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Laser-speckle-visibility acoustic spectroscopy in soft turbid media
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We image the evolution in space and time of an acoustic wave propagating along the surface of turbid soft
matter by shining coherent light on the sample. The wave locally modulates the speckle interference pattern of the
backscattered light, which is recorded using a camera. We show both experimentally and theoretically how the
temporal and spatial correlations in this pattern can be analyzed to obtain the acoustic wavelength and attenuation
length. The technique is validated using shear waves propagating in aqueous foam. It may be applied to other
kinds of acoustic waves in different forms of turbid soft matter such as biological tissues, pastes, or concentrated
emulsions.

DOI: 10.1103/PhysRevE.89.012308 PACS number(s): 46.35.+z, 43.58.+z, 42.30.−d, 82.70.Rr

I. INTRODUCTION

The viscoelastic shear response of soft matter such as
foams, concentrated emulsions, self-assembling surfactant
systems, pastes, or biological tissues often presents a wide
spectrum of mechanical relaxations. The relaxations are due
to couplings between processes on molecular and mesoscopic
length scales that raise many open questions [1–5]. Capturing
these relaxations requires measurements over many decades in
frequency, but this requirement is hard to meet experimentally:
Inertia limits the scope of conventional rheometers to a
range typically below 100 Hz. Rheometers based on torsional
resonators do provide complex shear modulus data up to the
order of 105 Hz, but only at a single frequency for a given
device geometry [6,7]. Microrheology experiments consist in
tracking the Brownian motion of tracer particles dispersed
in the sample using either multiple light scattering or direct
observation [4,8]. While this method has been successfully
applied to actin gels [9] and wormlike micelle suspensions [3],
the interpretation of such data requires that the sample can be
considered as a viscoelastic continuum at the scale of the
probe particles. This criterion is hard to meet in materials such
as foams where the typical size of the mesoscopic structure is
much larger than that of tracer particles that perform significant
Brownian motion. A restriction related to the intrinsic hetero-
geneity of the sample also limits the scope of the piezorheome-
ters described in the literature [10,11]. They are able to probe
the complex shear modulus at frequencies up to the kilohertz
range, but their typical gap widths are no larger than typically
100 μm. Besides these rheometry techniques, measuring the
speed and attenuation of transverse or longitudinal sound
waves is an alternative approach for probing the viscoelastic
response of soft matter over an extended range of frequen-
cies [12–14]. However, for complex fluids such as foams
where the acoustic impedance mismatch between typical
transducers and the sample is very large, this technique is hard
to implement and the strong attenuation of transverse sound in
foams, pastes, or emulsions raises additional problems.

In this paper we present an experimental method for
measuring the dispersion relation and attenuation of shear
waves propagating in foams and other turbid complex fluids. It
is based on the interaction of a sound wave and diffuse coherent
light, used as a probe. When coherent light is backscattered

from a turbid material it gives rise to a speckle interference
pattern that is modified as the scatterers contained in the
sample move relative to each other [15]. Such diffusing-wave
spectroscopy (DWS) measurements have been used to detect
sound waves at a given position in suspensions [16]. In samples
where the scatterer dynamics are not ergodic, such as biologi-
cal tissues, the simultaneous detection of many speckles using
a camera reveals transient displacements induced by ultrasonic
waves in turbid media [17]. The intensity fluctuations are
analyzed either by correlation functions or by measuring the
normalized variance of the speckle pattern, called visibility,
as a function of exposure time of the camera. If the change
of the pattern is significant during this time, speckles are
averaged out and their visibility decreases. The relation
between visibility and sample dynamics is the basis of speckle-
visibility spectroscopy (SVS) [18], an experimental technique
that has been used to study coarsening dynamics in foams [19]
and the flow of granular materials [20]. We go beyond this
pioneering work by showing how acoustic wave propagation
can be imaged in time as well as in space using speckle
correlations. This variant of SVS, which we call laser-speckle-
visibility acoustic spectroscopy (LSVAS), is validated in a
frequency range accessible with a high-frequency sliding plate
rheometer [21,22]. We demonstrate its scope by presenting
the measurement of the dispersion relation and the attenuation
length of shear waves in an aqueous foam up to 1 kHz.

The speed and attenuation of a shear wave propagating
in a viscoelastic material depend on its elastic and viscous
properties. The linear viscoelastic response is described by
the complex shear modulus G∗(ω) = G′(ω) + iG′′(ω), where
the real part G′ and the imaginary part G′′ correspond to the
storage and loss moduli, respectively. Their dependences on
the angular frequency ω are characteristic of the relaxation
time spectrum that spans several decades in complex fluids
such as foams [21–23], concentrated emulsions [24,25], soft
pastes [26], or microgel suspensions [5]. Here we consider
aqueous foams whose shear modulus G∗ has been studied in
the range of 0.1 mHz to 100 Hz in previous experiments [21–
23]. Two generic models predict a power law G∗ ∼ (iω)1/2 at
high frequencies [24,27]. However, the experiments evidence
deviations from these predictions, calling for further investi-
gations [22].
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The paper is organized as follows. Section II briefly recalls
how coherent light propagates in turbid materials, as well as the
basic principles of diffusing-wave spectroscopy and speckle-
visibility spectroscopy. In Sec. III our experimental setup and
procedure are presented. In Sec. IV we explain in detail how
shear sound velocity and attenuation length are extracted from
the speckle-visibility data. In Sec. V dispersion relation and
attenuation length data obtained with an aqueous foam are
presented and compared to previous results reported in the
literature in a restricted range of frequencies. A summary is
given in Sec. VI.

