
PHYSICAL REVIEW E 89, 012145 (2014)

Quenched disorder forbids discontinuous transitions in nonequilibrium low-dimensional systems
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Quenched disorder affects significantly the behavior of phase transitions. The Imry-Ma-Aizenman-Wehr-
Berker argument prohibits first-order or discontinuous transitions and their concomitant phase coexistence in
low-dimensional equilibrium systems in the presence of random fields. Instead, discontinuous transitions become
rounded or even continuous once disorder is introduced. Here we show that phase coexistence and first-order phase
transitions are also precluded in nonequilibrium low-dimensional systems with quenched disorder: discontinuous
transitions in two-dimensional systems with absorbing states become continuous in the presence of quenched
disorder. We also study the universal features of this disorder-induced criticality and find them to be compatible
with the universality class of the directed percolation with quenched disorder. Thus, we conclude that first-order
transitions do not exist in low-dimensional disordered systems, not even in genuinely nonequilibrium systems
with absorbing states.
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I. INTRODUCTION

Quenched disorder has a dramatic effect on both the statics
and the dynamics of phase transitions [1–3]. A time-honored
argument by Imry and Ma explains in a simple and parsimo-
nious way why symmetries cannot be spontaneously broken in
low-dimensional systems in the presence of quenched random
fields [4]. In a nutshell, the argument is as follows. Suppose
a discrete symmetry (e.g., Z2 or up-down) was actually
spontaneously broken in a d-dimensional system and imagine
a region of linear size L with a majority of random fields
opposing the broken-symmetry state. As a direct consequence
of the central limit theorem, by reversing the state of such a
region the bulk-free energy would decrease proportionally to
Ld/2, but this inversion would also lead to an interfacial energy
cost proportional to Ld−1. Comparing these two opposing
contributions for large region sizes, it follows that for d � 2 the
first dominates, making the broken-symmetry state unstable. If
the distinct phases are related by a continuous symmetry, soft
modes reduce the effect of the boundary conditions to Ld−2

and the marginal dimension is d = 4 [5]. Thus, the energetics
of low-dimensional systems is controlled by the random field,
which is symmetric, thus preventing symmetries from being
spontaneously broken and continuous phase transitions from
existing. Instead, in higher dimensional systems, the situation
is reversed, symmetries can be spontaneously broken, and
phase transitions do exist.

The Imry-Ma argument (1) holds for equilibrium systems
(where the free energy is well defined), (2) is backed by more
rigorous renormalization group calculations, which prove that
no symmetry breaking occurs even at the marginal case d = 2
(where rough interfaces could potentially break the argument
above [5]), (3) has been verified in countless examples both

experimentally and numerically, and (4) has been extended to
quantum phase transitions [6,7].

In contrast with the equilibrium case, recent work by
Barghathi and Vojta [8] shows that second-order phase tran-
sitions may survive to the introduction of random fields even
in one-dimensional cases [9,10] in genuine nonequilibrium
systems with absorbing states for which there is not such a
thing as free energy [11–14]. Therefore, the Imry-Ma argument
does not apply to these nonequilibrium systems owing to the
presence of absorbing states, and, in consequence, states of
broken symmetry can exist in the presence of random fields.

Let us now shift the discussion to first-order phase transi-
tions, for which system properties such as the magnetization,
energy, density, etc., change abruptly as a control parameter
crosses a threshold value at which two distinct phases coexist.
As shown by Aizenman and Wehr, first-order phase transitions
in low-dimensional equilibrium systems are rounded (made
less sharp) by disorder, and, even more remarkably, the
rounding may result into a critical point; i.e., first-order
or discontinuous phase transitions become second-order or
continuous ones upon introducing (random-field) disorder [5].
A similar conclusion applies to the case of random interactions
[5,15,16]; indeed, a random distribution of interactions (e.g.,
bonds) locally favors one of the two phases, and thus, it has
the same effects as random fields. Different Monte Carlo
results support this conclusion; furthermore they suggest that
the disorder-induced continuous transition exhibits critical
exponents which are consistent with those of the corresponding
pure model. An argument explaining these findings was put
forward by Kardar et al. [17].

