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Force-chain distributions in granular systems
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We study experimentally the distributions of force chains in granular materials, which are slightly different in
sheared systems compared to isotropically compressed systems, especially at the tails, reflecting the shear-induced
anisotropy of the contact force network. Ignoring this anisotropy allows us to establish a relationship between
the mean force-chain length Lm and the average contact number Z of particles for both systems, independent
of the system size. We also demonstrate that force-chain distributions are not related to the exponential-like
distributions of stresses.
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I. INTRODUCTION

In granular materials, although each particle can be well
characterized individually, describing an assembly of densely
packed grains interacting only via contacts remains a signifi-
cant challenge because (1) thermal energy is negligible and (2)
observed fluctuations are often large [1,2]. One striking exam-
ple is the presence of “force chains” in the way external forces
are distributed through filament-like clusters of particles. Force
chains are observed in three-dimensional (3D) systems [3] as
well as in two-dimensional (2D) systems using photoelastic
techniques [4–6]. The study of force chains is crucial in
understanding various properties of granular materials. These
include the jamming of fragile matter [7,8], the emergence
of shear jammed states [9], an abrupt termination of flow
in a hopper [10], the bimodal characteristics of the stress
transmission [11], point force responses of granular systems
[5,6], the Janssen effect [12], sound propagations in granular
packings [13,14], and snow avalanches and earthquakes [15].

Despite the great importance, direct measurements of force
chains are rare [16,17]. Instead, extensive studies have been
focused on the distributions of contact forces [3,6,18–22] and
on the structures of packings [23–25] in the past decade.

Here we report a precise experimental measurement of force
chains in two model systems: pure shear and isotropic com-
pression. We establish firmly that the statistics of force-chain
distributions is very rich. Applying shear creates anisotropy in
force-chain networks and thus changes the force-chain length
distributions. Despite the broad distributions, the mean length
scale of the force chains Lm is understood as a function of
the average contact number per particle, Z. Lm first increases
rapidly and then reaches a plateau as the system size increases;
in the present system, Lm is already in the thermal dynamic
limit. Using a mean-field model, we can predict such a
relationship quantitatively, with a reasonable agreement with
the experimental measurements. In addition, we demonstrate
that the stress distributions and force-chain length distributions
are two separate problems. For each individual result, we find
that it is robust and consistent within a range of parameter
values in the force-chain identification algorithm.

*jiezhang2012@sjtu.edu.cn

II. EXPERIMENTAL METHODS

In this study, we analyze data obtained from two different
experiments using a biaxial apparatus [9,26]. Briefly, a “biax”
consists of a rectangular frame, within which a total of
1568 disks are randomly deposited on a powder-lubricated
Plexiglas surface, with roughly 80% small disks of a diameter
of 0.74 cm and 20% large disks of a diameter of 0.86 cm.
Starting from a square, isotropic compression is achieved
by gradually reducing the original square to a series of
smaller squares until a final packing fraction � is reached. In
isotropic compression, the data were obtained at � = 0.842
and � = 0.848, respectively. In contrast, pure shear is applied
by compressing one pair of parallel boundaries and expanding
the other pair while keeping the area of the rectangle fixed.
In pure shear, data were obtained at � = 0.828 and at strains
of 2% and 3%, respectively, where shear-jammed states were
developed [9]. In a given experiment, multiple runs, up to
a few hundred, were performed under the same conditions
to create an ensemble. Each run is called a realization with
multiple images of the photoelastic disks taken, including one
(respectively, the other) in the absence of (respectively, in the
presence of) a pair of circular polarizer sheets [26].

Applying an image processing and a force-inverse algo-
rithm allows us to determine the radius and the position
of each particle, the interparticle contacts, and the vector
contact forces between particles with reasonable precision
[6,9,26]. The force-moment tensor of a particle is defined as
σ̂ij = ∑

k fikRjk . Here fik is the ith component of the contact
force at the kth contact of the particle and Rjk is the j th
component of its branching vector pointing from its center
to its kth contact. The summation is over all contacts of the
particle.

To analyze the force-chain statistics, one must first define
a force chain. We use a force-chain definition similar to that
of Ref. [16]. First, among all force-bearing particles, only
those with σ1 � 〈σ1〉 are selected, where σ1 is the maximum
absolute eigenvalue of σ̂ij and 〈〉 averages over different
particles in a single realization. Second, each force-bearing
particle carries a unique orientation specified by the + or
− directions of the eigenvector of σ1, which shall align for
particles of the same force chain. A threshold angle δ is
introduced to quantify the alignment. Figure 1(a) shows a
schematic of two perfectly aligned force chains, O1O2O3 and
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FIG. 1. (Color online) (a), (b) Schematic that illustrates the ne-
cessity of introducing a coefficient α, or equivalently a threshold
angle θ , in order to distinguish two ideally straight force chains, i.e.,
chains O1O2O3 and O4O5O6. The angle θ is defined as the angle
between the orientation of the local force moment tensor of disk O3

and the center-to-center line O3O4.

