/ρ

= 1∫ 1
−1 dx exp

[−ρ
∑∞

l=0(2l + 1)ulαlPl(x)
]
.

(3.30)

With the aid of Eq. (3.29) it is possible to rewrite the third term
on the right side of Eq. (3.13) as∫ 1

−1
dx α (x) ln [2α (x)] = λ (T ,ρ) − ρ

ρ
− 2ρ

∞∑
l=0

ulα
2
l ,

(3.31)

where orthogonality of the Legendre polynomials [see
Eq. (A.9b) of Ref. [35]] has also been invoked. Inserting this
expression into Eq. (3.26) we readily obtain

βμhs (T ,ρ) + λ (T ,ρ) − ρ

ρ
− βμ = 0. (3.32)

With Eqs. (3.32) and (3.13) can be rewritten more compactly
as

β�

V
= βf hs (T ,ρ) − ρβμhs (T ,ρ) − ρ2

∞∑
l=0

ulα
2
l , (3.33)

where we also used Eq. (3.31). The last expression is
particularly gratifying because it no longer depends on the
a priori unknown chemical potential μ.
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D. Coexisting phases

Suppose now that for a given T two phases ′ and ′′ exist
which are characterized by densities ρ ′ and ρ ′′ and orientation
distributions α ′ and α ′′ and satisfy Eqs. (3.25), that is, they
correspond to (local or global) minima of the grand-potential
density. At phase coexistence global minima of �/V satisfy
the conditions

β� ′

V
= −βP ′ = −βP ′′ = β� ′′

V
, (3.34a)

β

V

∂�

∂ρ

∣∣∣∣
ρ ′,α ′(x)

= β

V

∂�

∂ρ

∣∣∣∣
ρ ′′,α ′′(x)

= 0, (3.34b)

where P ′ and P ′′ denote the pressures of the coexisting phases
′ and ′′, respectively.

Because of Eqs. (3.33) and (3.34a) can be rearranged such
that phase coexistence corresponds to zeros of the function

s1(T ,ρ ′,ρ ′′,{αl}) ≡ βf hs(T ,ρ ′) − βρ ′μhs(T ,ρ ′)

−βf hs(T ,ρ ′′) + βρ ′′μhs(T ,ρ ′′)

− u0

4
(ρ ′2 − ρ ′′2) + ρ ′′2

∞∑
l=1

ulα
2
l ,

(3.35)

where we tacitly assume phase ′ always to be isotropic
whereas phase ′′ may be isotropic or polar. If phase ′′ is
isotropic the sum on the third line of the previous expression
vanishes because the entire set of expansion coefficients
{αl}l�1 vanishes identically.

From Eqs. (3.30) and (3.31) we realize that∫ 1

−1
dx α (x) ln [2α (x)]

= −ρu0

2
− 2

∞∑
l=1

ulα
2
l + ln 2

− ln
∫ 1

−1
dx exp

[
−ρ

∞∑
l=0

(2l + 1) ulαlPl (x)

]

= −2
∞∑
l=1

ulα
2
l + ln 2 − ln

∫ 1

−1
dx � (x) , (3.36)

where we introduced the function

� (x) ≡ exp

[
−ρ

∞∑
l=1

(2l + 1) ulαlPl (x)

]
(3.37)

Inserting Eq. (3.36) into Eq. (3.26) we arrive at

βμhs(T ,ρ) + ln 2 − ln
∫ 1

−1
dx �(x) + ρu0

2
− βμ = 0.

(3.38)

Combining the previous expression with the second of the
coexistence conditions Eq. (3.34b) requires us to find the zeros

of the function

s2(T ,ρ ′,ρ ′′,{αl}) ≡βμhs(T ,ρ ′) − βμhs(T ,ρ ′′)+ u0

2
(ρ ′−ρ ′′)

− ln 2 + ln
∫ 1

−1
dx �(x). (3.39)

In addition to s1 and s2 a unique determination of the
unknowns ρ ′, ρ ′′, and {αl} requires the solution of l additional
equations for the set of order parameters which we obtain as
zeros of (l � 1)

sl+2(T ,ρ ′,ρ ′′,{αl}) = αl − 2l + 1

2

∫ 1
−1 dx�(x)Pl(x)∫ 1

−1 dx�(x)
.

(3.40)

Equation (3.40) follows directly from Eqs. (3.28)–(3.30) where
we also employed Eq. (3.37). Zeros of the functions {sl+2}l�1
correspond to the order parameters characterizing phase ′′
at phase coexistence. Together the set of l + 2 equations
introduced in Eqs. (3.35), (3.39), and (3.40) can be solved
numerically to obtain the complete phase diagram of our
amphiphilic model fluid. Details of the numerical procedure
can be found in the Appendices.

IV. RESULTS

We now turn to a detailed investigation of the impact of the
Heisenberg and “dipolar” coupling parameters εH and εD on
the phase behavior of our amphiphilic fluid. Phase diagrams
will be presented mostly in T -ρ representation where both
quantities are expressed in dimensionless (i.e., “reduced”)
units, that is, T is given in units of ε/kB, and ρ in units of
σ 3. To compare with computer simulations, however, a P -T
representation of the phase diagram is advantageous where
pressure P is expressed in units of ε/σ 3.