II. THEORETICAL BACKGROUND

To make the paper self-contained, we summarize the bases
of diffusing-wave spectroscopy [28] and speckle-visibility
spectroscopy [18]. A laser beam injects coherent light into
the sample, which may be modeled schematically as a
concentrated dispersion of isotropic point scatterers in a trans-
parent matrix. In such a material, light is strongly scattered
and propagates along random-walk-like paths. The average
distance between successive isotropic scattering events is
called the transport mean free path �∗. Propagation along
many different paths contributes to the backscattered light
observed near a given point outside the sample, leading to
a speckle interference pattern. A detector ideally measures
the intensity I (t) of a single speckle in this pattern; I (t)
fluctuates, depending on displacements of the scatterers
that modify the phases of the different waves reaching the
detector. The purpose of DWS and SVS measurements is to
deduce the scatterer dynamics from these speckle intensity
fluctuations [15,18,29]. The fluctuations that occur during a
delay time τ are characterized by the intensity autocorrelation
function g2(t,τ ):

g2(t,τ ) ≡ 1

β

( 〈I (t)I (t + τ )〉
〈I 〉2

− 1

)
. (1)

The angular brackets represent an average over all possible
realizations of the light random walks. The average can be
implemented as a time average if these realizations are succes-
sively created by intrinsic stationary internal dynamics of the
sample, such as in Brownian suspensions or coarsening foams.
To probe transient or nonergodic dynamics, the averaging
is performed over an ensemble of speckles, detected using
a camera [30,31]. In the following we will focus on this
latter variant of DWS, called multispeckle diffusing-wave
spectroscopy, where g2 is a function of time t as well as delay
time τ . The normalization parameter β is defined such that
g2(t,0) = 1. Its value depends on the detection optics: β = 1
for polarized detection and for a detector area so small that the
intensity of a single speckle is measured. When the detector
area increases, the speckle fluctuations diminish due to the
spatial averaging and β decreases [18,32].

Information about the scatterer dynamics can also be
extracted from a multispeckle experiment by measuring the
visibility of the speckle pattern V (T ,t) as a function of
exposure time T . With increasing T , the visibility decreases
due to the temporal averaging of fluctuations. It is defined as

the normalized variance of the speckle intensity IT :

V (T ,t) ≡ 1

β

( 〈
I 2
T

〉
〈
IT

〉2 − 1

)
. (2)

The angular brackets denote the average over the ensemble of
speckles. In the limit T → 0, V (T ,t) tends to 1, whereas for
T → ∞ it decreases asymptotically towards zero.

To interpret visibility or autocorrelation data in terms
of scatterer dynamics the electric field correlation function
g1(t,τ ) is considered. Here E(t) represents the electric field
resulting from the superposition of fields due to all photon
paths between the light source and the detector:

g1(t,τ ) ≡ 〈E(t + τ )E∗(t)〉
〈|E(t)|2〉 . (3)

Further, g1(t,τ ) and g2(t,τ ) are related by the Siegert rela-
tion [28]

g2(t,τ ) = |g1(t,τ )|2. (4)

The fundamental relation of speckle visibility spectroscopy
relates V (T ) and g1(t,τ ) [18]:

V (T ,t) =
∫ T

0
2(1 − τ/T )|g1(t,τ )|2dτ/T . (5)

The expression of g1(t,τ ) given by Eq. (3) is written as a sum of
the contributions of each individual path, labeled by an index
p. Phase variations due to scatterer motions accumulate along
the paths and induce light interferences at the detector. For
each path of curvilinear length s, we number the successively
visited scattering sites by an index j , going from 1 to s/�∗.
The contribution of a path to g1(t,τ ) is expressed as a function
of �φ

p

j (t,τ ), defined as the variation of the phase difference
between the scattering sites j and j + 1 that occurs between
the instants t and t + τ , for scattering path number p. The field
correlation function is written as

g1(t,τ ) =
∑

p

〈Ip〉
〈I 〉

〈
exp

(
−i

∑
j

�φ
p

j (t,τ )

)〉
. (6)

The quantities
∑

j �φ
p

j (t,τ ) are considered as Gaussian
random variables and thus g1 can be expressed in terms of their
second moments, averaged over the paths that we denote by
〈�φ(t,τ )2〉. Moreover, the path contributions are weighted by
their length distribution P (s). Finally, the following expression
of the field correlation function is obtained:

g1(t,τ ) =
∫ ∞

s=0
P (s)e−〈�φ(t,τ )2〉s/2�∗

ds. (7)

Here P (s) depends on the scattering geometry and is deter-
mined by solving the diffusion equation for photons, with
appropriate boundary conditions. In the backscattering geom-
etry, the following expression holds, to a good approximation,
for a semi-infinite sample [28,33]:

g1(t,τ ) = e−γ
√

3〈�φ(t,τ )2〉/2, (8)

where γ is a constant typically in the range 1–3, depending
on the polarization of the detected backscattered light with
respect to that of the incident light and on the anisotropy
of the scatterers. Expressions for 〈�φ(t,τ )2〉 in the case of
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ballistic or diffusive random motion of the scatterers are
provided in the literature [28]. The cases of longitudinal
acoustic waves [16] and simple shear strain [34] have also been
studied. In Sec. IV A we present an expression of 〈�φ(t,τ )2〉,
g1(t,τ ), and V (T ,t) for arbitrary time-dependent strain.

We then focus on the shear strain induced by a transverse
plane wave propagating in the bulk of a material. Let us call λ

and κ = 2π/λ its wavelength and wave number, respectively,
and lA the attenuation length that governs the exponential
decrease of the strain amplitude with propagation distance.
The complex wave number κ∗ = κ − i/ lA is related to the
complex shear modulus by [12]

G∗(ω) = ρ

(
ω

κ∗

)2

, (9)

where ρ is the density of the material. It can be split into its
real and imaginary parts

G′(ω) = ρω2
[
κ2 − 1/l2

A

]
[
κ2 + 1/l2

A

]2 (10)

and

G′′(ω) = 2ρω2κ

lA
[
κ2 + 1/l2

A

]2 . (11)

Conversely, if the complex modulus of a viscoelastic fluid is
known, the wave number and the attenuation length can be
predicted using Eq. (9) as we see in Sec. V.

III. EXPERIMENT

A. Experimental setup

The foam sample is placed in a rectangular trough (of length
12.0 cm, width 8.5 cm, and height 5.0 cm). A rigid plexiglass
plate (7.5 cm wide) is aligned perpendicular to the x1 direction
and inserted into the middle of the sample as shown in Fig. 1.
The plate is subjected to a sinusoidal translation displacement
in the x2 direction with controlled amplitude A0 and frequency
f = ω/2π . Here A0 is chosen in the range 1–10 μm, while
f is varied between 75 and 1300 Hz. Straight grooves are
cut into the plate to prevent wall slip. They are 300 μm deep
and oriented parallel to the x3 direction. The plate motion
generates an acoustic shear wave in the foam that propagates
along the x1 direction. As we will show in Sec. V, the shear
wave is attenuated in the foam over propagation distances
smaller than 2 cm. Since this attenuation length is smaller
than the distance between the region of the sample probed
by the laser beam (see Fig. 1) and the nearest wall of the
trough, the influence of the walls on the investigated wave
propagation is negligible. In addition, the boundary between
the foam and the air above has no significant impact on the
shear wave propagation, as demonstrated in the Appendix. Our
experiment therefore yields the propagation characteristics of
bulk shear waves.

