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Kovacs effect in the one-dimensional Ising model: A linear response analysis
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We analyze the so-called Kovacs effect in the one-dimensional Ising model with Glauber dynamics. We
consider small enough temperature jumps, for which a linear response theory has been recently derived. Within
this theory, the Kovacs hump is directly related to the monotonic relaxation function of the energy. The analytical
results are compared with extensive Monte Carlo simulations, and an excellent agreement is found. Remarkably,
the position of the maximum in the Kovacs hump depends on the fact that the true asymptotic behavior of the
relaxation function is different from the stretched exponential describing the relevant part of the relaxation at low
temperatures.
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I. INTRODUCTION

Ever since the pioneering work of Kauzmann [1], the
interest in the investigation of the nature of the glassy
state of supercooled liquids has steadily increased. Real
structural glasses have some characteristic behaviors, which
are reproduced by many different models to a greater or
lesser extent. A review thereof can be found in Refs. [2–5].
Typically, the relaxation of the physical properties toward
their equilibrium values at a given value of the temperature
is nonexponential, being often well-fitted by the stretched
exponential or Kohlrausch-Williams-Watts (KWW) law [6,7].
When the supercooled liquid is cooled at a constant rate, there
appears the phenomenon called the laboratory glass transition,
in which the properties characterizing the macroscopic state
of the system separate from their equilibrium values and
eventually become frozen. This is due to the very fast increase
of the typical relaxation times of the system with decreasing
temperature. Interestingly, when the system is reheated at
the same rate, hysteresis effects are present: The system
overshoots the equilibrium curve and returns thereto only for
higher temperatures. Therefore, the difference between the
actual value of the macroscopic property of interest and its
equilibrium value shows a nonmonotonic behavior. In this
way, there appears a memory effect in the system: its behavior
depends on its whole thermal treatment, and not only on the
instantaneous value of the property under consideration.

Here we focus on the memory effect that was first
investigated by Kovacs [8,9], and thenceforth called the Kovacs
effect. A sketch of the experimental procedure followed
by Kovacs [10] is shown in Fig. 1, which starts from the
equilibrium state corresponding to a high temperature T0. First,
an instantaneous quench to a lower temperature T < T0 was
done, and the direct relaxation of the energy to its equilibrium
value 〈E〉eq(T ) was measured (curve ϕ). Second, a new
program is started from equilibrium at T0 but now the system is
rapidly quenched to an even lower temperature T1 < T < T0.
The system then begins to relax to the equilibrium value of
the energy at T1, 〈E〉eq(T1) < 〈E〉eq(T ). This relaxation is
interrupted after a waiting time tw, such that the instantaneous
value of the energy 〈E(t = tw)〉 equals 〈E〉eq(T ): At t = tw,
the temperature is suddenly increased to T . For t > tw, the
energy of the system does not remain flat, as one could naively

expect. On the contrary, at first it increases, passes through
a maximum at a certain time tk , and finally returns to its
equilibrium value. This simple experiment shows that, while
the energy has its equilibrium value, the system is not actually
in equilibrium at t = tw. In fact, the subsequent evolution of the
system depends on its previous thermal history. This statement
is further supported by the behavior shown by the system when
one fixes the temperatures T0 and T , but the lowest temperature
T1 is changed. The maximum of the Kovacs hump function
K(t) increases as T1 decreases or, equivalently, the temperature
jump T − T1 increases. Besides, the maximum moves to the
left, in the sense that sk = tk − tw is a decreasing function of
the jump T − T1. Moreover, for very long times the Kovacs
hump function K(t) tends to approach the direct relaxation
curve ϕ(t).

A phenomenological description of this memory effect was
given by Kovacs himself [9]. Also, the Kovacs effect has been
extensively investigated, both analytically and numerically in
several models [11–24]. However, it has not been until recently
that a general theoretical expression of the Kovacs hump
has been rigorously derived for systems whose mesoscopic
dynamics is described by a master equation [25]. In this work,
it has been shown that the Kovacs hump function K(t), defined
as

K(t) = 〈E(t)〉 − 〈E〉eq(T )

〈E〉eq(T0) − 〈E〉eq(T )
, (1)

is given by

K(t) = ϕ(t) − ϕ(tw)ϕ(t − tw)