A. Pure Heisenberg fluid

We begin our presentation with the case of the pure classical
3D Heisenberg fluid which is realized in our model by setting
εD = 0 [see Eqs. (2.3), (2.5), (2.6), and (2.8)]. This part
of our study is meant to validate the numerical procedure
sketched in the previous section by comparison with earlier
work [19,23–32]. We treat the excess free energy at MMF level
[see Eq. (3.4)] developed in Sec. III. If the coupling constant
εH = 0.06 is relatively low the phase diagram presented in
Fig. 1(a) shows that a gas coexists with a polar liquid at low
T . As T increases the orientational order in the polar phase
decreases as one can see from a parallel plot of the polar
order parameter P1 in Fig. 2. Starting at low T the plot in
Fig. 2 for εH = 0.06 exhibits high values of P1 which decrease
with increasing T . The decline of P1 with T becomes more
and more pronounced until P1 essentially goes to zero with a
nearly infinite slope. At the temperature at which P1 vanishes
a line of critical point starts. Hence, the junction between the
isotropic and polar liquid phase boundaries and the critical line
is a critical end point. The critical line, which is analogous to
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FIG. 1. (Color online) Generic topolgies of phase diagrams for
the pure, classical 3D Heisenberg fluid. Solid lines are phase
boundaries between gas and polar liquid ( ), gas and isotropic
liquid ( ), and isotropic and polar liquid ( ). In addition
the line of critical points is shown ( ). (a) Type I at εH = 0.06
where we show also data for the special case εH = 0.00 ( ); (b)
type II, εH = 0.09; (c) type III, εH = 0.11. All curves have been
obtained at MMF level (see text).

the Curie line in ferroelectrics, is given by the expression

ρc = −2

3

1

u1
(4.1)
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1.00

0.80 0.90 1.00 1.10 1.20 1.30

T

P 1

FIG. 2. (Color online) Plot of polar order parameter P1 as a
function of temperature T for εH = 0.06 and εD = 0.00 ( )
[see Fig. 1(a)] and εD = 0.12 ( ). Also shown are data for
εH = 0.09 and εD = 0.00 ( ) [see Fig. 1(b)]. In all three cases
the curves represent state points along the phase boundary of the polar
liquid phases.

for the critical density ρc as demonstrated earlier by Groh and
Dietrich [11], Range and Klapp [16], and more recently by
us [5].

For T exceeding that of the critical end point we then find
coexistence between a gas and an isotropic liquid in Fig. 1(a).
That this liquid phase is isotropic is revealed by the parallel
plot of P1 in Fig. 2, which vanishes and stays at zero until we
reach the gas-liquid critical point.

For reasons of comparison we also show in Fig. 1(a) the
phase diagram of a fluid with purely isotropic interaction,
which is a special case of our amphiphilic fluid realized
by εH = εD = 0. Hence, interactions beyond the hard-sphere
radius are described by the Lennard-Jones potential introduced
in Eq. (2.4).

The reason for presenting these data is twofold. First,
one notices that the impact of the Heisenberg term on
the gas-isotropic liquid envelope of the two-phase region
is marginal. Second, the temperature Tc = 1.2257 at the
gas-liquid critical point for our quasi-Lennard-Jones fluid is
only about 6% smaller than that of the true Lennard-Jones
fluid where a value of Tc = 1.3120(7) was obtained by Potoff
and Panagiotopoulos [37]. On the contrary, the density at the
gas-liquid critical point in our model (ρc = 0.250) is roughly
21% lower than the value ρc = 0.316(1) reported by Potoff and
Panagiotopoulos for the full Lennard-Jones fluid [37]. Because
the critical density is determined by packing effects we suspect
that a more satisfactory agreement would be obtainable if a
more realistic form of the pair correlation function would have
been used in the present study.

For intermediate values of the Heisenberg coupling constant
εH = 0.09 the plot in Fig. 1(b) reveals a topological change
in the phase diagram compared with the situation displayed
in Fig. 1(a). Besides coexistence between gas and either an
isotropic or a polar liquid phase one also finds coexistence
between isotropic and polar liquid phases for intermediate
coupling strengths εH. This phase coexistence ends at a

012310-7



MARTIN SCHOEN, STEFANO GIURA, AND SABINE H. L. KLAPP PHYSICAL REVIEW E 89, 012310 (2014)

tricritical point at which a critical line begins. Along the phase
boundary of the polar liquid, P1 decreases monotonically
with increasing T as one can see from the parallel plot in
Fig. 2. At the tricritical point P1 vanishes as expected. At
T = 1.1849, dP1/dT in Fig. 2 exhibits a small discontinuity.
The discontinuity corresponds to the junction at which the
gas-polar liquid and isotropic-polar liquid branches of the
phase diagram meet in Fig. 1(b).

At even larger values εH = 0.11 the topology of the phase
diagram is different from the two previously discussed ones
as one can see by comparing the plot in Fig. 1(c) with plots
displayed in Figs. 1(a) and 1(b). Now we have coexistence
between a more or less dense gaseous and a polar liquid phase
at all temperatures up to the tricritical temperature at which the
critical line begins. The gas-liquid critical point is suppressed
but its vestige still manifests itself as the rather flat region in
the phase diagram centered on ρ ≈ 0.30.

B. Comparison between simple and modified mean-field theory

After having examined the impact of εH on the phase
diagram in Sec. IV A it is instructive to compare the prediction
of the MMF treatment discussed in that section with the one
developed at the much simpler SMF level. We therefore chose
the same values of εH and plot the SMF phase diagrams in
Figs. 3(a)–3(c).