A linearly polarized laser beam (633-nm wavelength)
shines on the top surface of the sample. It is expanded
by diffraction through a circular pinhole so that a spot of
lateral extent close to 4 cm is obtained. The backscattered
intensity is collected by a eight-bit complementary metal-
oxide semiconductor (CMOS) camera (AVT Marlin F131B,

FIG. 1. (Color online) Experimental setup. An expanded laser
beam shines on the top surface of a turbid foam sample in the region
highlighted in red. The volume where the foam is probed by the light
extends a few scattering mean free paths into the sample volume.
The backscattered light forms a speckle interference pattern that is
recorded using a camera. It is equipped with an objective, allowing
speckle fluctuations to be detected as a function of the position at the
sample surface. The acoustic emitter consists of a plate inserted into
the sample and translated sinusoidally along the x2 direction, with
frequency f and displacement amplitude A0. This plate generates
an acoustic shear bulk wave that propagates through the scattering
volume in the x1 direction.

square pixels of size 6.7 μm × 6.7 μm) via an objective
(Nikkon AF Micro Nikkor). Its diaphragm aperture is set so
that the size of the coherence area at the camera detector is of
the order of the size of one pixel, yielding for the parameter
β typically a value of 0.2. Each speckle that reaches the
camera corresponds to a specific region of the sample surface,
allowing the acoustic wave propagation to be resolved in space.
The objective is slightly out of focus so that the structure of
individual bubbles is not resolved and the recorded spatial
intensity variations are due only to speckle interference. The
acquisition rate R, exposure time T , and number of pixels
per image are adjusted for each frequency f to enable the
stroboscopic light detection scheme presented in Sec. IV B.
In practice, the smallest exposure time T used is 0.39 ms
with an acquisition rate of 325 frames/s (300 × 200 pixels per
image), while the longest one is 27 ms with 19 frames/s and
1200 × 200 pixels per image.

The foam gas volume fraction ϕ is deduced from the
electrical conductivity of the foam using the relationship given
in [35]. To obtain the conductivity we measure the electrical
impedance at a frequency of 3 kHz, between two electrodes
(not shown in Fig. 1) that are flush mounted in one of the
vertical walls of the trough, 5 mm below the top surface of the
sample.

B. Experimental protocol

We study foam samples composed of Gillette shaving foam
(Normal Regular), which is known to be very stable: Bubbles
do not coalesce, the drainage of the liquid content is slow,
and the structure evolves mainly due to coarsening, induced
by diffusive gas exchange between bubbles [23]. Initially
foam is injected into the trough until it slightly overflows

012308-3
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FIG. 2. Typical foam structure viewed at the surface of the
sample. The average bubble diameter is d = 75 μm and the gas
volume fraction is ϕ = 94.2%.

it and the sample surface is smoothed out. As the foam age
(defined as the time elapsed since production) increases, the
top layer of the sample that is in contact with the ambient
air expands. This artifact is not due to coarsening, but to
an osmotic effect: The gas contained in Gillette foam is an
alcane mixture and therefore air diffuses into the bubbles.
Prior to each acoustic measurement the inflated top layer of
the sample is removed and photographs of the surface are taken
using a video microscope (see Fig. 2). Using these images, we
measure the size of about 200 bubbles and deduce the average
bubble diameter d as well as the normalized standard deviation,
denoted by μ2.

For a given sample, the acoustic frequency f is kept fixed
and the wavelength and attenuation length are measured at a
time interval of 20 min for foam ages between 25 and 125 min.
The parameters λ and lA corresponding to a given bubble
size (i.e., foam age) are interpolated from the measurements
of λ and lA as a function of time. The evolution of the gas
volume fraction ϕ is monitored by conductivity measurements.
As the foam ages, it undergoes a slow drainage due to
gravity so that ϕ slightly increases with time. At the end
of the experiment, the trough is filled with a new sample
and the protocol is repeated with another frequency. The
investigated frequencies span 75–1300 Hz. We thus determine
the acoustic foam properties at four average bubble sizes:
(a) d = 45 ± 5 μm, ϕ = (93.2 ± 0.3)%; (b) d = 62 ± 5 μm,
ϕ = (93.5 ± 0.4)%; (c) d = 75 ± 5 μm, ϕ = (93.8 ± 0.5)%;
and (d) d = 95 ± 5μm, ϕ = (94.2 ± 0.5)%. The standard
deviation of bubble diameter distribution, normalized by the
average diameter, is in all cases μ2 = 0.58 ± 0.04. The light
scattering mean free path in foam with such gas volume
fractions is equal to 3.5 times the bubble diameter [36]. All
measurements are performed at a temperature of 22 ◦C.

IV. LASER-SPECKLE-VISIBILITY
ACOUSTIC SPECTROSCOPY

A. Diffuse light propagation in the presence of an acoustic wave

We use the formalism of DWS and SVS recalled in Sec. II
to calculate how the speckle pattern backscattered from the
surface of a turbid material is modulated in the presence
of an acoustic wave. As a first step, we consider how the

distance D between two scattering sites j and j + 1 that
are successively encountered by a propagating light wave
depends on the local strain, described by the infinitesimal
strain tensor ε. The region probed by a backscattered photon
has a typical radius of a few scattering mean free paths
�∗ [19]. Therefore, the strain is homogeneous in this region
if |κ∗�∗| � 1. In this case, elementary continuum kinematics
yield the following linearized expression of D with the usual
summation convention for indices [37]:

D = �∗[1 + εmn um un], (12)

where um is a unit vector pointing from site j to site j + 1. As
time evolves from t to t + τ , the strain changes by an amount
denoted by �εmn(t,τ ) and this leads to a variation of D that
we write as �D(t,τ ):

�D(t,τ ) = �∗�εmn (t,τ ) um un. (13)

The variation of the light phase that accompanies the change of
D is �φ(t,τ ) = k �D (t,τ ), where k is the light wave number.
To predict the field correlation function defined in (3) we must
calculate the average of �φ(t,τ )2 along a light path. Since
the light propagates along random-walk trajectories, the step
leading from j to j + 1 can have any orientation in space.
We therefore average �φ(t,τ )2 over all possible directions of
the unit vector u and write the result in terms of invariants of
the symmetric strain tensor so that it is valid in any frame of
reference:

〈�φ(t,τ )2〉 = (k�∗)2{[Tr(�ε)]2 + 2 Tr(�ε2)}/15. (14)

The invariant Tr(�ε) expresses relative changes of volume.
The remaining invariant Tr(�ε2) can be considered as an
isotropic measure of deviatoric (shear) deformation. Many
equivalent expressions and specific cases of Eq. (14) have
been discussed in the literature [16,34,38–40], going back to
pioneering work by Wu et al. [38] and Bicout et al. [39].
Substituting Eq. (14) into Eq. (8) yields the strain dependence
of g1 in the case of a backscattering experiment:

g1(t,τ ) = exp

(
−γ k�∗

√
{[Tr (�ε)]2 + 2 Tr (�ε2)}/10

)
.