In close analogy with the argument above for the absence of
symmetry breaking, in the case of phase coexistence as well,
regions (or “islands”) of arbitrary size of one of the phases
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TABLE I. Random fields in low-dimensional disordered systems.
Summary of the effects of quenched random fields on the existence of
continuous or second-order transitions (with spontaneously symme-
try breaking) and discontinuous or first-order (with associated phase
coexistence) phase transitions in d � 2 systems. Both the equilibrium
and nonequilibrium cases are considered, the latter including the
possibility of one or more absorbing states.

System with Second-order First-order
random (spontaneous symmetry (phase
fields d � 2 breaking) coexistence)

Equilibrium No [4] No[4,5,15,16]
Nonequilibrium Yes [8] ?
(absorbing states)

appear in a stable way within the other. Therefore, islands exist
within islands in any of the two phases in a nested way, leading
always to hybrid states. Hence, two distinct phases cannot
possibly coexist, and first-order transitions are precluded in
disordered low-dimensional equilibrium systems.

Thus, the question arises as to whether shifting to the
nonequilibrium realm entails the shattering of a fundamental
cornerstone of equilibrium statistical mechanics as it happens
for continuous phase transitions (see Table I for a synthetic
summary); do first-order phase transitions, and hence phase
coexistence, exist in low-dimensional nonequilibrium disor-
dered systems?

Aimed at shedding some light on this issue, we study
nonequilibrium models with absorbing states in the presence
of disorder. More specifically, we study a variant of the well-
known “contact process,” sometimes called the “quadratic con-
tact process,” in which two particles are needed to generate an
offspring while isolated particles can spontaneously disappear
[11–13,18,19]. As a first step, we verify that the pure version of
the model exhibits a first-order transition separating an active
phase from an absorbing one. Then we introduce disorder in
the form of a site-dependent transition rates and investigate
whether the discontinuous character of the transition survives.

II. TWO POSSIBLE SCENARIOS

Two alternative scenarios might be expected a priori for
the impure or disordered model:

(1) The Imry-Ma argument breaks down in this nonequi-
librium case and a first-order phase transition is observed or

(2) The Imry-Ma prediction holds even if the system is
a nonequilibrium one, and a disorder-induced second-order
phase transition emerges.

If the latter were true, we could then ask what universality
class such a continuous transition belongs to. A priori, it
could share universality class with other already-known critical
phase transitions in disordered systems with absorbing states
[20–24] or, instead, belong to a new universality class defined
by this disorder-induced criticality.

If no novel universal behavior emerges, then it is expected
for the model to behave as a standard two-dimensional contact
process (or directed percolation) with quenched disorder with
the following main features [20,22–24]:

(1) There should be a critical point separating the active
from the absorbing phase.

(2) At criticality, a logarithmic or activated type of scaling
(rather than algebraic) should be observed. For instance, for
quantities related to activity spreading such as the survival
probability, averaged number of particles, and radius from a
localized initial seed, we expect Ps(t) ∼ [ln(t/t0)]−δ̄ , N (t) ∼
[ln(t/t0)]θ̄ , and R(t) ∼ [ln(t/t0)]1/� , respectively; t0 is some
crossover time, and δ̄, θ̄ , and � should take the values already
reported in the literature [23].

(3) There should be a subregion of the absorbing phase,
right below the critical point, exhibiting generic algebraic
scaling with continuously varying exponents, i.e., a Griffiths
phase [25]. Griffiths phases stem from the existence of rare
regions where the disorder takes values significantly different
from its average [24].

These features follow from a strong-disorder renormal-
ization group approach for the disordered contact process,
which concludes that this anomalous critical behavior can
be related to the random transverse-field Ising model for
sufficiently strong disorder [20], and have been confirmed in
computational studies which suggested that this behavior is
universal regardless of disorder strength [23,24,26].