Comparing the plot in Figs. 3(a) with its counterpart shown
in Fig. 1(a) shows that at SMF level εH is incapable of
stabilizing polar liquid phases relative to the isotropic one.
A stable polar liquid phase and a line of liquid-liquid critical
points arises only at the higher value εH = 0.09 as the plot
in Fig. 3(b) reveals. At even higher εH = 0.11 [see Fig. 3(c)]
we obtain a phase diagram at SMF level that is topologically
equivalent to the one displayed in Fig. 1(b). Last but not least,
at εH = 0.15 the topology of the phase diagram at SMF level
turns out to be equivalent to the one presented in Fig. 1(c)
where the lower coupling constant εH = 0.11 was used.

Generally speaking, all three characteristic topologies of
phase diagrams are reproduced at SMF level but only for
significantly higher values of the Heisenberg coupling constant
εH. These generic topologies are equivalent to the ones
observed earlier in the work of Tavares et al. (see their
Figs. 1–3) [19].

Another, perhaps more subtle difference between the MMF
and the present SMF treatment concerns the location of the
gas-liquid critical point. Within the MMF approach one notices
a small upward shift of Tc from 1.2257 for εH = 0.00 to
1.2539 at εH = 0.09. Instead the much simpler SMF approach
predicts Tc 
 1.0062 to be constant over the range 0.00 �
εH � 0.11. In addition, at MMF level Tc for εH = 0.00 is
much closer to the value of Tc for the Lennard-Jones fluid as
discussed in Sec. IV A. Moreover, one notices from Eqs. (3.16)
and (3.18) that the “dipolar” contribution to ϕanis apparently
is inconsequential for any part of the phase diagram. This is
because no term proportional to εD survives in the derivation
of the SMF expressions for u0 and u1 which account for the at-
tractive contribution of the perturbation to the purely repulsive
hard-sphere interactions. Hence, we conclude that the more
refined treatment of pair correlations introduced by the MMF
guarantees a more realistic description of the phase behavior
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FIG. 3. (Color online) As Fig. 1 but at SMF level. Values of εH

in parts (a)–(c) are identical with those chosen in Fig. 1(a)–1(c); (d)
εH = 0.15.

012310-8



PHASE BEHAVIOR OF AN AMPHIPHILIC FLUID PHYSICAL REVIEW E 89, 012310 (2014)

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0.0 0.2 0.4 0.6 0.8

ρ

T

(a)

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.7

0.8

0.9

0.0 0.2 0.4

ρ/ρc

T
/T

c

(b)

FIG. 4. (Color online) (a) As Fig. 1, but for εH = 0.00 and εD =
0.00 ( ), εD = 0.10 ( ), and εD = 0.20 ( ). (b)
As part (a), but in rescaled form where ρc = 0.249 is the same for
all three curves and Tc = 1.22574 (εD = 0.00), Tc = 1.28198 (εD =
0.10), and Tc = 1.42151 (εD = 0.20). In the inset data are plotted on
expanded scales to enhance the visibility of the differences between
the curves along the phase boundary of the gas.

of our amphiphilic fluid. This is in agreement with earlier
assertions for the pure Heisenberg fluid [19] where, however,
the interaction potential has a form different from ours. In the
subsequent Sec. IV C we will therefore focus on the impact of
“dipolar” interactions and analyze which aspect of the phase
diagrams is affected by their presence and in what way.

C. The impact of short-range “dipolar” interactions

We begin our discussion of the effect of the “dipolar” con-
tribution to ϕanis by presenting in Fig. 4 phase diagrams that are
obtained for εH = 0.00, that is, by “switching off” the Heisen-
berg contribution to ϕanis [see Eqs. (2.4), (2.5), and (2.6)]. As
one realizes from the plots in Fig. 4 a nonzero value of εD is
not capable of stabilizing polar liquid phases as one of the ther-
modynamic phases at equilibrium. This was already discussed
in our previous work [5] and is attributed to the short-range
character of the “dipole-dipole” interactions in our model.

Indeed, in systems composed of “true” dipolar particles,
where the interactions decay only as r−3

12 , a polar phase occurs
even in the absence of any short-range van der Waals attraction.

The reason is that in an infinite system (i.e., in the absence
of boundaries creating a depolarizing field), the long-range
dipolar interactions lead to a mean field acting on all particles.
This has been seen both in computer simulations (see, e.g.,
Refs. [8–10]) and DFT calculations [11,16]. At DFT level the
presence of the mean field is reflected by the fact that u1 is
nonzero even within the SMF approach [11]. This is clearly
in contrast to the present short-ranged model where a dipolar
contribution to u1 occurs only within the MMF treatment if
one expands the anisotropic part of the Mayer f function at
least up to third order [see Eq. (3.23)].

However, one also sees from Fig. 4(a) that εD has a profound
effect on the phase diagram in that it shifts the phase boundaries
between coexisting gas and isotropic liquid phases upward
(i.e., to larger T ). This shift reflects that the short-range
dipolar interactions, when averaged over orientations, yield an
effective isotropic attraction between the molecules, an effect
which is also reflected by the fact that the MMF expression
for u0 is influenced by εD [see Eq. (3.21)]. We also note that
a similar, effectively isotropic attraction occurs in systems of
true electrostatic or magnetostatic dipoles [11,17,18,38,39].
However, the effect is slightly more subtle as one realizes
from the plot of the “reduced” phase diagrams T/Tc versus
ρ/ρc shown in Fig. 4(b).