1 − ϕ(tw)
, (2)

where the direct linear relaxation function at temperature
T ϕ(t) has been normalized, in the sense that ϕ(t = 0) = 1
and limt→∞ ϕ(t) = 0 (see Sec. II). It must be stressed that
Eq. (2) is a linear response theory result, nonlinear terms in
the temperature jumps were neglected in its derivation. A great
part of the typical behavior observed in the experiments is a
direct consequence of the mathematical structure of Eq. (2)
and the nonexponential character of the direct relaxation.
More concretely, it was analytically shown in Ref. [25] that
(i) K(t) has only one maximum and that is always bounded
by ϕ(t), 0 � K(t) � ϕ(t); (ii) the position of the maximum
sk = tk − tw is a decreasing function of the second temperature
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FIG. 1. (Color online) Schematic representation of the Kovacs
experiment described in the text. The dashed green curve ϕ(t)
represents the direct relaxation from T0 to T . The dotted red curve
stands for the part of the relaxation from T0 to T1, which is interrupted
by the second temperature jump, changing abruptly the temperature
from T1 to T at t = tw . After this second jump, the system follows
the solid blue curve K(t), which reaches a maximum for t = tk and,
afterwards, approaches ϕ(t) for very long times.

jump T − T1; and (iii) the Kovacs function tends to the direct
relaxation function for very long times.

One of the simplest models that may be used to mimic
complex systems is the one-dimensional Ising model with
nearest-neighbor interactions and Glauber dynamics [26]. De-
spite its simplicity, this system shows the main characteristic
behaviors of structural glasses: the relaxation function of
the energy is strongly nonexponential for low temperatures
[27,28]; the system displays a laboratory glass transition
in which its energy becomes frozen when cooled down to
low temperatures [29,30]; and it exhibits a strong hysteretic
behavior when reheated again to high temperatures, with a
sharp peak of the apparent specific heat [30,31]. Moreover,
aging is present for very low temperatures [32,33]. The Kovacs
effect in the Ising model was analyzed by Brawer long ago [11],
but we would like to revisit it in light of the linear response
results that we have already mentioned. We also investigate
the behavior of the position and height of the maximum as a
function of the temperature jump, relating them to the different
stages of the direct relaxation for low temperatures.

The paper is organized as follows. We present the model
in Sec. II, reviewing briefly its main linear response results.
Section III is devoted to the analysis of the Kovacs hump.
We compare simulation results to the analytical predictions.
An excellent agreement between them is found, provided that
the temperature jumps are small enough. We also explore
nonlinear effects by considering larger temperature jumps.
Finally, the main conclusions of the paper are discussed in
Sec. IV.

II. MODEL AND ITS LINEAR RESPONSE RESULTS

We analyze the one-dimensional Ising model with Glauber
dynamics [26]. We give only the main details that are needed
for understanding the work presented here. We have N spins
σi = ±1, on a one-dimensional lattice of N sites labeled by
i = 1, . . . ,N . The spins interact only with their nearest neigh-
bors, with a ferromagnetic coupling J . Thus, the energy of any

configuration σ = {σ1, . . . ,σN } is given by

E(σ ) = −J

N∑
i=1

σiσi+1. (3)

We consider periodic boundary conditions throughout our
work, so we have that σN+1 = σ1 in the previous sum. The
system is in contact with a heat bath at temperature T , and
thus the dynamics of the model is stochastic and modeled
in the following way: The probability distribution p(σ ,t) of
finding the system in configuration σ at time t obeys the master
equation

d

dt
p(σ ,t) =

N∑
i=1

[Wi(Riσ )p(Riσ ,t) − Wi(σ )p(σ ,t)], (4)

where Riσ is the configuration obtained from σ by rotating
the ith spin, Riσ = {. . . ,σi−1,−σi,σi+1, . . .}, and Wi(σ ) are
the transition rates for the Glauber single-spin-flip dynamics

Wi(σ ) = α

2

[
1 − γ

2
σi(σi−1 + σi+1)

]
. (5)

In the following, we set α = 1 without loss of generality, that is,
we choose α−1 as the unit of time. On the other hand, γ depends
on both the coupling constant J and the bath temperature T ,

γ = tanh

(
2J

kBT

)
. (6)