III. MODEL AND RESULTS

We study the simplest nonequilibrium model with absorb-
ing states exhibiting a first-order or discontinuous transition.
Given that, owing to different reasons, one-dimensional
systems with absorbing states rarely exhibit first-order phase
transitions (even in pure systems) [27,28], here we focus
on the physically more relevant two-dimensional case. In
this two-dimensional reaction-diffusion contact-process-like
model [11–14], individual particles disappear at a fixed rate,
μ, while a pair of nearest-neighbor particles is required to
create an offspring at some rate λ:

A
μ→ ∅ , 2A

λ→ 3A , (1)

with the additional (“hard-core” or “Fermionic”) constraint
preventing sites from housing more than one particle. This
restriction can be relaxed at the cost of introducing a reaction

3A
λ→ 2A , (2)

which keeps the number of particles bounded. In either case,
the corresponding rate or mean-field equations are (see the
Appendix)

˙ρ(t) = −μρ(t) + λρ(t)2[1 − ρ(t)], (3)

where ρ represents the density of active sites or particles.
This equation has the trivial stationary solution, ρ = 0, and an
additional one at ρ∗ = 1

2 (1 + √
1 − 4μ/λ) for λ > 4μ, with

an associated discontinuous transition at λ = 4μ.

A. Pure model

Among the many possible ways in which the above particle
system can be implemented [29–31], we employ the model
proposed in Ref. [31], which was numerically studied in two
dimensions and verified to exhibit a first-order phase transition
separating an active from an absorbing phase [31].
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We consider a two-dimensional square lattice and define
a binary occupation variable s = 0,1 (empty or occupied) at
each site. We consider some initial conditions and perform a
sequential updating following the standard procedure [11–14]:
(1) an active site is randomly selected (from a list including
all active ones); (2) with probability pd (death) the particle is
annihilated, otherwise, with complementary probability 1 −
pd a nearest neighbor site is chosen; (3) if this latter is empty,
the selected particle diffuses to it, and otherwise an offspring
particle is created at a randomly chosen neighboring site with
probability pb (birth) provided it was empty; otherwise nothing
happens. We keep pb = 0.5 fixed and use pd as the control
parameter.

As customarily done, we perform two types of experiments
[11–14], considering as initial condition either a homogeneous
state, i.e., a fully occupied lattice of linear size L, or a localized
seed, consisting in this case of a few, at least a couple,
neighboring particles in an otherwise empty lattice.

1. Homogeneous initial conditions

Figure 1 shows results of computer simulations for the
temporal decay of the particle density from ρ(t = 0) = 1.
The upper panel shows an abrupt change of behavior at a
threshold value pdthr ≈ 0.0747; activity survives indefinitely
for pd < pdthr (at least up to the considered maximum time)
and the particle density converges to relatively large steady
state values (ρ ≈ 0.6), while activity dies off exponentially for

(a)

(b)

FIG. 1. (Color online) Decay from a homogeneous initial con-
dition in the pure model . (a) Time evolution of the total averaged
particle density for N = L2 = 2562; a first-order phase transition can
be observed near pdthr ≈ 0.0747. (b) Mean survival time, tF , required
to reach an arbitrarily small density value here fixed to 0.01 (results
are robust against variations of this choice) as a function of system
size. Up to 103 realizations have been used to average these results.
From this finite size analysis, the threshold point can be bounded to
lie in the interval [0.070,0.075].

any pd > pdthr . This behavior is compatible with a first-order
phase transition, but the location of the threshold value has to
be considered as a rough estimate.