In general, it is gratifying to note that sufficiently close to
the critical point all three rescaled phase diagrams collapse
onto a master curve. This is to be expected because in the
vicinity of the critical point details of the intermolecular
interactions should not matter. Second, further away from the
critical point one realizes that the rescaled phase diagrams
cannot be represented by such a master curve. In fact, the
two-phase region becomes broader as εD increases. This effect
is more pronounced along the phase boundary of the isotropic
liquid but, as one can see from the inset in Fig. 4(b), is also
present along the phase boundary of the amphiphilic gas.
Similar deviations from the law of corresponding states have
been reported by van Leeuwen for the Stockmayer fluid [39].
Based upon grand canonical ensemble MC simulations it is
found there that the gas-liquid coexistence curve cannot be
rescaled if the dipole moment varies. However, the effect
observed by van Leeuwen seems to extend all the way to
the critical point and to exceed the one observed in our model
system. Contrary to what was observed by van Leeuwen [39]
we find that the law of corresponding states still holds to
a reasonably good approximation in the near-critical regime
0.75 � ρ/ρc � 1.25.

Based upon the results displayed in both parts of Fig. 4
it seems interesting to investigate the effect of “dipolar”
interactions in our model on phase diagrams with a more
complex topology. Ideal candidates in this regard are phase
diagrams for an intermediate value of εH that have been shown
in Fig. 1(b) to exhibit phase equilibrium between isotropic
and polar liquid phases in excess to the more conventional
gas-(isotropic and polar) liquid equilibria.

Generally speaking, an increase of εD causes an upward
shift of the phase boundaries here as well as one can see from
the plot in Fig. 5. This seems very similar to what we observe in
the case of topologically simpler phase diagrams (see Fig. 4).
However, closer scrutiny reveals that for nonvanishing εH

the situation is more complex. For example, for εD = 0.00
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FIG. 5. (Color online) As Fig. 1(b), but from bottom to top for
εD = 0.00 ( ), εD = 0.10 ( ), εD = 0.20 ( ), and εD = 0.30
( ) (such that εD = 0.00 corresponds to the lowest and ε = 0.30
to the top curve, respectively).

the temperature Ttc at the tricritical point slightly exceeds
the temperature of the gas-isotropic liquid critical point Tc.
Moreover, the temperature of the triple point Ttr approaches
Ttc such that coexisting isotropic and polar liquid phases
eventually disappear.

The variation of these various characteristic temperatures
with εD is also illustrated by plots in Fig. 6. At small values of
εD, Ttc and Tc are nearly the same. For temperatures lower than
these two but higher than Ttr one anticipates two discontinuous
phase transitions: during the first of these a gas condenses
to an isotropic liquid, whereas during the second one the
isotropic liquid phase becomes polar. This second transition is
accompanied not only by a discontinuous change in the polar
order parameter P1 but also by a similar discontinuity in the
density of the liquid. However, this second change in density is
relatively small as one can see from Fig. 7. As εD increases all
three characteristic temperatures increase monotonically. The
slope of Ttc is smallest such that at sufficiently high εD, Ttc ≈
Ttr. Thus, εD has a destructive impact on liquid-liquid phase
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FIG. 6. (Color online) Plots of triple point temperature Ttr ( ),
critical temperature Tc ( ), and tricritical temperature Ttc ( ) as
functions of εD and for εH = 0.09.
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FIG. 7. (Color online) As Fig. 6, but for the density difference
ρ ( ) between isotropic and polar liquid phases and the order
parameter P1 ( ) in the polar phase (εH = 0.09).

equilibrium on the one hand. Among the three characteristic
temperatures Tc exhibits the most pronounced increase, which,
on the other hand, illustrates a cooperative influence of εD on
gas-isotropic liquid equilibrium.

The vanishing of the phase boundaries between isotropic
and polar liquid phases is also illustrated by plots of the density
difference ρ between coexisting isotropic and polar liquid
phases at Ttr. With increasing εD, ρ → 0. Simultaneously,
P1 decreases but remains nonzero up to the highest value of
εD = 0.31 where ρ has nearly vanished. Thus, plots in Figs. 6
and 7 illustrate a change in the type of phase diagram with
increasing εD from the prototypical type II [see, for example,
Fig. 1(b)] to type I [see, for example, Fig. 1(a)].

V. MONTE CARLO SIMULATIONS

A. Numerical aspects

To gain a deeper insight into the phase behavior of
our model fluid and to test the reliability of the MMF
approximation we ammend the DFT calculations of this work
by Monte Carlo (MC) simulations in which the amphiphiles
interact via the potential ϕ introduced in Eqs. (2.3)–(2.6). The
simulations are carried out in the isothermal-isobaric ensemble
where a thermodynamic state is uniquely specified by N ,
P , and T . By employing a conventional Metropolis-type of
algorithm the generation of a Markov chain of configurations
proceeds in three distinct steps. First, it is decided whether to
displace a molecule randomly or to rotate it about a randomly
selected axis. Whether or not these processes are accepted
is decided on the basis of the associated change in total
(configurational) potential energy. We consider each of the
N molecules consecutively during this stage of the generation
of the Markov chain. Upon its completion one attempt is made
to change the volume of the simulation cell. Again an energy
criterion is employed to decide upon the acceptance of the
volume change. For more details about the algorithm we refer
the interested reader to standard textbooks [40,41].

Together the N translation/rotation attempts plus the one
attempt to change the system volume constitute a MC cycle.
Our results are based upon simulations with an initial 104
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equilibration cycles followed by 2 × 105 production cycles
during which ensemble averages of quantities of interest are
computed.