The dynamics above is ergodic, in the sense that any two
configurations are connected through a chain of transitions
with nonzero probability, and thus the system relaxes to
thermal equilibrium for any initial condition. We restrict
ourselves to homogeneous situations, in which the initial
condition is translationally invariant; Glauber dynamics as
defined by Eqs. (4)–(6) preserves this invariance for all times.
In particular, the spin correlations

Cn ≡ 〈σiσi+n〉 → Ceq
n = ξn, ξ = tanh

(
J

kBT

)
, (7)

in the long time limit.
Let us consider the relaxation of the energy to its equi-

librium value at a given temperature T , from an initial state
corresponding to equilibrium at temperature T0 = T + �T ,
see Fig. 1. At time t , the system energy is denoted by
〈E(t)〉, and the direct relaxation function characterizing this
experiment is usually defined as

ϕ(t) = 〈E(t)〉 − 〈E(∞)〉
〈E(0)〉 − 〈E(∞)〉 = 〈E(t)〉 − 〈E〉eq(T )

〈E〉eq(T0) − 〈E〉eq(T )
, (8)

so that ϕ(0) = 1 and ϕ(∞) = 0. In the linear response regime,
the relaxation function ϕ(t) is independent of the temperature
jump �T , being a monotonically decreasing function of time.
It reads [27]

ϕ(t) = ζ (t)

ζ (0)
, ζ (t) =

∫ π

0
dq

sin2 q

(1 − γ cos q)2
e−2t(1−γ cos q),

(9)

which is valid for all times t and any value of the final
temperature T . In the low-temperature limit, kBT � J , the
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relaxation becomes very slow. In fact, the average relaxation
time 〈τ 〉, given by the area below ϕ(t), diverges since

〈τ 〉 ∼ 1

8ε
, ε ≡ 1 − γ ∼ 2e

− 4J
kB T → 0+. (10)

This shows that the energy relaxes over a very slow timescale
εt . Moreover, the following three relevant regimes appear [27],

ϕ(t) 	
⎧⎨
⎩

exp[−2(2ε)1/2t], 2t � 1,

exp[−(32εt/π )1/2], 1 � 2t � ε−1,

π−1/2(2εt)−3/2 exp(−2εt), 2t 
 ε−1.

(11)

In the intermediate time regime 1 � 2t � ε−1, the relaxation
has the stretched exponential or KWW form,

ϕ(t) = exp[−(t/τ )β], (12)

with

β = 1

2
, τ = π

32ε
∼ π

64
e

4J
kB T , (13)

where we have made use of Eq. (10) for ε. In experiments, the
situation is often similar to that of Eq. (11): the relaxation
function is well fitted by a KWW law in the relevant
intermediate time window. The actual long time behavior may
differ from the KWW law, since the normalized relaxation
function ϕ is very small and it is difficult to measure [34].

The strongly nonexponential relaxation shown by the Ising
model makes it adequate to investigate, at least qualitatively,
glassy-like behavior [27–33]. It shares characteristics of the
fragile and strong liquids near the glass transition [4]: the value
of β is typical of fragile liquids, while the KWW relaxation
time τ follows an Arrhenius-like behavior, as shown by strong
liquids. Note that the KWW relaxation time τ is proportional
to the average relaxation time 〈τ 〉, τ = π〈τ 〉/4 	 0.79〈τ 〉.

Over the original time scale t , the relaxation function has
a very small decrease, of the order of ε1/2, which can thus
be neglected, but makes it necessary to consider quite small
values of ε. The KWW holds within an intermediate time
window ti < t < tf , corresponding to a range of values ϕi >

ϕ(t) > ϕf , where ti and tf may be estimated by calculating the
intersection of the KWW function with the short- and long-
time exponentials in Eq. (11). Thus, ti = 4/π and 2εtf = 1.57,
which correspond to ϕi = exp[−8(2ε)1/2/π ] and ϕf = 0.06,
respectively. For ε = 10−2, it is ϕi = 0.70, while for ε = 10−4

it increases to ϕi = 0.96. Therefore, most of the relevant
relaxation of the energy can be accurately fitted by a KWW
function at low enough temperatures, ε � 10−4. Moreover,
the relaxation function has a universal form, since ϕi → 1− for
ε → 0+: If we plot ϕ as a function of εt or, equivalently, t/〈τ 〉,
the curves corresponding to different temperatures collapse.
This means that the Ising model is thermorheologically simple
in the very low temperatures regime, once the initial exponen-
tial regime in Eq. (11) becomes negligible. For moderately low
temperatures, such that Eq. (11) gives a good description of
the relaxation, but the three stages contribute thereto, there is
a kind of weak thermorheological simplicity, in the sense that
the direct relaxation curves collapse for long enough times,
t � ti .