(15)

The elastic response of disordered materials such as foams
is homogeneous only on a macroscopic length scale, much
larger than a bubble diameter. At a scale of the order of the
bubble size, much smaller than λ in our experiments, the
response is heterogeneous and the strain tensor components
εmn fluctuate around their macroscopic average values 〈εmn〉,
where the angular brackets represent an average over the fluctu-
ations encountered along a photon path. Strictly speaking, the
expressions Tr(�ε2) and [Tr(�ε)]2 in Eq. (14) should therefore
be replaced by 〈Tr(�ε2)〉 and 〈[Tr(�ε)]2〉. We consider only
a linear mechanical response where εmn ∝ 〈εmn〉. In view of
Eq. (14) this means that a locally heterogeneous mechanical
response modifies the value of 〈�φ(t,τ )2〉 calculated for a ho-
mogeneous response by a constant coefficient. Equation (15)
shows that in this case g1 behaves as if the strain amplitude
ε0 had an effective value that is enhanced by a constant factor.
We will not investigate this effect further here since such a
modification of ε0 has no impact on the measurements of the
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acoustic wavelengths and attenuation lengths described in the
following.

We now focus on the case of isochoric strain [Tr(�ε) = 0]
induced by an acoustic shear wave of wave number κ∗ and
angular frequency ω. It travels in the x1 direction through
a material whose elastic response is assumed to be homo-
geneous. As a starting point, we consider the displacement
�U (x1,t), where �e2 is the unit vector in the transverse direction
x2:

�U (x1,t) = A0 e−x1/lA sin(κx1 − ωt) �e2. (16)

Here A0 is the displacement amplitude at the emitter where
x1 = 0. The only nonzero components of the strain tensor
deduced from this displacement field are

ε12 = ε21

= A0

2
e−x1/lA

[
− 1

lA
sin(κx1 − ωt) + κ cos(κx1 − ωt)

]
.

(17)

The two trigonometric functions can be combined as

ε12 = κA0

2
e−x1/lA

√
1 + (κlA)−2

× cos
[
κx1 − ωt + arctan

(
κ−1l−1

A

)]
. (18)

We thus see that the acoustic attenuation has two effects on
the strain oscillation: At a given frequency, it introduces a
constant phase shift arctan(κ−1l−1

A ) and it has an influence on
the amplitude of the strain oscillation, which may be written as
ε0 = exp(−x1/lA)A0

2 κ
√

1 + (κlA)−2. To simplify, we choose
the origin of time such that the phase is set to zero and finally
write

ε12(x1,t) = ε0 cos(κx1 − ωt). (19)

Using Eqs. (15) and (19), we predict the dependence of g1

on position x1, time t , and delay time τ :

g1(x1,t,τ ) = exp{−
√

2/5ε0γ k�∗| cos[κx1 − ω(t + τ )]

− cos(κx1 − ωt)|}. (20)

Inserting this result into Eq. (5) yields the modulation of
backscattered speckle visibility as a function of exposure time
T , strain amplitude ε0, position x1, and time t :

V (T ,t,x1)

=
∫ T

0
2(1 − τ/T ) exp[−2

√
2/5ε0γ k�∗

× | cos(κx1 − ωt − ωτ ) − cos(κx1 − ωt)|]dτ/T . (21)

In the limit of small exposure times T → 0, the strain variation
that the material undergoes during T remains negligible. In
this case, the photon paths are not modified during a snapshot.
The visibility remains equal to 1 throughout the sample and
provides no information about the acoustic wave propagation.
For small but finite exposure times, up to the order of 2π/ω,
the visibility is modulated in space and time and in Sec. IV B
we show how the shear wave phase velocity can be deduced
from these variations. In the limit of large ωT , the temporal
average of visibility measured as a function of position reveals

the decay of the acoustic wave amplitude with propagation
distance. This feature will be discussed in Sec. IV C.

B. Wavelength and phase velocity measurement

In this section we consider wave propagation over distances
x1 � lA so that the strain amplitude εo is constant. Analyzing
Eq. (21) generally requires a numerical integration, but the case
of small amplitudes k�∗ε0 � 1 and exposure times ωT � 1
can be studied analytically. An expansion to first order in ωT

and ε0 yields

V (T ,t,x1) = 1 − 4ωT ε0γ k�∗

3
√

10
| sin(κx1 − ωt)|. (22)

Figure 3 illustrates the predictions of Eqs. (21) and (22).
The visibility varies as a function of the phase κx1 − ωt

of the acoustic wave. This modulation increases with strain
amplitude [Fig. 3(a)] or exposure time [Fig. 3(b)]. For ωT � 1
and ε0 = 10−3, the visibility is maximum whenever the strain
goes through an extremum and its evolution is accurately
predicted by the linearized mode leading to Eq. (22). With
increasing ε0 or ωT nonlinear corrections set in. In addition,

Ω radx1 t

Visibility a

1 2 3 4 5 6
0.2

0.2
0.4
0.6
0.8
1.0

x1 tΩ rad

bVisibility

1 2 3 4 5 6
0.2

0.2
0.4
0.6
0.8
1.0

x1 tΩ rad

Strain 10 3 c

1 2 3 4 5 6
1.0
0.5

0.5
1.0
1.5

FIG. 3. (Color online) Speckle visibility V (T ,t,x1) and shear
strain ε12 versus the phase of the acoustic wave κx1 − ωt . (a) The
continuous curves are predicted by Eq. (21) for different strain
amplitudes ε0 = n × 10−3, where n takes integer values ranging from
1 (top curve) to 10 (bottom curve) and an exposure time such that
ωT = π/10. The visibility decreases monotonically as a function
of n. (b) The continuous curves are predicted by Eq. (21) for a
strain amplitude ε0 = 10−3 and different exposure times such that
ωT = nπ/10, where n takes integer values ranging from 1 (top curve)
to 10 (bottom curve). The visibility decreases monotonically with n.
In both (a) and (b) the red dotted line indicates the prediction of the
linearized expression (22) for ε0 = 10−3 and ωT = π/10. In all cases,
we assume γ = 1.5, β = 1, �∗ = 100 μm, and a light wavelength of
500 nm. (c) The oscillating shear strain is illustrated for an amplitude
ε0 = 10−3.
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with increasing ωT the phase of the visibility oscillations
is more and more shifted with respect to that of the strain
oscillations [Fig. 3(b)]. However, the period of the visibility
oscillations is always half that of the acoustic wavelength.