The results presented below are based upon systems con-
taining N = 1000 and N = 5000 molecules. To save computer
time we truncate ϕ at a cutoff radius of rc = 3σ and employ a
combination of Verlet and link-cell lists to maintain a neighbor
list set up according to a somewhat larger sphere of radius
rN = 3.5σ centered on each molecule. Another molecule is
considered to be a neighbor of that reference molecule if
the center of mass distance separating each member of the
molecular pair is shorter than rN. The interaction potential
remains unshifted at rc and no corrections are applied for the
neglected interactions beyond rc. To make sure that our results
are reliable we compute components of the pressure tensor
P = P 1 where the scalar output value of P should agree within
a few percent or better with the input value used to generate
the Markov chain in the MC simulations. Explicit expressions
for diagonal components Pαα (α = x, y, or z) of P are given in
Eq. (B.6) of Ref. [7]. In addition, we monitor the components
Pαα individually to make sure that they are equal to within
about 3% as they should in the absence of external fields.

Other quantities that we obtain from the MC simulations
are the instantaneous polar order parameter defined as

m ≡
N∑

i=1

ûi · n̂ (5.1)

and the second-order cumulant

g2 ≡ 〈m2〉
〈|m|〉2

(5.2)

from the first and second moment of the order-parameter
distribution where the angular brackets indicate an average
in the isothermal-isobaric ensemble. As explained by Deutsch
the magnitude of the instantaneous polar order parameter has to
be taken prior to averaging [42]. In Eq. (5.1), n̂ is the so-called
director which describes the net orientation of the amphiphiles
in the polar phase. We compute n̂ as the eigenvector associated
with the largest eigenvalue of the alignment tensor Q which
we diagonalize numerically by using Jacobi’s technique [43]
(see also Ref. [44]).

To locate the phase transition between isotropic and polar
phases g2 is a particular useful quantity. If the phase transition
is continuous, g2 for different system sizes have to intersect
in a unique, yet model-dependent point which determines
the critical point as we explained and demonstrated for the
present model in earlier work [7,45]. If, on the other hand,
the transition between an isotropic and a polar phase were
discontinuous, one would still expect pairs of g2 for different
system sizes to intersect in different points depending on what
pair of system sizes is considered. In this case the intersections
are expected to follow a scaling law such that they become
system-size independent if sufficiently large simulation cells
are considered [46]. However, if the phase transition is very
weakly first-order one may see only a single intersection of
all cumulants for different system sizes. This is the case for a
model related closely to the present one [44].

To make a meaningful comparison between DFT and
MC we focus on the most complex type II phase diagram

with parameters pertaining to the pure Heisenberg fluid.
Specifically, we consider the case represented by εH = 0.09
and εD = 0.00 for which the DFT results are displayed
in Fig. 1(b). To make this comparison we are particularly
interested in the pure Heisenberg fluid for a number of reasons.
First, it has the topologically richest phase diagram and thus
provides the most crucial test case for the DFT calculations.
Second, as one can see from Fig. 6 the one-phase region of the
isotropic liquid phase is maximized if εD = 0. This is because
Tc − Ttr is largest here. To consider a case with sufficiently
large one-phase region of the isotropic liquid is important
because this one-phase region is rather small anyway and can
easily be missed in the corresponding MC simulations. Third,
the pure Heisenberg fluid is interesting because simulation data
presented earlier do not predict an isotropic liquid phase and
exhibit a Curie line starting at densities lower than the critical
density [29,31] whereas in our model the Curie line always
starts at densities above the critical densities. We suspect that
these finer points depend on details of the interaction potential,
which in our case differ from the one used in both earlier works.

B. Comparison between DFT and MC results

Turning now to a comparison between DFT and results
obtained in MC we present in Fig. 8 the phase diagram of
Fig. 1(b) in P -T representation together with data points
obtained in MC simulations. According to the DFT data
one expects thermodynamically stable gas, isotropic, and
polar liquid phases to occur at T = 1.22 whereas the gas is
expected to condense directly to a polar liquid phase without
an intermittent isotropic liquid phase at the lower T = 1.05.
For both isotherms we are plotting data that clearly pertain
to thermodynamically stable phases. We have been unable
to locate with precision the coexistence line separating gas
and (isotropic or polar) liquid phases. This is because close
to the coexistence line ensemble averages turn out to show

0.00

0.10

0.20

0.30

0.9 1.0 1.1 1.2 1.3

T

P

FIG. 8. (Color online) Phase diagram in P -T representation for
the case εH = 0.09 and εD = 0.00 [see also Fig. 1(b)]. Black lines
represent coexistence lines from DFT calculations; (�) gas-polar
liquid, (•) gas-isotropic liquid, and (�) isotropic-polar liquid. The
critical line is not shown. Open and colored symbols represent results
from MC in the respective one-phase region of gas ( ), isotropic
liquid ( ), and polar liquid ( ).
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FIG. 9. (Color online) Mean density ρ as a function of pressure

P ; ( ) gas, ( ) isotropic liquid, ( Δ ) polar liquid. Open
symbols refer to T = 1.22 whereas filled symbols correspond to
T = 1.05.

a tiny but noticeable drift even if very long MC runs of
106 cycles are employed. Thus, we exclude data points very
close to the gas- (isotropic or polar) coexistence. However,
generally speaking the topology of the phase diagram obtained
by DFT is confirmed by plots in Fig. 8 qualitatively on the one
hand. Quantitatively, on the other hand, it appears that for
both temperatures phase transitions obtained in MC occur at
somewhat higher pressures compared with the location of DFT
coexistence lines.