In Fig. 2 (top panel), we compare the numerical computa-
tion of the relaxation function ϕ(t) to the analytical expression
Eq. (9) for three different values of ε = 1 − γ , of the form
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FIG. 2. (Color online) Top panel: Comparison between the nu-
merical evaluation (dots) and the analytical expression (solid line)
of the direct relaxation function ϕ(t) for the Ising model. The
temperature jumps are: γ = 0.99 → 0.991 (green diamonds), γ =
0.999 → 0.9991 (red squares), and γ = 0.9999 → 0.99991 (blue
circles). Each numerical curve has been averaged over 106 different
realizations of the dynamics, using a system of 104 spins. Bottom
panel: Scaling property of the relaxation function. The relaxation
function collapses when plotted versus the scaled time t/〈τ 〉, for the
same values of γ as in the top panel figure. The thick solid line is the
limit behavior for very low temperatures.

ε = 10−k , with k = 2, 3, 4. We have obtained the relaxation
function by doing the actual experiment of equilibrating
the system at temperature T + �T and then measuring the
evolution of the energy after a sudden temperature jump to
T . The usual numerical procedure for calculating the linear
relaxation function is to measure an equivalent time correlation
function at equilibrium, as given by the fluctuation-dissipation
theorem [35]. However, in the Kovacs experiment we must
follow the actual procedure and thus we had to estimate the size
of the temperature jumps needed for obtaining good averages.
It is worth noting that the temperature jumps �T are not so
small, since the average relaxation time changes by ten percent
between the initial and final temperatures. We also check the
collapse of ϕ when plotted as a function of t/〈τ 〉 in Fig. 2
(bottom panel). It is clearly observed that the direct relaxation
functions collapse onto a universal behavior for long enough
times. Moreover, this time window extends to all times in the
limit as T → 0+ or ε → 0+, in which the first stage of the
relaxation in Eq. (11) becomes negligible, as discussed above.
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This is patent since, over the scale of the figure, the relaxation
curve for ε = 10−4 is indistinguishable from the limit behavior
of Eq. (9) for T → 0+.

III. ANALYSIS OF THE KOVACS HUMP

Now we investigate the Kovacs effect in the light of the
recently derived results in the linear response regime [25]. For
our present purposes, it is better to write the Kovacs hump as
a function of the time after the second temperature jump s.
Thus, we rewrite Eq. (2) in the form

K(s) = ϕ(tw + s) − ϕ(tw)ϕ(s)

1 − ϕ(tw)
, s = t − tw. (14)

We restrict ourselves to the low temperature limit, in which
the Ising model shows glassy-like behavior, as discussed
throughout the previous section. We do the Kovacs experiment
in the following way (see Fig. 1): (i) we consider fixed values
of T0 and T1, such that the direct relaxation of the energy from
T0 to T1 is accurately given by the linear response function
Eq. (9); (ii) we consider different values of tw along this direct
relaxation, which lead to different values of the temperature T

at which the Kovacs hump is measured. It should be noted
that this is slightly different from the usual procedure in the
experiments, in which T0 and T are kept constant and different
values of T1 are considered. The problem with this procedure is
that the second temperature jump T − T1 is not bounded and
will eventually become very large, making linear response
theory not applicable. This is the reason why we have chosen
fixed values of T0 and T1, the variation of the final temperature
T poses no problem. As discussed in the previous section,
the direct relaxation curves corresponding to different values
of the final temperature T collapse onto a unique behavior
when plotted versus the rescaled time t/〈τ 〉. This allows us
to compare in one plot the Kovacs humps corresponding to
different values of tw.