O4O5O6. In order to differentiate these two force chains, the
third criterion is introduced to compare the directions of A1A2

and A3A4 of the particles O3 and O4 with the line O3O4.
The actual algorithm is implemented by comparing the area
of the polygon A1A2A3A4 to the sum of the areas of the two
disks multiplied by a coefficient α, as drawn in Fig. 1(b). An
α = 0.25 is equivalent to θ = 23◦ for two perfectly aligned
particles O3 and O4. We note that twice θ is 46◦, consistent
with the 45◦ threshold angle used in Ref. [16]. We further note
that twice δ is 40◦ for α = 0, i.e., θ = 0 in Fig. 1, which is
also consistent with the 45◦ threshold angle used in Ref. [16].
We will present results below first for δ = 20◦ and α = 0.25,
and more detailed studies of δ and α at other values will then
be presented afterwards. Compared with Ref. [16], there are
two major differences: First, in our definition, the shortest
force chain consists of two particles instead of three. Second,
our method considers the branching of force chains, i.e., only
the best aligned neighboring particle is selected. One sample
image of the detected force chains is plotted in Fig. 2 for
α = 0.25 and δ = 20◦.

III. RESULTS AND DISCUSSION

Figure 3 main panels show two typical distributions
of force-chain lengths using open circles for pure shear
(a) and isotropic compression (b) at α = 0.25 and δ = 20◦.
To get better statistics, the results in Fig. 3(a) [respectively,
in Fig. 3(b)] are produced from a subensemble of 103 (re-
spectively, 67) realizations at Z = 3.93 ± 0.04 (respectively,
at Z = 4.22 ± 0.04). Except at the tail part, the distribution
can be fit well using an exponential function P (N ) ∝ e−N/λ

of one free parameter: for pure shear, it shows a deviation
from the exponential fit, with a fat tail better fit using a
stretched exponential function P (N ) ∝ e−[(N−2)/�]β of two
free parameters � and β. At α = 0.25 and δ = 20◦, the fitting
parameters λ, �, and β are respectively 1.36, 1.27, and 0.84 in
Fig. 3(a) and 0.98, 0.95, and 0.93 in Fig. 3(b). We conjecture
that for an ideal isotropic compression with a zero shear stress
β = 1.0, recovering an exponential distribution. We believe
that the slight deviation was because of the existence of a

FIG. 2. (Color online) (a) An example of a force-chain network
in a 2D layer of granular materials under isotropic compression.
Here bidisperse photoelastic disks are used. (b) The portion of panel
(a) indicated by the red rectangle, showing several force chains
of different lengths using different colors. For example, chains of
different lengths are displayed by painting each particle center using
dots of different colors: black for length five, blue for length four,
green for length three, and red for length two. The short line drawn
on top of each particle represents the orientation of the force moment
tensor of each particle. Particles with gray-dot centers do not belong to
any force chain although satisfying σ1 � 〈σ1〉 (see Sec. II for details).

nonzero, albeit small, shear stress in the system. In contrast,
once the shear is applied, creating anisotropy of the force-chain
network [6], the force-chain length distribution becomes more
complex, developing fat tails, indicating correlations at larger
length scales. Note that even with the existence of shear, the
deviation from the exponential distribution is minor, i.e., only
for the rare events at the tail part. The insets of Fig. 3 plot
the histograms of a single realization, where the exponential
distribution provides reasonable fit to the data points.

To see how the results presented above depend on the
parameters δ and α, we have performed the similar analysis
for different values of δ and α. Figure 3 shows that when α

and δ vary, the distributions change slightly. The dependence
of λ, �, and β on δ and α can be obtained quantitatively. In
Fig. 3(a), λ, �, and β are respectively 1.31, 1.23, and 0.85 for
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FIG. 3. (Color online) Histograms of force-chain length distri-
butions in (a) pure shear and (b) isotropic compression. In main
panels of (a) and (b), different symbols represent different values of
α and δ, with α = 0.25 and δ = 20◦ (circles), α = 0.2 and δ = 20◦

(squares), α = 0.25 and δ = 25◦ (crosses), and α = 0.25 and δ = 20◦

(pluses). Red thick (respectively, blue thin) lines are the exponential
(respectively, stretched exponential) fits, with α = 0.25 and δ = 20◦