To better locate the transition point, we study the mean
survival time (MST) as a function of system size. Figure 1(b)
shows a nonstandard nonmonotonous dependence of the MST
as a function of size N = L2. As we see, there are two
regimes: (1) for L < Lc there is an exponential increase of
the MST with system size, and (2) for Lc < L, and quite
counterintuitively, the MST decreases with increasing system
size. This behavior can be rationalized following recent work
where a particle system very similar to ours is studied by
employing a semiclassical approach [32] (see also Ref. [33]).
Following this study, the first regime corresponds to the
standard Arrhenius law, i.e., the fact that a quasistationary state
with a finite particle density experiences a large fluctuation
extinguishing the activity in a characteristic time which grows
exponentially with system size [34]. On the other hand,
there is a “critical system size” above which the most likely
route to “extinction” consists on the formation of a critical
nucleus that then expands in a ballistic way, destabilizing the
quasistationary state. Obviously the larger the system size the
most likely that a critical nucleus is spontaneously formed by
fluctuations. Finally, for sufficiently large system sizes there is
a last “multidroplet” regime in which many nuclei are formed
and the MST ceases to depend on system size, reaching an
asymptotic value [32]. This picture fits perfectly well with our
numerical findings.

From this analysis, we conclude that, with the present
computational resolution, we can just give a rough estimation
for the location of the transition point 0.070 < pdthr < 0.075.

To show further evidence of the discontinuous nature of the
phase transition, Fig. 2 illustrates the system bistability around
the transition point: depending on the density of the initial
configuration, a homogeneous steady state may converge
either to a stationary state of large density (active) or to the
absorbing state. A separatrix marks the distinction between the
two different basins of attraction. Let us remark that systems
exhibiting a first-order transition are bistable only at exactly
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t

ρ

FIG. 2. (Color online) Bistability at the transition point of the
pure model. Log-log plot of the averaged particle density as a function
of time for different initial conditions in the neighborhood of the
transition point (results here are for pd = 0.07315). Depending on the
initial density, the system stabilizes in the active or in the absorbing
phase. The selected initial densities are equi-spaced in the interval
[0.005,1] with constant increments 0.05; system size N = 2562 and
averages performed over up to 106 realizations.
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FIG. 3. (Color online) Spreading experiments for the pure model.
Double-logarithmic plot of the (from bottom to top), (i) the survival
probability Ps(t), (ii) the averaged number of particles Ns(t) (av-
eraged over surviving runs), and (iii) the averaged squared radius
(averaged over of all runs), as a function of time, for N = 10242

using up to 4 × 1010 experiments. Curves for R2(t) have been shifted
upwards for clarity. In spite of the large number of runs used to
average, curves are still noisy. This is due to the fact that, being
very close to the transition point, a large fluctuation is needed for
the system to “jump” to the active phase from the vicinity of the
absorbing one and only a few runs reach large times.

the transition point but for finite system sizes the coexistence
region has some nonvanishing thickness. The existence of
bistability makes a strong case for the discontinuous character
of the transition.

2. Spreading experiments from a localized seed

We consider a few (at least two) neighboring particles at the
center of an otherwise empty lattice and monitor how activity
spreads from that seed. Each simulation run ends whenever
the absorbing state is reached or when activity first touches
the boundary of the system. We monitor the averaged squared
radius from the origin R2(t), the averaged number of particles
over surviving trials, Ns(t), and the survival probability, Ps(t)
[11]. Figure 3 shows log-log plots of these three quantities
as a function of time. In all cases we find a threshold value
pdthr ≈ 0.073 that marks a change of tendency, signaling the
frontier between the absorbing and active phases. In the active
phase (pd < pdthr ) and for large values of t , both Ns(t) and R2

grow approximately as t2 (as expected for ballistic expansion),
while Ps(t) converges to a constant (i.e., some runs do survive
indefinitely). On the other hand, in the absorbing phase all three
quantities curve downwards, indicating exponential extinction.

Thus, the pure model exhibits a discontinuous transition at
some value of pdthr ≈ 0.073, which separates a phase of high
activity from an absorbing one. Observe that the estimation
of the transition point is compatible with the interval obtained
above.

B. Disordered model

In the disordered version of the model, each lattice site has a
random uncorrelated (death) probability. In particular, we take
pd (x) = pdr where pd is a constant and r is a homogeneously
distributed random number r ∈ [0,2] (and, thus, the mean
value is pd ). Spatial disorder is refreshed for each run, to ensure
that averages are independent of any specific realization of the
disorder.