Moreover, it is instructive to analyze both the mean
number density ρ = N/ 〈V 〉 (V volume) and the second-order
cumulant g2. Plots of the former in Fig. 9 show the variation
of ρ with P for the two isotherms considered. At T = 1.05
there is a clear discontinuous change of ρ as the pressure
increases. By monitoring 〈m〉 it is obvious that there is also an
associated discontinuous change in the polar order parameter
from a low value 〈m〉 
 0.007 at pressures below that at which
ρ changes discontinuously to a high value 〈m〉 
 0.656 above
that pressure. At T = 1.22 there is also a clear discontinuity
in the plot of ρ at relatively low P . However, in this case the
new phase at higher P is an isotropic liquid.

The latter is inferred from plots in Fig. 10. We restrict
the analysis to N = 1000 and N = 5000 based upon earlier
experience with much more detailed finite-size scaling applied
to the isotropic-polar phase transition in the present model
system [7,45]. These show that even up to P � 0.20 and for
N = 5000, which is significantly larger than that pressure at
which ρ in Fig. 9 exhibits the first discontinuity, g2 
 π

2 ,
which is the value to be expected in the isotropic phase as
explained elsewhere [7,42]. As P increases further both curves
shown in Fig. 10 deviate increasingly from this value. The
deviation starts at lower P for the smaller system with N =
1000. Eventually, both curves intersect at a pressure between
P = 0.25 and P = 0.26 which demarcates the transition to a
polar liquid phase as we established earlier [7,45]. From the
corresponding plot of ρ in Fig. 9 it seems as if the formation
of a polar liquid phase is accompanied by a rather minute
discontinuity in the mean density. Hence, we conclude that

10-2

10-1

100

0.10 0.15 0.20 0.25 0.30

P

g 2
−

1

FIG. 10. (Color online) Second order cumulant g2 − 1 as a func-
tion of pressure P at T = 1.22; ( ) N = 5000, ( ) N = 1000, ( )
g2 − 1 = (π − 2) /2 (see text).

the formation of the polar phase is very weakly first order.
However, comparison between MC data presented in Fig. 9
and the corresponding DFT results shown in Fig. 1(b) reveal
that DFT overestimates the change in density at the isotropic
to polar liquid phase transition for T = 1.22.

VI. DISCUSSION AND CONCLUSIONS

In this work we employ mean-field density functional the-
ory to investigate the phase behavior of an amphiphilic model
fluid. We take our molecules to consist of a hard-sphere core
of diameter σ and superimpose an anisometric Lennard-Jones
perturbation for intermolecular distances r12 � σ . We consider
two separate contributions to the anisotropic attraction. One is
identical with the potential describing the interaction between
a pair of a classical, three-dimensional Heisenberg “spins,”
whereas the other one exhibits the orientation dependence
of the interaction potential between a pair of (electric or
magnetic) point dipoles. Nevertheless, for a fixed relative
orientation of a pair of amphiphiles the attraction decays
proportional to r−6

12 and is thus short range.
To treat the contribution of the anisometric Lennard-

Jones perturbation to the grand potential we introduce two
approximations to the pair correlation function which differ in
their degree of sophistication. In the SMF approach pair corre-
lations are completely ignored for all intermolecular distances
r12 � σ . At MMF level we approximate pair correlations in a
way that becomes exact in the limit of vanishing fluid density.
Whereas at MMF level a subtle interplay of Heisenberg and
“dipolar” contributions to the grand potential is obtained the
latter do not even come into play at SMF level.

Nevertheless, we observe three types of generic and topo-
logically different phase diagrams within both approximations.
These prototypical phase diagrams are observed at different
coupling constants εH depending on whether we work within
the SMF or MMF framework. Generally speaking, phase
diagrams obtained within the SMF theory exhibit phase
boundaries at temperatures significantly lower than those
observed if the MMF approximation is invoked. Taking
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the hard-sphere reference plus Lennard-Jones perturbation
potential as a special case obtained for εH = εD = 0.00 we
obtain a gas-liquid critical temperature which is only about
6% smaller than that obtained in computer simulations [37].
In the SMF approximation this discrepancy turns out to be
about 21%. Hence, we conclude that the MMF approximation
is by far superior to the SMF one.

However, it seems noteworthy that the critical density
remains the same regardless of the mean-field approximation
invoked (SMF versus MMF). This can be ascribed to the
fact that at both levels of approximation changes in packing
characteristics with changes in the thermodynamic conditions
are not accounted for. Hence, to find shifts in critical density as
one varies one or both coupling constants εH and/or εD would
require a more refined representation of the pair correlation
function. As a first step one could, for example, assume this
pair correlation function to be given by that of a hard-sphere
fluid at the given density. However, this would be a study in
its own right beyond the scope of the present one.

As far as the present work is concerned perhaps the two
most important results are the following. As already noted
in our previous work [5], the dipolar contribution to the
orientation dependent part of the interaction potential alone
cannot stabilize polar liquid phases. In fact, this dipolar
contribution is almost completely inconsequential for the
location of the critical line separating isotropic from polar
liquid phases (see Fig. 3 of Ref. [5]). As already mentioned
in Sec. IV C this is a consequence of the short-ranged nature
proportional to r−6

12 of the dipolar interactions in our model.
However, considering the whole phase diagram we realize
in this work that the dipolar contribution has an impact on
other parts of the phase diagram such as the gas-liquid critical
temperature and the width of the two phase region below the
critical point.