(solid lines), α = 0.2 and δ = 20◦ (dashed lines), α = 0.25 and
δ = 25◦ (dotted lines), and α = 0.25 and δ = 20◦ (dash-dotted lines).
The results in main panel (a) [respectively, in main panel (b)] are
produced from a subensemble of 103 (respectively, 67) realizations
at Z = 3.93 ± 0.04 (respectively, at Z = 4.22 ± 0.04). Distributions
of a single realization are shown in the insets of panels (a) and (b)
for α = 0.25 and δ = 20◦ with solid lines from the exponential fit.
For easy comparison, the bin counts in each data set of the two main
panels are normalized by the counts in its first bin accordingly.

α = 0.2 and δ = 20◦; 1.52, 1.42, and 0.84 for α = 0.25 and
δ = 25◦; and 1.42, 1.33, and 0.84 for α = 0.3 and δ = 20◦.
Similarly in Fig. 3(b), λ, �, and β are respectively 0.94, 0.92,
and 0.95 for α = 0.2 and δ = 20◦; and 1.0, 0.97, and 0.92 for
α = 0.3 and δ = 20◦. Extensive analysis has been performed
for data at other Z (data not shown here in Fig. 3). At a given
Z, the exponent β remains nearly constant, showing a weak
dependence on the parameters δ and α and hence preserving the
shape of distributions. For different values of Z, the exponent
β shows small variations with values in the range of 0.9 ∼ 1.0
in isotropic compression, slightly larger compared to the pure
shear, which has values in the range of 0.8 ∼ 0.9. When δ

is fixed, as α increases from 0.15 to 0.3, λ and � increase
from a few percent up to twenty percent, depending on the
value of δ. When α is larger than 0.3, two parallel neighboring
chains cannot be distinguished anymore. When α is fixed, as δ

increases from 15◦ to 25◦, λ and � increase from ten percent
up to twenty percent, depending on the value of α. α = 0
corresponds to perfectly aligned chains, which is unrealistic in
practical applications. The average alignment angle between
neighboring particles is around 20◦ in pure shear and 25◦ in
isotropic compression. Hence we typically choose δ around
20◦ ∼ 25◦ as a natural and optimal value.

To gain some insight, we approximate force-chain length
distribution with an exponential distribution to focus on the
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FIG. 4. (Color online) Scatter plot of (a) mean force-chain length
obtained using Eq. (1) in the main text, Lλ, versus the directly
measured value Lm. (b) Mean contact number Z versus (1 − p). (c)
Density of chain branching particles ρ versus (1 − p). (d) pa versus
p. Solid lines show the linear fit. Each data point is from a single
realization of an experiment of either pure shear (blue plus signs) or
isotropic compression (red stars). Here α = 0.25 and δ = 20◦.

isotropic part of the force network by ignoring the deviation
from an exponential distribution. To make progress, we first
assume that the probability of a particle being part of a force
chain is a constant p. It is easy to find that the probability
P (N ) of a length of an N -particle force chain is P (N ) =
pN (1 − p). Hence ln (P (N )) = ln(p)N + ln(1 − p). Defining
ln(p) ≡ − 1

λ
or equivalently p = e−1/λ yields P (N ) ∝ e−N/λ,

which is the discrete exponential distribution with only one
free parameter λ. For an arbitrary distribution P (N ) of the
force-chain length N , the mean force-chain length Lm can be
computed by using

Lm ≡
∑

NP (N )∑
P (N )

(1)

by definition. When P (N ) = pN (1 − p), Lm can be calculated
analytically using

Lm = 2 + p/(1 − p). (2)

Because p = e−1/λ and experimentally it is straightforward to
find λ through the exponential fit of the distribution P (N ),
therefore once λ is found, p can be determined, and Lm can
then be computed using the above Eq. (2). We define

Lλ ≡ 2 + e−1/λ/(1 − e−1/λ) (3)

to emphasize that this average chain length is obtained through
the exponential fit. In contrast, we compute Lm directly using
Eq. (1). Note that Lm and Lλ are the same only when P (N ) is
an exponential distribution.