(a)

(b)

FIG. 4. (Color online) Density decay from a homogeneous initial
conditions in the disordered model. (a) Particle density averaged
over all trials in a lattice of size 2562 and up to 2 × 104 realizations
(curves in the active phase are plotted with dashed lines). Observe
the presence of a broad region with generic power-law behavior, i.e.,
a Griffiths phase which starts roughly at pd = 0.0775. (b) As (a) but
averaging only over surviving trials. Note the nonmonotonic behavior
in the Griffiths phase (see main text for details).

1. Homogeneous initial conditions

We have computed time series for (1) the mean particle
density averaged over all runs and (2) the mean particle density
for surviving runs (i.e., those which have not reached the
absorbing state). Figure 4 shows time evolution after up to
2 × 104 realizations. Results are strikingly different from those
of the pure model.

For values below threshold, pd < pdc
≈ 0.077, the particle

density converges to a constant value for asymptotically large
times, while for pdc

> 0.077 curves decay as power laws (a
much more precise estimation of the critical point will be
computed below). The generic algebraic decay is observed for
a wide range of pd ; however, the transient before the power-law
regime increases with pd , which makes it difficult to determine
the exact boundaries of the mentioned range. The presence of
generic algebraic scaling in an extended region is the trademark
of Griffiths phases.

Plotting the activity over the surviving trials [Fig. 4(b)], we
observe that the evolution is nonmonotonous in the absorbing
(Griffiths) phase: the curves decrease up to a minimum value
and then increase. This stems from the fact that realizations
with large rare active regions remain active for longer times
than those with smaller ones; as realizations with only
relatively small rare regions progressively die out, those with
larger and larger rare regions are filtered through, and, thus,
the overall average density grows as a function of time, being
limited only by system size.

012145-4



QUENCHED DISORDER FORBIDS DISCONTINUOUS . . . PHYSICAL REVIEW E 89, 012145 (2014)

10-4

10-2

100

102 104 106 108

t

ρ

FIG. 5. (Color online) Absence of bistability in the disordered
model. Double-logarithmic plot of the averaged particle density as a
function of time for pd = 0.0765, with N = 2562, and up to 106 re-
alizations. Initial densities are ρ0 = 0.00006,0.01,0.2,0.3,0.4,0.7,1.
Regardless of the initial condition, the system stabilizes to a constant
small value of the density, as expected for a second-order phase
transition.

In addition, we observe that, contrarily to the pure case,
there is no bistability around the transition point (Fig. 5).
Indeed, very near to the transition point (pd = 0.07650), all
curves regardless of their initial value converge to a unique
well-defined stationary density close to zero, as appropriate
for a continuous transition to an absorbing state.

2. Spreading experiments from a localized seed

Figure 6 shows results for three spreading observables as a
function of time; for all of them, we clearly observe generic
asymptotic power laws with continuously varying exponents.
These spreading quantities also allow us to scrutinize the
behavior at the critical point. As discussed in the Introduction,
in a disordered system as the one under study, we expect
logarithmic (activated scaling) at criticality. Indeed, Fig. 7
shows results for the usual spreading quantities represented
in a double logarithmic plot of the different quantities as a
function of ln(t/t0). The value of t0 is in principle unknown
and constitutes a significant error source [23]. We fix it as
the value of t such that it gives the best straight lines at the
transition point for all three quantities [23]). Right at the
critical point (pc ≈ 0.07652 to be obtained with more accuracy
below) a straight asymptotic behavior indicates that results are
compatible with logarithmic (i.e., activated) type of scaling.
The best estimates for the (pseudo-) exponents listed in Sec. II
are δ̄ ≈ 1.90, θ̄ ≈ 2.09, and � ≈ 0.43, which are compatible
with the values reported in the literature for the universality
class of directed percolation with quenched disorder [i.e.,
δ̄ = 1.9(2), θ̄ = 2.05(20), � = 0.51(6)].