In Fig. 3, we plot the numerical evaluation of the Kovacs
hump for an experiment in which γ0 = 0.999 and γ1 = 0.9991,
together with the analytical prediction Eq. (14). In the inset,
the waiting time is tw = 80 = 0.6〈τ 〉, where 〈τ 〉 is the average
relaxation time for the temperature T corresponding to this
value of tw. The agreement between the numerical and the
theoretical curve is excellent. In the main panel, several Kovacs
humps for the same values of the extreme temperatures γ0 and
γ1 but different values of the waiting time are plotted. As
discussed above, they correspond to different temperatures T ,
and thus we plot them as a function of the rescaled time s/〈τ 〉.
It is clearly seen that the behavior is completely similar to the
experimentally observed one: the Kovacs hump K(s) moves
to the left and its maximum increases as the waiting time
decreases; moreover, K(s) approaches the direct relaxation
curve for long enough times. Again, the agreement between
the simulation and the theoretical expression is excellent in
all cases. The same is true for other values of the limiting
temperatures γ0 and γ1, provided that the temperature jump
is small enough to assure the validity of the linear response
theory result Eq. (14). As a rule of thumb, temperature jumps
corresponding to changes of the average relaxation time by ten
percent are still small enough.
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FIG. 3. (Color online) Comparison of the numerical evaluation
and the theoretical prediction of the Kovacs hump. We show the
numerical curves (points) and the theoretical predictions Eq. (14)
(line) as a function of the time from the second temperature jump
s = t − tw . In the main panel, we plot the Kovacs hump for different
values of the waiting time, namely tw = 1, 7, 13, 50, 80, 130, 195,
and 260 (from top to bottom). Note that the maximum increases and
moves to the left as tw decreases and, at the same time, K(s) tends
to the direct relaxation function ϕ (upper thick solid line) for long
enough times. A zoom of one of the curves, namely that of tw = 80,
is plotted in the inset. It shows that the agreement between theory
and simulation is really good, even if observed on a much finer scale.
In both graphs, γ0 = 0.999 and γ1 = 0.9991, which corresponds to a
change of the relaxation time of around 10%.

We explore the nonlinear regime in Fig. 4. The initial
temperature is the same as in Fig. 3, that is, γ0 = 0.999, but
a much lower limit temperature is set, namely γ1 = 0.9995.
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FIG. 4. (Color online) Comparison of the numerical evaluation
and the theoretical prediction of the Kovacs hump in the nonlinear
regime. The Kovacs hump function is plotted (points-simulation,
line-theory) against the time from the second temperature jump s,
scaled with the average relaxation time 〈τ 〉 at the final temperature
T . The temperature T at which Eq. (14) is evaluated is taken
from the simulations. From top to bottom, the waiting times are
tw = 25, 128, 257, 386, 515, 773, 1031. Note that we use a quite large
first temperature jump: γ0 = 0.999 and γ1 = 0.9995.
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Again, we consider different values of the waiting time tw
leading to different intermediate temperatures T , and the
measured Kovacs hump is compared to the linear response
expression. Of course, the quantitative agreement is not
as good as in Fig. 3, but the linear theory still gives a
reasonable description of the observed hump. The estimate
for the maximum position remains very good, but for the
maximum height there appear some quantitative discrepancies:
The relative error in its estimate, which increases with tw
in the considered range, is always bounded by 25%. This
is remarkable, since we are using a quite large jump: the
relaxation time at γ1 roughly doubles that of γ0. Recall that
〈τ 〉 ∝ (1 − γ )−1, as given by Eq. (10).

A. Position and height of the maximum

Let us analyze in more detail the behavior of the Kovacs
hump. In particular, we will investigate the position and the
height of the maximum as a function of the waiting time tw.
As most of the relaxation is accurately given by the KWW
function in Eq. (12), we substitute it into Eq. (14) and look for
the value sk that makes K ′(s) vanish. Following Ref. [25], we
introduce the definitions

D1(s) = − d

ds
ln ϕ(s), D2(s) = − d

ds
ln ϕ′(s). (15)

For the KWW function,

DKWW
1 (s) = β

τ

(
τ

s

)1−β

, (16a)

DKWW
2 (s) = 1 − β

s
+ DKWW

1 (s). (16b)

First we analyze the limit of small waiting times, tw � 〈τ 〉,
so that

δ = 1 − ϕ(tw) � 1. (17)