In a space-time diagram where gray levels represent
visibility as a function of propagating distance x1 and time
t , a pattern of alternating parallel bright and dark stripes is
expected. Each stripe of a given gray level [or visibility (22)] is
associated with a constant phase κx1 − ωt . The slope dx1/dt

yields the phase velocity of the shear strain wave. Thus a
space-time diagram provides an image of the propagating
wave, in terms of amplitude and phase, that can be used to
determine the dispersion relation.

To measure such data experimentally, we record snapshots
of the backscattered speckle pattern versus x1, at times t

such that the phase ωt of the oscillating plate at x1 = 0 has
controlled values covering the range between 0 and 2π . A set of
snapshots acquired at a rate well above the acoustic frequency
can be used to record efficiently the phase evolution during
several periods of the wave propagation. However, this does not
mean that a high-speed camera is required to perform a speckle
visibility acoustic experiment. A stroboscopic image capture
using an exposure time T smaller than 1/ω yields equivalent
data at an acquisition rate R lower than the acoustic frequency.
The phase of the acoustic wave upon the nth snapshot is
κx1 − nω/R. We choose

R = ω

2π (N + δN)
, (23)

where N is an integer sufficiently large so that R remains
slightly below the maximum acquisition rate of the camera;
N is the number of entire temporal periods of the acoustic
wave between two successive snapshots. Changing N has
no impact on the strain observed on the snapshots since the
acoustic phase is in this case modified by an integer multiple
of 2π . The parameter δN is chosen such that 0 < |δN | � 1
and it adjusts the strain phase shift −2π (N + δN) between
two successive snapshots. Thus, in a stroboscopic sequence of
snapshots the visibility oscillates by a factor |1 + N/δN | more
slowly than in a continuous observation as a function of time t .
As a consequence, the frequency limits of a speckle-visibility
acoustic experiment are set by the accuracy of timing and
shutter control rather than by the maximum acquisition rate of
the camera.

To obtain visibility data that are statistically robust, a large
number of independent speckles must be recorded for each
propagation time t and distance x1. Therefore, the extent in
the x2 direction of the region captured by the snapshots is
chosen such that for any given propagation distance, at least
100 independent speckles are obtained.

Figure 4 shows a typical experimental space-time plot
acquired at a frequency close to 100 Hz. The time axis has
been rescaled by the factor |1 + N/δN | so that the quantity
ωt expresses the phase shift of the acoustic wave as if no
stroboscopic detection had been used. The diagram presents
indeed the expected pattern of alternating parallel bright and
dark stripes discussed above. Their slope dx1/dt is equal to
the phase velocity of the visibility (22), which has spatial and
temporal periods that are both twice those of the acoustic wave.
Thus the slope is also equal to the acoustic phase velocity. To

FIG. 4. Space-time plot of the visibility as a function of time t

and propagation distance x1, derived from snapshots at successive
instants. The gray level is proportional to the level of visibility as
indicated by the grayscale chart. The bright stripes correspond to
instants and positions where the speckle visibility is maximal [see
Eq. (22)], i.e., where the acoustic wave signal goes through an
extremum (see Fig. 3). The acoustic wave frequency is 99.5 Hz,
the amplitude displacement A0 = 9.2 μm, and the exposure time
T = 5.0 ms. The stroboscopic acquisition parameters are R = 100
frames per second, N = 1 and, 1/δN = −200 [see the text for the
definition of these notations and Eq. (23)]. The sample is Gillette
foam, with average bubble diameter d = 48 μm and gas volume
fraction ϕ = (93.7 ± 0.4)%.

extract quantitatively the acoustic wave velocity, we determine
the fundamental Fourier component of the temporal visibility
modulation for fixed positions x1. Figure 5 shows that the
measured phase of this component �V increases linearly with
propagation distance x1. The slope of the fitted straight line is
equal to 2κ . We then deduce the phase velocity of the acoustic
wave as c = ω/κ .

C. Attenuation length measurement

We consider that, due to dissipation, the strain amplitude
ε0(x1) of a plane acoustic wave decreases exponentially
with propagation distance x1. To obtain the length lA that
characterizes such a decay from the speckle data, the temporal
average of the visibility, denoted by V̄ , is calculated. We focus
on the case of small acoustic strain amplitudes ε0 � 1 and
linearize the exponential function in Eq. (21):

V (T ,t,x1) = 1 − 8

√
2

5

ε0 γ k �∗

T

∫ T

0

(
1 − τ

T

)∣∣∣∣ sin

(
ωτ

2

)

× sin

(
κx1 − ωt − ωτ

2

)∣∣∣∣dτ. (24)
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FIG. 5. (Color online) Phase �V of the visibility Fourier com-
ponent at angular frequency ω calculated from the space-time plot
shown in Fig. 4 as a function of propagation distance. The data
are represented by the symbols. The line corresponds to a linear
regression to the data: The slope is (0.358 ± 0.002) rad mm−1. This
is equal to twice the acoustic wave number κ = 0.18 rad mm−1. We
deduce the acoustic phase velocity c = ω/κ = 3.5 m s−1.