Similarly, following the work of Vojta and collaborators
[23], we represent in Fig. 8 one of the spreading quantities
as a function of another one, e.g., N (t) as a function of Ps(t)
to eliminate the free variable t0 from the plot. This type of
plot allows for the identification of power-law dependencies
rather than logarithmic ones, i.e., N (t) ∼ Ps(t)−θ̄/δ̄ . If the
second-order phase transition belongs to the universality class
of the directed percolation with quenched disorder (see Sec. II),
we should have N (t) ∼ Ps(t)−1.08(15), using as a reference the
values in the literature [23]. Indeed, as shown in Fig. 8 we

(a)

(b)

(c)

FIG. 6. (Color online) Spreading experiments in the disor-
dered model. Double logarithmic plot of the three usual
spreading quantities showing the presence of generic power
laws with continuously varying exponents all along the Grif-
fiths phase (pd � 0.07652). Parameter values (from top to
bottom) 0.06, 0.07, 0.073, 0.075, 0.07652, 0.077, 0.0775,

0.078, 0.0785, 0.079, 0.0795 (curves in the active phase are plotted
with dashed lines), up to 5 × 107 realizations.

obtain N (t) ∼ Ps(t)−1.10(2), in very good agreement with the
expected value [23], and this is the method by which the critical
point location, pd ≈ 0.07652, is obtained with best accuracy.

IV. CONCLUSIONS AND DISCUSSION

In contrast with the pure model, in the disordered case
we have found a Griffiths phase and a second-order phase
transition with an activated type of scaling. Therefore, in this
nonequilibrium system with one absorbing state the situation
remains much as in equilibrium situations: disorder annihilates
discontinuous transitions and induces criticality.

Results are rather similar to those reported for the standard
contact process with quenched disorder. Indeed, results are
fully compatible (up to numerical precision) with the standard
strong-disorder fixed point of the universality class of the
directed percolation with quenched disorder [20,23,24]. We
believe that our results are robust upon considering other types
of (weaker) disorders [26]. Thus, two different models with
significantly different pure versions, i.e., one with a first-order
and one with a second-order transition, become very similar
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(a)

(b)

(c)

FIG. 7. (Color online) Spreading experiments in the disordered
model. Double logarithmic plot of the three usual spreading quantities
as a function of ln(t/t0) for different parameter values (from top to
bottom, 0.07, 0.073, 0.075, 0.07652, 0.077, 0.0775, 0.078; curves in
the active phase are plotted with dashed lines). Same network sizes as
in the homogeneous case and up to 106 realizations. By conveniently
choosing t0 = 0.01 (see main text) we observe straight lines at the
critical point, pd ≈ 0.07652. From their corresponding slopes we
measure the associated (pseudo-) exponents: θ̄ ≈ 2.09, δ̄ ≈ 1,9, and
2/� ≈ 4.6 (slopes marked by dashed lines). These values have a
large uncertainty, as changes in the value of t0 severely affect them.
Estimating these exponents with larger precision is computationally
very demanding.

once quenched disorder is introduced. Both exhibit Griffiths
phases and activated scaling at the transition point.

From a more general perspective, deciding whether novel
universal behavior emerges in disorder-induced criticality is
still an open problem in statistical mechanics. For illustration,
let us point out that recent work suggests that disorder-induced
second-order phase transitions in an Ising-like system with
up-down symmetry does not coincide with Ising transition
[35]. Similarly, in Ref. [36] a novel type of critical behavior is
found for disorder-induced criticality. In the case studied here,
the disorder-induced criticality does not seem to lead to novel
behavior (up to numerical precision); indeed, all evidences
suggest that it behavior coincides with the universality class
of the directed percolation with quenched disorder.