Second, and even more remarkable is the observation that
if polar phases are present on account of a reasonably large
coupling constant εH, an increase in εD may cause the phase
boundary separating isotropic from polar liquid phases to
vanish altogether. This is because with increasing εD the
monotonic increase of the tricritical temperature is smaller
than that of the triple-point temperature. Hence, at sufficiently
large εD the two become equal such that the tricritical point
becomes a critical end point. Hence, by increasing εD we are
able to change a phase diagram which was originally of the
generic type II into a type I topology, an effect observed here
for the first time.

Of course, a strong impact of dipolar interactions on the
overall phase behavior is also seen in systems with true,
electro- or magnetostatic dipoles whose interaction decays
much more slowly (proportional to r−3

12 ). Given these effects
it would be interesting to investigate in the future more
systematically the role of the range of the interaction potential
on the phase behavior of the amphiphilic fluid.

To investigate to what an extent the DFT-generated phase
diagrams are realistic we have also carried out MC simulations
in the isothermal-isobaric ensemble. This provides a rigorous
test because MC may be considered a first-principles method.
Because these simulations are rather time consuming we focus
on two isotherms in the most complex type II phase diagram
where DFT predicts coexistence between gas, isotropic, and

polar liquid phases. Our results show that indeed the topology
of the DFT phase diagram is confirmed at least qualitatively.
However, the deviation between the MC and DFT data shows
that the latter is not too far off so that the current MMF DFT
can be considered a reliable approach for the present model
system. This observation is particularly gratifying because it
enables us to apply the DFT developed here not only to the
present model system but also to related ones that are capable
of describing liquid crystals (see, for example, Ref. [44]).

The modeling of liquid-crystalline materials follows the
same general philosophy, namely to take a Lennard-Jones core
and to modify the attractive part of the potential according
to some properly chosen anisotropy function. Hence, from a
simulation point of view this general modeling philosophy
is particularly appealing because the molecules remain ap-
proximately spherical which guarantees fast equilibration in
particular in the grand canonical ensemble where insertion
and deletion of particles with substantial shape anisotropy is
notoriously difficult.

In the future more detailed computer simulations are
planned to gain more insight into the microscopic structure
of the participating phases which is not accessible within the
present DFT approach. For example, for a related model of
Janus particles with a short-range “dipole” the formation of
micellar clusters has been reported [47] (see also Ref. [30]).
Thus, it would be interesting to see if such clusters would also
form within the present model.
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APPENDIX A: NUMERICAL SOLUTION
OF EQS. (3.35), (3.39), AND (3.40)

To determine the phase diagram Eqs. (3.35), (3.39), and
(3.40) need to be solved simultaneously. The l + 2 equations
constitute a system of coupled nonlinear equations where
the zeros can be found using the Newton-Raphson iteration
scheme (see chapter 9.6 of Ref. [43]).

Suppose we are given a vector x = (x1,x2, . . . ,xk) of
variables that have to be determined simultaneously such that
they solve the equation

F (x) = 0, (A1)

where F (x) is a vector composed of k functions Fi (x)
(i = 1, . . . ,k) and 0 denotes the k-dimensional zero vector.
In the present case, x = (ρ ′,ρ ′′,α1,α2, . . .) and members of
F are given by the functions s1, s2, . . ., sl+2 specified in
Eqs. (3.35), (3.39), and (3.40). Suppose now we are given
a vector x + δx where |δx| � 1 such that a Taylor expansion
of F can be truncated at the linear term, that is,

F(x + δx) = F(x) + J · δx + O(δx2), (A2)
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where in the present case the (l + 2) × (l + 2) Jacobi matrix
of partial derivatives is given by

J (x) =

⎛⎜⎜⎝
J11 J12 . . . J1,l+2

J21 J22 . . . J2,l+2
...

. . .
...

Jl+2,1 . . . . . . Jl+2,l+2

⎞⎟⎟⎠ (A3)

and Jik ≡ ∂si/∂xk .
Setting now F (x + δx) = 0 in Eq. (A2) we can solve

J (x) · δx = −F (x) (A4)

by LU decomposition using, for example the routines LUDCMP

and LUBKSB from Sec. 2.3 of Ref. [43].
Equation (A4) provides the basis for an iterative solution of

Eq. (A1) implemented as follows. Suppose, we have an initial
vector x(0). Solving Eq. (A4) numerically we obtain a first
estimate for δx(0) and obtain an improved vector x(1) = x(0) +
δx(0). Hence, our numerical solution of Eq. (A1) is based upon
the successive solution of the pair of equations

J(x(n)) · δx(n) = −F(x(n)),

x(n+1) = x(n) + δx(n), n = 0,1, . . . . (A5)

In practice, the procedure is halted if max
∣∣δx(n)

∣∣ � 10−6. If
the initial solutions are chosen sensibly, this is achieved in
2 − 3 iterations for temperatures smaller by T � 5 × 10−4

than those at the gas-liquid critical point or at the tricritical
point of the phase diagram.

We have implemented the iterative solution of Eq. (A1) as
follows. As a starting solution we take a sufficiently low initial
temperature T = 0.75 − 0.9 and set x(0) = (

10−4,1.0,1.5
)

such that phase ′ is a dilute gas and phase ′′ is a dense polar
liquid initially [for which the initial polar order parameter
P1 = 1.0, see Eq. (3.9)]. With this initial solution we solve
Eqs. (A5) until convergence is achieved according to the
criterion specified above. We then increase the initial tem-
perature T by a small amount T = 10−4 and take as a new
initial solution x(0) (T + T ) = x(nmax) (T ) where nmax is the
maximum iteration number needed for our iterative procedure
to converge at temperature T . This procedure is then repeated
until the gas-liquid critical or the tricritical point has been
reached sufficiently closely.