For s 
 tw (a time window that widens as tw goes to zero),
the analytical expression Eq. (14) is well approximated by

K(s) ∼ ϕ(s) + tw

δ
ϕ′(s) = ϕ(s)

[
1 − tw

δ
D1(s)

]
. (18)

The position of the maximum is given by the solution of the
equation D2(sk) = δ/tw (equivalent to Eq. (57) of Ref. [25]).
The first term on the rhs of DKWW

2 is the dominant one (s 

tw), which makes it possible to give the estimate

sk

τ
∼ (1 − β)

(
tw

τ

)1−β

, (19)

consistently with the assumption s 
 tw. The height of the
maximum Kmax is obtained by making use of Eq. (18),

Kmax

ϕ(sk)
= K(sk)

ϕ(sk)
∼ 1 − β

1 − β

(
sk

τ

)β

, (20)

where sk/τ is given by Eq. (19). Moreover, Eq. (18) implies
that

lim
s→∞

K(s)

ϕ(s)
= 1, (21)

since DKWW
1 (s) � δ/tw for long enough s. This agrees with

the experimental observations and the numerics of the model
(see Fig. 3): The Kovacs hump approaches the direct relaxation
function for long enough times.

Let us now investigate the opposite limit of long waiting
times tw 
 〈τ 〉, such that ϕ(tw) � 1. In Ref. [25], it was
obtained that

K(s) 	 ϕ(tw)[e−D1(tw)s − ϕ(s)], (22)

provided that D′
1(tw)s2 � 1 (which becomes always true for

long enough times, because D′
1 tends to zero). If the KWW

function were used to approximate both ϕ and D1, the position
of the maximum would be given by

sk

τ
∼

[
(1 − β) ln

(
tw

τ

)]1/β

, (23)

and sk would diverge logarithmically. As will be seen, this does
not agree with the Monte Carlo simulations of the Ising model.
This was to be expected since the KWW function is not valid
for tw 
 τ : In this regime, ϕ is given approximately by the
long time exponential (with algebraic corrections) in Eq. (11).
Then, we look for a different dominant balance, by assuming
that sk/τ remains of the order of unity for large waiting times.
We thus use the long time exponential for ϕ(tw) and D1(tw)
but the KWW function for ϕ(s). In this way, the maximum of
Eq. (22) is given by the solution of the equation

βs∗
k

β−1
e−s∗

k
β+cs∗

k ∼ c, c = π

16
, (24)
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FIG. 5. (Color online) Theoretical Kovacs hump function
Eq. (14) in the linear response approximation, for γ = 0.9999, and
different values of the waiting time. The direct relaxation function
has been evaluated by numerically integrating Eq. (9), and we have
considered the waiting time values tw = 13, 40, 65, 130, 280, 760,
1 300, 2 500, 6 350, 9 000, 13 000, 19 000, 26 000, 38 000, 64 000,
95 000, 127 000 (tw/〈τ 〉 ranging from 0.01 to 100, from top to
bottom). The position of the maximums are also indicated therein
(circles). Inset: The same plot but with the vertical axis also in a
logarithmic scale, in order to see the trend for long waiting times
more clearly.
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FIG. 6. (Color online) Top panel: Position of the maximum of
the Kovacs hump sk as a function of the scaled waiting time tw/〈τ 〉.
The points are the maximum positions in Fig. 5, while the solid lines
are the theoretical prediction Eqs. (19) and (24). The dashed line
corresponds to the value of sk obtained by substituting the values of β

and τ of the best KWW fit into Eq. (9) instead of the theoretical values
Eq. (13). The dotted line corresponds to the incorrect, logarithmically
diverging, KWW prediction Eq. (23) for long waiting times. Bottom
panel: Height of the maximum of the Kovacs hump Kmax as a function
of the scaled waiting time tw/〈τ 〉. The points are the heights of
the maximums in Fig. 5, while the solid lines are the asymptotic
expressions for short times Eq. (20) (dashed blue) and for long times
Eq. (25) (solid red). In both graphs, γ0 = 0.9999 and γ1 = 0.99991.

where s∗
k = sk/τ . Consistently with our assumptions, s∗

k

remains of the order of unity. The height of the Kovacs hump
follows by substituting Eq. (24) into Eq. (22), with the result

Kmax = K(sk) ∼ ϕE(tw)[e−2εsk − ϕE(sk)], (25)

where we have taken into account that D1(tw) → 2ε for tw 

〈τ 〉.