After a careful inspection of the literature in search
of discontinuous transitions in disordered nonequilibrium
low-dimensional systems, we found a very recent work
in which the authors study the popular (two-dimensional)
Zipf-Gulari-Barshad (ZGB) model for catalytic oxidation of

FIG. 8. (Color online) Double logarithmic plot of N (t) as a
function of 1/Ps(t) for spreading experiments at criticality in the
disordered model [24]. Our best estimate for the slope of at the critical
point (separatrix of the curves; see main panel) is compatible with the
value reported in the literature N (t) ∼ Ps(t)−θ̄/δ̄≈−1.08 corresponding
to the universality class of the directed percolation with quenched
disorder. The inset shows a zoom around the critical point. Lattice size
N = 10242; averages up to 5 × 107 realizations, and same parameters
as in Fig. 7.

carbon monoxide [37] in the presence of catalytic impurities (a
fraction of inert sites) [38]. The pure ZGB model is known to
exhibit, among many other relevant features, a discontinuous
transition into an absorbing state. However, after introducing
quenched disorder, no matter how small its proportion, the
discontinuous transition is replaced by a continuous one [38],
similar to our findings here.

In conclusion, we conjecture that first-order phase transi-
tions cannot appear in low-dimensional disordered systems
with an absorbing state. In other words, the Imry-Ma-
Aizenman-Wehr-Berker argument for equilibrium systems can
be extended to nonequilibrium situations including absorbing
states. The underlying reason for this is that, even if the
absorbing phase is fluctuationless and hence is free from
the destabilizing effects the Imry-Ma argument relies on,
the other phase is active and subject to fluctuation effects.
Therefore, intrinsic fluctuations destabilize it as predicted by
the Imry-Ma-Aizenman-Wehr-Berker argument, precluding
phase coexistence.

Remarkably, in the case studied by Barghathi and Vojta,
in which the Imry-Ma argument is violated in favor of a
second-order phase transition, the two broken-symmetry states
are absorbing ones: once the symmetry is broken in any
of the two possible ways, the system becomes completely
frozen, i.e., free from fluctuation effects, and, consequently,
the Imry-Ma argument breaks down. Thus, the only possibil-
ity to have first-order phase transitions in low-dimensional
disordered systems would be to have (in its pure version
counterpart) a discontinuous phase transition between two
different fluctuationless states, and we are not aware of any
such transition. Therefore, we conclude that quenched disorder
forbids discontinuous phase transitions in low-dimensional
nonequilibrium systems with absorbing states.
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APPENDIX: SIMPLE MEAN-FIELD APPROACH

In order to obtain a simple mean-field approach to the
present problem, expected to hold in the high-dimensional
limit, we consider a fully connected lattice in which each
node is nearest neighbor to any other one. n(t) is the total
number of particles at a given time, and ρ(t) = n(t)/N the
corresponding density. Allowed changes at any time step
are of the magnitude ±1/N . We can thus write the overall
transition rates as W−(ρ → ρ − 1/N) = μρ and W+(ρ →
ρ + 1/N ) = λρ2(1 − ρ) for creation and annihilation pro-
cesses, respectively. Expanding the associated master equation
in power series, and keeping only the first two leading terms,
we obtain the Fokker-Planck equation:

∂tP (ρ,t) = − ∂ρ[(−λρ3 + λρ2 − μρ)P ]

+ 1

2N
∂2
ρ[(−λρ3 + λρ2 + μρ)P ],

equivalent to the (Itǒ)Langevin equation [34]:

∂tρ = −μρ + λρ2 − λρ3 +
√

μρ − λρ3 + λρ2

N
ξ (t),

where ξ (t) is a Gaussian white noise. In the N → ∞ (mean-
field) limit one recovers the rate equation [Eq. (3)] with its
associated discontinuous transitions. Using the noise term it
is possible to derive (using the theory of mean first passage
times [32–34]) the scaling of the escape time as a function of
the system size.

In general, one-component reaction diffusion systems with
l-particle creation and k-particle annihilation [39],

kA→(k − n)A , lA→(l + m)A , (A1)

always exhibit a first-order transition if l > k if the particles
are fermionic. Instead, if the hard-core constraint is excluded,
an additional reaction iA→jA with i > j and i > l is needed
to stabilize the system.
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