By averaging over the time t , we obtain V̄ :

V̄ (ε0(x1),ωT ) = 1 − 16

π

√
2

5
γ k �∗ S(ωT )ε0(x1), (25)

with

S(ωT ) = 1

T

∫ T

0

(
1 − τ

T

)
| sin(ωτ/2)|dτ. (26)

Using these results, the strain amplitude can be deduced from
the time-averaged visibility. The impacts on V̄ of the acoustic
angular frequency ω and the exposure time T are captured
by the factor S(ωT ), which increases linearly with ωT for
ωT � 1 and converges to the asymptomatic value 0.32 for
ωT larger than ≈ 6, as illustrated in Fig. 6. In this limit of
exposure times much longer than the acoustic wave period,
the sensitivity of the visibility is optimized and independent
of the exposure time T ; we denote it by V̄ (ε0). As long as ωT

FIG. 6. Variation of the function S defined in Eq. (26) with the
parameter ωT .

is kept constant, 1 − V̄ is linearly related to ε0:

ε0(x1) ∼ 1 − V̄ (ε0)

γ k �∗ . (27)

We use this result to study the decay of the acoustic wave
amplitude with propagation distance. The speckle fluctuations
are measured in the vicinity of the acoustic emitter and the
variation of the average visibility V̄ with x1 is extracted. To
determine the normalization constant β [Eq. (2)] we record
an image in the absence of acoustic waves and calculate the
first and second moments of its intensity distribution. Since at
rest the average visibility is equal to 1 (neglecting noise and
intrinsic sample dynamics), these data yield β. If ε0(x1) decays
exponentially with x1, Eq. (27) predicts that ln[1 − V̄ (ε0(x1))]
decreases linearly with x1/lA, so lA can easily be extracted
from experimental data. Figure 7(a) illustrates that we observe
indeed such behavior for small strain amplitudes. However,
we note that Eq. (25) is obtained by describing the sample as a
dispersion of isotropic point scatterers in a viscoelastic matrix.
This simple model may not be justified in all forms of turbid
soft matter. In addition, we recall that the approximations
leading to Eq. (27) hold only for small strain amplitudes.

To overcome these restrictions, we use a different ex-
perimental procedure that only requires that the visibility
is a monotonically decreasing function of strain amplitude
and that the viscoelastic response is linear and homogeneous
throughout the sample. The average visibilities are recorded
as a function of propagation distance for two acoustic emitter
displacement amplitudes A0 and ξA0. For an exponential
decay, the strain amplitudes vary in these two cases as
A(x1) = A0e

−x1/lA and A(x1) = A0ξe−x1/lA = A0e
−x1/lA+ln ξ .

Changing the emitter amplitude by a factor ξ has the same
effect as a translation of the curve 1 − V̄ ((ε0(x1)) by a distance
lA ln(ξ ) along the x1 axis. We therefore expect that for a given
sample and frequency, plots of visibility versus x1 obtained
for different amplitude ratios ξ can be superposed on a master
curve by applying offsets lA ln(ξ ) to the propagation distance.
The existence of such a master plot validates the hypothesis of
linear mechanical response that our analysis relies on.

To implement and test this method experimentally, we apply
to a foam sample successively four displacement amplitudes
A0 in the range between 3.2 and 9.2 μm, with a frequency of
100 Hz. Figure 7(a) shows that, as expected, the visibility V̄

grows with increasing propagation distance x1 and that at a
given distance V̄ decreases with increasing emitter amplitude.
By shifting the curves in Fig. 7(a) along the x1 axis so that the
least-squares differences between the curves are minimized,
we obtain the well defined master curve shown in Fig. 7(b).
The values of ξ and the shift displacements consistently yield
the attenuation length lA = 11.9 ± 0.1 mm. Figure 7(a) also
shows an exponential fit to the data obtained at the two lowest
emitter amplitudes. As pointed out above, the inverses of the
slopes on these semilogarithmic plots are expected to yield
−lA. The results, 12 mm for A0 = 3.2 μm and 10.8 mm for
A0 = 4.5 μm, are consistent with the value of lA deduced from
the master plot; the small discrepancy may be due to noise.
This result validates our model leading to Eq. (27). Figure 7(a)
also shows that with increasing excitation amplitudes the
relation between 1 − V̄ ((ε0(x1)) and x1 progressively becomes
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FIG. 7. (Color online) (a) Visibility V̄ (ε0,ωT ), defined in
Eq. (25), with ωT = 4π , versus propagation distance x1, measured
with a foam sample (d = 51 μm, ϕ = 93.8%) at a frequency f =
100 Hz and exposure time T = 20 ms. The symbols correspond to
different displacement amplitudes as labeled in the graph. The speckle
data are binned using 28 pixels per bin. The error bars are smaller
or of the size of the symbols. The two straight lines are exponential
fits, yielding attenuation lengths lA = 10.8 mm for A0 = 4.5 μm and
lA = 12 mm for A0 = 3.2 μm. (b) The same data collapsed on a
master curve after an offset lA ln(ξ ) is applied to the distance x1, with
lA = 11.9 mm. The reference curve corresponds to the amplitude
A0 = 9.2 μm. The symbols are the same as in (a).

nonlinear. In this regime the linearized model (27) no longer
applies. Mechanical nonlinearities are very unlikely to be
relevant in the present context since the highest investigated
strain amplitude is well below 0.1%, which is more than two
orders of magnitude below the yield strain of Gillette foam
reported in the literature [41].

V. EXPERIMENTAL RESULTS WITH AQUEOUS FOAMS

For the determination of the wavelength, the exposure
time T is adjusted at each frequency such that ωT = π and
the stroboscopic detection scheme is used (see Sec. IV B).
For the attenuation length measurements, we use the method
described in Sec. IV C. The exposure time T is adjusted so that
ωT = 4π , which is in the asymptotic regime shown in Fig. 6.
Figures 8 and 9 provide an overview of the experimentally

FIG. 8. (Color online) Acoustic wavelength versus frequency
measured for aqueous foam (Gillette shaving foam) with different
average bubble diameters d as labeled. The open symbols correspond
to the data measured using laser speckle visibility spectroscopy
(this study) while the closed symbols are deduced using Eqs. (10)
and (11) from previous rheological measurements performed for
the same foam and bubble sizes [21]. The solid lines represent the
wavelength predicted by the viscoelastic constitutive model (28) with
the following parameters: d = 45 μm, G0 = 222 Pa, fc = 26 Hz, and
η0 = 0.26 Pa s (blue); d = 62 μm, G0 = 160 Pa, fc = 12 Hz, and
η0 = 0.21 Pa s (red); and d = 75 μm, G0 = 136 Pa, fc = 8 Hz, and
η0 = 0.18 Pa s (green). The inset shows the phase velocity c = λf

for the same data and model predictions, with the same legend for the
symbols.

determined acoustic shear wave propagation characteristics.
Using laser-speckle-visibility acoustic spectroscopy (LSVAS),