To check its validity, we show the scatter plot of Lλ

versus Lm in Fig. 4(a). Note that each data point in Fig. 4
is a single realization, i.e., the statistics of a single image
similar to the insets of Fig. 3. Despite the fluctuation, the
linear fit indicates that an exponential distribution provides
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FIG. 5. (Color online) The mean length scale Lm of force-chain
length distributions as a function of the average contact number Z

measured from isotropic compression (red solid squares) and pure
shear (red open squares) at α = 0.25 and δ = 20◦. The dashed line
is the prediction of Eq. (5) in the main text. The inset is a schematic
for an estimation of Z∗ in Eq. (4) in the main text based on geometry.
Each data point is computed from a subensemble of realizations at a
given Z. We note that the original ensembles of isotropic compression
and pure shear have been divided into eight subensembles according
to the average contact number Z. Each data point in the above figure
is a result of an individual subensemble.

a good estimate of the mean chain length. A key question
is what determines p, or equivalently 1 − p. In principle,
p depends not only on the local geometry but also on the
mechanical properties of the local force network, which are in
general quite complex in nature. To make progress, we make a
mean-field approximation assuming that 1 − p is only related
to the average number of contacts per particle Z. A linear fit
in Fig. 4(b) yields

(1 − p) = aZ − b ∝ Z − Z∗, (4)

with a = 0.454, b = 1.26, and Z∗ = 2.78. Using the inset of
Fig. 5, we can give a rough estimate of Z∗ based on geometry.
For simplicity, monodisperse disks are drawn and the stress
orientation of the disk O2 is horizontal. Here the disks O1

and O2 belong to the same force chain and the disk O and
its mirror image O ′ are at the marginal positions of the force
chain. Hence 1 − p is proportional to the azimuthal angle of
the shaded area. Assuming a uniform distribution of contacts,
Eq. (4) implies that Z∗ is the number of contacts proportional
to the azimuthal angle �¸ of the nonshaded area. In the inset
of Fig. 5, angles P1O2O1, P ′

1O2O1, PO2O, and P ′O2O
′

are 30◦ and the stress orientation c1c2 of disk O is tilted at
a 20◦ angle compared with the disk O2. The angle OO2H

is determined by setting the ratio between the area of the
polygon c1c2c

′
2c

′
1 and total area of the disks O and O2 equal

to α = 0.25. Here c′
1 and c′

2 are the crossing points between
O1H and the circumference of the disk O2. The angle OO2H

thus equals 33.5◦, implying � = 187◦. We estimate Z∗ = 2.13
using Z∗ = Za�/360◦ with an adhoc median value Za = 4.1
on the horizontal axis of Fig. 5. This Z∗ is smaller than,
although close to, the above fit value, indicating the correlation
of contact distributions between neighboring particles. We note
that, in pure shear, Za could be smaller, but because contacts
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FIG. 6. (Color online) The mean force-chain length Lm versus
the average contact number Z measured in isotropic compression
(solid symbols) and pure shear (open symbols). Different panels
(a–d) have different values of α with α = 0.15 in (a), α = 0.2 in (b),
α = 0.25 in (c), and α = 0.3 in (d). In each panel, results of different
values of δ are plotted using different symbols: δ = 15◦ (circles),
δ = 20◦ (squares), and δ = 25◦ (diamonds). The lines are fitting using
equation (3) with different line styles for different δ: δ = 15◦ (solid
lines), δ = 20◦ (dashed lines), and δ = 25◦ (dash-dotted lines).

are distributed nonuniformly, e.g., along the O1O2 direction,
an effective Z∗ will be bigger. Combining Eqs. (2) and (4)
yields

Lm = 2 + 1 + b − aZ

aZ − b
. (5)

In principle, 1 − p also depends on the density of branching
particles ρ of the force network. However, it is a weak effect,
as shown in Fig. 4(c). In Fig. 4(b), p is measured using p =
e−1/λ. Experimentally, we also measure the fraction of particles
of all identified force chains pa . Both p and pa reflect the
characteristics of the force-chain network. We expect that p

and pa shall be related. Fig. 4(d) confirms that pa is on average
proportional to p with p = 1.7pa .

In Fig. 5 we compare experimental data points with
equation (5) when α = 0.25 and δ = 20◦, showing a good
agreement. It should be noted that in Fig. 5 Lm of each data
point is computed using Eq. (1) for a set of realizations of a
given contact number Z. To see the dependence of the above
results on α and δ, in Fig. 6 we plot experimentally measured
values of Lm versus Z along with the mean-field curves of
Eq. (5) for various combinations of α and δ. For different
sets of parameters α and δ, the results are consistent with
what have been observed in the main panel of Fig. 5. The
mean-field model shows a reasonably good agreement with
the actual values of Lm within the experimental range of Z,
with better agreement in isotropic compression than in pure
shear. The maximum deviation of the predicted value of Lm

compared to the actual value is off by ∼10% as displayed in
Fig. 7.