We have chosen γ0 = 0.9999 and γ1 = 0.99991 to numer-
ically study the behavior of the maximums of the Kovacs
hump. We have already presented the direct relaxation between
them in Fig. 2. As discussed in Sec. II, the initial exponential
stage in Eq. (11) scarcely contributes to the relaxation (ε0 =
1 − γ0 = 10−4), and the KWW extends to almost all the
relevant part thereof. Figure 5 shows the theoretical prediction
for the Kovacs hump for different values of the waiting time,
with the maximums indicated therein. Again, it is clearly
observed that the maximum moves to the left and increases
in height as the waiting time decreases (or, equivalently, the

second temperature jump increases as compared to the direct
relaxation one). Figure 6 compares the maximum positions in
Fig. 5 to our asymptotic estimates. A remarkably very good
agreement is found, both for the position and height of the
maximums. There is a small discrepancy in the limit value
of the maximum position for very long waiting times, which
is underestimated by our theoretical result. The agreement
can be improved by using the values of β and τ obtained by
fitting the direct relaxation function Eq. (9) instead of their
theoretical values Eq. (13). On the other hand, it is clearly
observed that the KWW prediction for the maximum position
in the long waiting times regime, Eq. (23), fails to give the
correct behavior, even for moderately big values of tw.

IV. CONCLUSIONS

We have investigated the Kovacs effect in the one-
dimensional Ising model with Glauber dynamics, in the
framework of recent results derived in linear response theory.
We have found an excellent agreement between the numerical
and the theoretical results, provided that the temperature jumps
are such that the nonlinear terms in the response of the system
can be neglected. As a rule of thumb, one could say that linear
response results are fine up to temperature jumps such that
the relative change of the relaxation time between the initial
and final temperatures is about ten percent in the Ising model.
Then, these temperature jumps are not so small, which may
make linear response relevant for actual experiments.

We have also analyzed the behavior of the position of the
maximum sk and its height Kmax as a function of the waiting
time tw. Simple expressions can be derived both in the limit of
short and long waiting times, as compared to the characteristic
relaxation time τ of the energy. The KWW function (which
fits most of the relaxation of the energy at low temperatures)
predicts the correct behavior of both sk and Kmax for short
waiting times but fails to do so for times comparable to or
larger than the average relaxation time. The maximum position
sk/τ exhibits a much slower increase with the dimensionless
waiting time tw/τ than the KWW prediction, which leads
to a logarithmic divergence. Interestingly, it can be shown
that sk/τ remains bounded if the true asymptotic behavior of
the relaxation function for long times, an exponential with
algebraic corrections, is taken into account. The bound so
obtained has been shown to fully agree with the numerical
results.

These results for the position and the maximum of the
Kovacs hump have been derived here for the Ising model
with Glauber dynamics. However, the obtained expressions
can be readily extended to any model in which (i) the overall
relaxation is well fitted by an stretched exponential function,
(ii) the true asymptotic behavior for long times is given by
an exponential, maybe with algebraic corrections. In this
sense, the behavior of the Kovacs hump should be useful to
discern the true asymptotic behavior in models for which an
analytical expression of the relaxation function is not known.
As pointed out by Zwanzig [34], it is very difficult to measure
the normalized relaxation function for very long times. On
the other hand, the tendency to saturate of the position of the
maximum (instead of the logarithmic divergence predicted by
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the KWW function) is already apparent for moderate values
of the waiting time.

The results presented here improve our understanding of
the Kovacs effect, by showing that it can be actually measured
in the linear response regime. We have done so in one of
the simplest models displaying the key behaviors of glassy
systems. Furthermore, we have shown that linear response
still gives a more than reasonable description of the effect
for quite large temperature jumps. In particular, the position
of the maximum is very well estimated by the linear theory.
Therefore, the relation between the divergent (or not) character
of the maximum position with the waiting time and the actual
asymptotic behavior of the direct relaxation function is a robust
result, which may also be possible to check in experiments.

This would help to clarify the long-debated question of the
true asymtpotic behavior of the relaxation function in glassy
systems [34,36].
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