FIG. 9. (Color online) Attenuation length versus frequency mea-
sured for the same foam and bubble diameter (as labeled) as in Fig. 8.
The open symbols correspond to laser-speckle-visibility spectroscopy
data (this study) while the closed symbols are deduced using Eqs. (10)
and (11) from previous rheological measurements performed with a
rheometer for the same foam and bubble sizes (data from Ref. [21]).
The solid lines represent the attenuation length predicted by the
viscoelastic model (28) with the same parameters as in Fig. 8. The
inset shows the frequency versus wave number for the same samples,
with the same legend for the symbols.
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we have obtained the wavelength and attenuation length for
frequencies between 75 and 1300 Hz and bubble sizes between
45 and 75 μm. In the same figures, we show data at frequencies
up to 100 Hz deduced using Eq. (9) from previous complex
shear modulus measurements on the same foam for the same
bubble diameter and gas volume fraction [21]. These reference
data match very well those obtained using LSVAS in the
frequency range 75–100 Hz where the two data sets overlap.
The attenuation lengths shown in Fig. 9 are all smaller than
2 cm. Therefore, our claim in Sec. III A that the boundary
conditions at walls and the bottom of the trough have no impact
on the investigated wave propagation is justified.

Experimental complex shear modulus data for Gillette
foam at frequencies below 100 Hz are well described by the
relation [21], inspired by a model that has previously been
proposed to describe the viscoelastic response in concentrated
emulsions [24]:

G∗(f ) = G0(1 +
√

if/fc) + 2πiη0f, (28)

where G0 is the static shear modulus, fc is a characteristic
relaxation frequency, and η0 reflects the dissipation due to
the liquid phase. Substituting Eq. (28) into Eq. (9) yields the
following viscoelastic dispersion relation:

κ∗ = ω

√
(1 − ϕ)ρl

G0(1 + √
iω/(2π fc)) + iη0ω

, (29)

where ρl is the density of the foaming solution. The wave-
length and the attenuation length deduced from Eq. (29) are
represented as a function of the frequency by the solid curves
in Figs. 8 and 9. The parameters G0, fc, and η0 are those
previously deduced from measurements below 100 Hz for the
same bubble diameters [21]. Our data are thus in good agree-
ment with an extrapolation of current models to frequencies
that are an order of magnitude higher than those investigated
previously. However, this result obtained for Gillette foam,
which has a very high interfacial rigidity, may not be of
general validity. Recent experiments with foams based on
surfactant solutions with smaller interfacial modulus have
evidenced significant deviations from Eq. (28) that increase
with frequency [22]. Future LSVAS experiments will allow
the investigation of this behavior. We finally note that in the
frequency range 100–300 Hz, the transverse sound velocity in
Gillette foam with a bubble diameter of 45 μm is smaller than 5
m s−1 (see the inset of Fig. 8). In view of the weak dependence
of the velocity on the bubble size evidenced by our data, this
result is consistent with the conjecture by Le Goff et al. that
the surface waves whose observation they report [42] behave
as supershear Rayleigh waves that propagate faster than bulk
shear waves.

VI. CONCLUSION

We present laser-speckle-visibility acoustic spectroscopy,
a technique for imaging an acoustic shear wave propagating
parallel to the surface of a soft turbid material. To detect this
wave, we illuminate the sample surface with coherent light
and measure how the strain induced by the wave modulates in
space and time the backscattered speckle interference pattern.
The shutter time of the camera used for these observations

needs to be short compared to the acoustic wave oscillation
period, but the time interval between successive snapshots
can be much slower if stroboscopic detection is used. Our
theoretical analysis and the experimental validation show that
from the speckle images, the attenuation length and dispersion
relation can be determined without any knowledge of the
parameters that characterize the diffusive light propagation
in the material. The only requirements are a light scattering
mean free path small compared to the acoustic wavelength and,
for the attenuation measurement, a linear acoustic response.
To minimize the statistical errors of the measurement, a
large number of speckles must be acquired for a given
propagation time and region of interest. Due to the aging of
the samples used in our validation experiments, the disorder
of their structure evolves continuously, so averaging over the
sample age can be used to average over different realizations
of the speckle pattern. In samples that do not have such
intrinsic dynamics, enhanced averaging can be obtained by
inserting a multiple-scattering disk in the path of the laser
light shining on the sample. A slow rotation of this disk will
continuously renew the speckle pattern [43]. Moreover, our
validation experiments are carried out with acoustic shear
waves that are polarized parallel to the sample surface, but
LSVAS measurements can be performed just as well with
compression waves or surface waves. The detected waves do
not need to be plane or coherent; the acoustic propagation
can even be diffusive. These features allow mode conversion
of waves interacting with an obstacle or the transformation
of coherent into diffusive waves to be studied. In a conven-
tional acoustic transmission experiment, the detected intensity
depends not only on the sample properties, but also on the
acoustic reflections and transmissions on the way from the
emitter to the receiver. Therefore, several measurements at
different propagation distances are necessary to determine the
attenuation length and the propagation speed. In the case of
LSVAS, an extended range of propagation distances is probed
in a single experiment. This feature distinguishes LSVAS
from previous experiments where multiple light scattering was
used to detect acoustic vibrations at a single position in a
sample. In our validation experiment LSVAS was applied to
a homogeneous material, but the technique can also be used
to map the acoustic properties of samples that are spatially
heterogeneous. Such imaging is called elastography and it is
used as a medical diagnostic technique [44]. In this context,
LSVAS might, for instance, be useful for detecting skin
cancer. Concerning the foam samples used in our validation
experiment, we have shown that a previously proposed model
of the fast viscoelastic response extends to frequencies an order
of magnitude above those that could be investigated previ-
ously. Additional experiments in such an extended frequency
range with foams of different interfacial rheological behav-
iors may bring fresh insight into the underlying relaxation
mechanism.