Equation (5) is surprising, considering that Z is a local
property, independent of the system size Nsys, whereas Lm may
depend on Nsys. Intuitively, as Nsys increases, one might find
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FIG. 7. (Color online) The ratio δL1/Lm versus the average
contact number Z in isotropic compression (solid symbols) and
pure shear (open symbols). Here δL1 is the difference between the
prediction of Eq. (5) and the actual measurement Lm in Fig. 6.
Different panels (a)–(d) have different values of α with (a) α = 0.15,
(b) α = 0.2, (c) α = 0.25, and α = 0.3 in (d). In each panel, results
of different δ are plotted using different symbols: δ = 15◦ (circles),
δ = 20◦ (squares), and δ = 25◦ (diamonds).

longer force chains, causing Lm to increase. In Fig. 8 we plot
Lm versus Nsys, with results obtained by analyzing force-chain
statistics in small portions of the system of various sizes Nsys

in the number of particles. In Fig. 8, starting from Nsys = 33,
Lm increases rapidly, and as Nsys > 400, Lm starts to reach a
plateau, independent of the system size. Intuitively, if Nsys is
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FIG. 8. (Color online) The mean length scale Lm of force-chain
length distributions as a function of system size Nsys (a) in pure shear
at different contact number Zs of 3.67 (◦), 3.78 (∗), 3.85 (�), 3.93
(♦), 4.01 (
), 4.09 (�), 4.17 (�), and 4.24 (�), and (b) in isotropic
compression at different Zs of 3.97 (◦), 4.05 (∗), 4.13 (�), 4.22 (♦),
4.29 (
), 4.37 (�), 4.44 (�), and 4.52 (�). The solid lines are guides
to the eye, obtained from the fit of Lm = c1 − c2e

−Nsys/c3 . Here results
are obtained at α = 0.25 and δ = 20◦; results at other values of α and
δ are similar.
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FIG. 9. (Color online) The main panels of (a) with α = 0.15, δ =
15◦, (b) with α = 0.25, δ = 20◦, and (c) with α = 0.3, δ = 25◦ plot
the PDFs of σ1 of chains of different lengths L. The insets of each
panel show the conditional average of σ1 versus the chain length. The
average is computed over different groups of force-chain particles
according to the chain length. Error bars are estimated from the
standard deviation. Here Z = 4.0; results from other Z are similar.
For simplicity, only results from pure shear are presented; results
from isotropic compression are similar.

too small, the finite size effect becomes important; when it is
sufficiently large, a further increase in Nsys will lead to longer
force chains but a simultaneous existence of more shorter force
chains. For instance, in Fig. 3, a larger system size implies that
more tail part of the distributions will be discovered and a
simple calculation can show that the contribution for N going
beyond the present limit to infinity contributes less than 0.1%
to Lm.

The stress distribution in a granular system typically shows
an exponential-like long tail, which can be understood from a
Boltzmann-type argument [21,22]. One possible explanation
of the above results is that it is directly related to the stress
distribution. To check this, we measured the stress distribution
of chains of different lengths; three sets of typical results
are shown in Fig. 9 for different pairs of α and δ, where
the conditional average of the particle stress magnitude is
almost independent of the force-chain length. In addition, the
distributions all show qualitatively the same behavior. Hence
we find no convincing evidence that there is a direct connection
between the distributions of force-chain lengths and stresses.
In Fig. 9, we only plotted results for three sets of parameters
α = 0.15, δ = 15◦; α = 0.2, δ = 20◦; and α = 0.3, δ = 25◦
at Z = 4.0. Results from other values of α, δ, and Z are
qualitatively the same. These results have confirmed that the
existence of a weak correlation between stress distributions
and force-chain length distributions, i.e., particles of longer
force chains do not necessarily carry larger stresses.

012203-5



LING ZHANG, YUJIE WANG, AND JIE ZHANG PHYSICAL REVIEW E 89, 012203 (2014)

IV. CONCLUSIONS

In summary, we presented detailed experimental measure-
ments of force-chain length distributions for pure shear and
isotropic compression. The distribution shows a slight change
from an exponential decay to a stretched exponential decay
at the tail part as the shear is applied, consistent with the
anisotropic nature of the force-chain network. We understood
the isotropic nature of the force-chain length distribution
by using a random-walk-type argument and constructed a
simple mean-field model to establish a quantitative relation
between the average contact number Z of each individual
particle and the average force-chain length scale Lm. The
model and the experimental results are in a reasonably good
agreement. A careful examination shows that Lms are already
at the large system size limit in the present system. Next,

we checked the possible connection between the force-chain
length distribution and the stress magnitude distribution and
found no evidence that these two are directly connected.
These results have been checked to be robust, independent
of the particular values of the two parameter defined in the
force-chain identification algorithm.
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