However, some caution is required for the more complex
phase diagram of type II. Initiating the iterative solution as
described above the solution of Eqs. (A5) eventually fails at
some T = T̃ at which ρ ′′ typically exceeds a value of 0.4 and
α1 > 0. At T̃ , phase ′′ becomes unstable. One has to reinitiate
the iteration procedure according to the following protocol:

(1) Maintain both ρ ′ and ρ ′′ at T̃ but set α1 = 0. With this
as a new starting solution one can compute that part of the
phase diagram at which gas and isotropic liquid coexist.

(2) Return to T̃ .
(3) Set ρ ′ to the value ρ ′′ obtained at T̃ during the

computation of the gas-isotropic liquid branch of the phase
diagram.

(4) To determine coexistence between isotropic and polar
liquid phases set ρ ′′ = 1.0 and α1 = 1.5 and restart the
iteration.

Steps 2–4 allow one to compute that part of the phase
diagram along which an isotropic and a polar liquid coexist.

If the various branches of the phase diagram connect only
insufficiently, they can easily be refined until the desired
accuracy is achieved by repeating the above protocol after
adjusting the value of T̃ slightly.

Specializing now to the case l = 1, J reduces to a 3 × 3
matrix with entries

J11 = −1 + 4(η ′ + η ′2 − η ′3) + η ′4

(1 − η ′)4
− u0ρ

′

2
, (A6a)

J12 = 1 + 4(η ′′ + η ′′2 − η ′′3) + η ′′4

(1 − η ′′)4
+ u0ρ

′′

2
+ 2ρ ′′u1α

2
1,

(A6b)

J13 = 2ρ ′′u1α1, (A6c)

which one obtains by straightforward differentiation of the
expression given in Eq. (3.35). Similarly, we have

J21 = π

6

1 + 4(η ′ + η ′2 − η ′3) + η ′4

η ′(1 − η ′)4
+ u0ρ

′

2
, (A7a)

J22 =−π

6

1 + 4(η ′′ + η ′′2 − η ′′3) + η ′′4

η ′′(1 − η ′′)4
− u0ρ

′′

2
−2ρ ′′u1α

2
1,

(A7b)

J23 = −2ρ ′′u1α1, (A7c)

and last but not least

J31 = 0, (A8a)

J32 = 9

2
u1α1

[
1 + tanh2 (a) − a2

a2 tanh2 (a)

]
, (A8b)

J33 = 1 + 9

2
u1ρ

′′
[

1 + tanh2 (a) − a2

a2 tanh2 (a)

]
, (A8c)

where

a ≡ 3ρ ′′α1u1. (A9)

For the special case of an isotropic phase ′′, x = (ρ ′,ρ ′′,0)
and therefore the Jacobian matrix given in Eq. (A3) simplifies
further to

J =
(

J11 J12

J21 J22

)
, (A10)

where the matrix elements are given in Eqs. (A6a), (A6b),
(A7a), and (A7b) above.

APPENDIX B: DERIVATION OF EQS. (A8b) AND (A8c)

To derive Eqs. (A8b) and (A8c) for the special case in
which we truncate the expansion of the orientation distribution
function in Eq. (3.29) after the term corresponding to l = 1,
we begin by rewriting the general Eq. (3.40) as

s3(T ,ρ ′,ρ ′′,α1) = α1 − 3

2

∫ 1
−1 dx x exp(−3ax)∫ 1
−1 dx exp(−3ax)

= 0, (B1)

where we used the first Legendre polynomial P1 (x) =
x and Eqs (3.37) and (A9). It is then easy to verify

012310-14



PHASE BEHAVIOR OF AN AMPHIPHILIC FLUID PHYSICAL REVIEW E 89, 012310 (2014)

that ∫ 1

−1
dx exp (−3ax) = 2

a
sinh (a) , (B2a)∫ 1

−1
dx x exp (−3ax) = 2

a2
sinh (a) − 2

a
cosh (a) , (B2b)

from which

s3(T ,ρ ′,ρ ′′,α1) = α1 − 3

2

tanh (a) − a

a tanh (a)
= 0 (B3)

follows without further ado. Notice in particular that in the
special case in which phase ′′ is isotropic, that is for small a

[i.e., as α1 → 0, see Eq. (A9)]

lim
a→0

tanh (a) − a

a tanh (a)
= lim

a→0

[
a − 1

3a3 + O(a5)
] − a

a
[
a − 1

3a3 + O(a5)
]


 −1

3
lim
a→0

a = 0, (B4)

where we have used the expansion of tanh (a) in a power series
for small a [48]. Hence, in the isotropic phase

s3(T ,ρ ′,ρ ′′,0) = 0 (B5)

becomes an identity. Using then Eq. (B3) we notice that

J32 = −3

2

∂a

∂ρ ′′
d

da

tanh (a) − a

a tanh (a)

= 9

2
u1α1

[
1 + tanh2 (a) − a2

a2 tanh2 (a)

]
(B6)

where we also employed Eq. (A9) and the relation
cosh (a) = 1/

√
1 − tanh2 (a). Similar operations eventually

lead to the expression given in Eq. (A8c). In the previous
expression

lim
a→0

tanh2 (a) − a2

a2 tanh2 (a)
= −2

3
, (B7)

lim
a→±∞

tanh2 (a) − a2

a2 tanh2 (a)
= −1 (B8)

so that J32 and J33 are well-behaved quantities everywhere.
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