To conclude, we have shown that speckle-visibility acoustic
spectroscopy is a versatile probe for acoustic wave propagation
and viscoelastic response in turbid soft matter such as foams,
emulsions, pastes, granular matter, or biological tissues. It
extends the scope of previous techniques by direct imaging
of propagation or localized acoustic waves in space and
time.
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APPENDIX

In this appendix we discuss the impact of the mechanical
boundary conditions on the shear wave propagation experi-
ment illustrated in Fig. 1. For the reasons given in Sec. III A,
we do not take into account the vertical walls of the trough
containing the foam and model a wave motion that is invariant
with respect to translations in the x2 direction. At x3 = 0 the
sample is in contact with a rigid boundary (the bottom of the
trough) where the displacement vector �U is zero. The region
0 < x3 � H is filled with foam; at x3 > H there is air. The
displacement field �U in the foam obeys the following equation
of motion:

� �U = ρ

G∗
∂2 �U
∂t2

. (A1)

The components U1 and U3 are zero in the mode of wave
propagation excited in our experiment. The solution of
Eq. (A1) that satisfies the boundary condition at x3 = 0 is [45]

U2 = A0 sin (ξx3)ei(κ∗x1−ωt). (A2)

The amplitude A0 is set by the emitter vibration, whereas the
parameter ξ must obey the following relation, obtained by
substituting U2 given by Eq. (A2) into Eq. (A1):

ξ 2 = ρ ω2

G∗ − κ∗2. (A3)

The displacement in the foam described by Eq. (A2) is
accompanied by oscillations of the shear stress components
σ12 and σ23. Only the latter yields forces at the top surface of
the foam:

σ23 = G∗ ∂U2

∂x3
. (A4)

In the plane x3 = H we get

σ23 = A0 G∗ ξ cos(ξH )ei(κ∗x1−ωt). (A5)

If the air did not have any viscosity, the stress σ23 in the plane
x3 = H would have to be zero and the propagation modes
would then correspond to ξH = π/2 + Kπ , where K � 0 is
an integer. Here K sets the number of zeros of the function
U2(x3) that oscillates for x3 ranging from 0 to H . Since the
plate that excites the acoustic wave in our experiment imposes
a displacement where U2 is independent of x3 down to the
vicinity of the sample bottom, the propagation mode with
K = 0 is expected to be dominant. Moreover, since the density
and viscosity of air are very small compared to that of the
sample material, we expect the solutions in presence of air
to be close to those calculated for a free top boundary. We

therefore write

ξH = π/2 + b (A6)

and expect the correction b due to the presence of air to be small
compared to π/2. This conjecture will be validated below in
the case of our experimental conditions.

We now turn to the displacement and stress fields in the
air, which are denoted by U ′

2 and σ ′
23, respectively. Here,

there is a diffusive spatial decay of the velocity, governed by
the Navier-Stokes equation. We use its linearized form because
the velocity amplitude at the foam surface A0ω, set by the
motion of the wave emitter, is orders of magnitude smaller
than the sound velocity in air. For a shear excitation in the x2

direction we obtain

�
∂U ′

2

∂t
= 1

ν

∂2U ′
2

∂2t
, (A7)

where ν is the kinematic viscosity of air. We use the ansatz

U ′
2 = A′

0 e−δ(x3−H ) ei(κ∗x1−ωt). (A8)

By substituting U ′
2 into Eq. (A7) we obtain

δ2 = κ∗2 − i
ω

ν
. (A9)

The viscous stress in the air at x3 = H reads

σ ′
23(H ) = η

∂2U ′
2

∂x3∂t

∣∣∣∣
x3=H

= i A′
0 δ η ω ei(κ∗x1−ωt), (A10)

where η is the dynamic viscosity of air. Continuity of the
stresses at x3 = H expressed by Eqs. (A5) and (A10) yields

A0 G∗ ξ cos(ξH ) = iA′
0 δ η ω. (A11)

Continuity of the displacements at x3 = H expressed by
Eqs. (A8) and (A2) yields

A0 sin(ξH ) = A′
0. (A12)

Combining the last two expressions, we get

G∗ξ cot(ξH ) = iδ η ω. (A13)

A series development to first order in b of this equation yields,
using Eq. (A6),

πb G∗ = −2iδ η ω H. (A14)

We combine this result with Eq. (A9) and obtain

b = 2η ω H

πG∗

√
i
ω

ν
− κ∗2. (A15)

We now perform a first-order development in b of Eq. (A3),
using Eq. (A6):

(π/2 + b)2

H 2
= π2/4 + πb

H 2
= ρ ω2

G∗ − κ∗2. (A16)

Using Eq. (A15) to eliminate b, we finally obtain(
π

2H

)2

+ 2ηω

G∗H

√
i
ω

ν
− κ∗2 = ρ ω2

G∗ − κ∗2. (A17)

This result must be compared to the dispersion relation (9)
of shear waves propagating in the bulk of an infinite sample
considered in Sec. II. It reduces to the dispersion relation of
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shear waves propagating in the bulk of an infinite sample if the
left-hand side is neglected. The first term on the left-hand side
of Eq. (A17) takes into account that the sample is bounded and
the second term captures the viscous coupling with the air. The
characteristic length (ν/ω)1/2 that appears in this term scales
as the thickness of the viscous boundary layer [46]. Using
the viscosity and the density of air, as well as the complex
shear modulus of foam determined in our experiment and in
previous work, we solve Eq. (A17) numerically and find that
for frequencies larger than 75 Hz, the real and imaginary parts
of the wave vector deviate by less than 1% from the values for
shear waves propagating in the bulk of an infinite sample.

Our calculation also yields that the ratio ε23/ε12 at the
sample surface (x3 = H ) may be expressed as

ε23

ε12
= σ23

σ12
= η ω δ

G∗κ∗ = η ω

κ∗G∗

√
κ∗2 − i

ω

ν
. (A18)

In the parameter range investigated in our experiments the
modulus of this ratio is smaller than 10−3, showing that
the strain amplitude |ε23| is indeed very small compared to
the dominant strain |ε12|. We finally conclude that the wave
propagation characteristics measured in our experiment are
very close to those of shear waves traveling in the bulk of
foam.
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[34] R. Höhler, S. Cohen-Addad, and H. Hoballah, Phys. Rev. Lett.

79, 1154 (1997).
[35] K. Feitosa, S. Marze, A. Saint-Jalmes, and D. J. Durian, J. Phys.:

Condens. Matter 17, 6301 (2005).
[36] D. J. Durian, D. A. Weitz, and D. J. Pine, Science 252, 686

(1991).
[37] L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd ed.,

Course of Theoretical Physics Vol. 7 (Elsevier, Amsterdam,
1986).

[38] X.-L. Wu, D. J. Pine, P. M. Chalkin, J. S. Huang, and D. A.
Weitz, J. Opt. Soc. Am. B 7, 15 (1990).

[39] D. Bicout, E. Akkermans, and R. Maynard, J. Phys. France I 1,
471 (1991).

[40] M. Erpelding, R. M. Guillermic, B. Dollet, A. Saint-Jalmes, and
J. Crassous, Phys. Rev. E 82, 021409 (2010).

[41] F. Rouyer, S. Cohen-Addad, R. Höhler, P. Sollich, and S. M.
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