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Entropic stochastic resonance enables trapping under periodic confinement:
A Brownian-dynamics study
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Entropically mediated phenomena are of emerging interest as a driving force for microscale and nanoscale
transport, but their underlying stochastic nature makes them challenging to rationally manipulate and control.
Stochastic resonance offers an intriguing avenue to overcome these difficulties by establishing a clear connection
between the system response (the output) and an externally imposed driving force (the input). Previous studies
have generally adopted a signal-processing viewpoint to classify the output in terms of a signal-to-noise ratio, but
this link does not convey information that is immediately useful to infer parameters relevant to transport. Here
we address this issue by applying Brownian-dynamics simulations to elucidate the residence time distribution
encountered by a particle as it travels through a channel incorporating periodic constrictions. A sinusoidal
longitudinal driving force is applied with a superimposed continuous orthogonal component, making it possible
to identify frequency and amplitude conditions where temporal coherence with the particle’s motion can be
achieved. This resonant state reflects a synergistic combination of geometry and driving force that can be
exploited to confine species at discrete locations, offering possibilities for directed manipulation.
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I. INTRODUCTION

Transport of particles and particlelike species in microscale
and nanoscale confined environments occurs in a variety
of contexts including translocation of small biomolecules
through nanopores [1], biological ion channels [2], and DNA
separations in nanofilters [3]. These systems impose an energy
barrier associated with reduced conformational freedom in
a constriction connecting two neighboring larger spaces.
Transport under these conditions is characterized by discrete
hops across the constricted regions—a process often referred
to as entropic trapping. A weak external driving force can
alter this free-energy landscape, partially compensating for
the entropic penalty. Kramers [4] considered this mode of
transport and obtained an expression for the characteristic
hopping frequency (escape rate) in terms of the entropic energy
barrier, the driving force, and the species’ thermal energy.
However, the escape rate distribution is inherently broad,
reflecting the underlying random thermal motion that enables
successful hops to occur.

More recent work has suggested the intriguing possibility
that randomness can play a constructive role, enabling the
system response to be rationally manipulated by applying a
periodic external driving force in a controlled manner [5]. In
this way, it is possible to achieve synchronization between the
hopping events and the driving force, a condition known as
stochastic resonance (SR). In pioneering work [6–8], Hänggi
and co-workers demonstrated that SR could be achieved in
entropy-dominated particle transport actuated by a periodic
driving force with a superimposed continuous orthogonal
component, yielding enhanced spectral amplification. Unfor-
tunately, the signal-processing viewpoint traditionally used to
describe these resonant effects (e.g., in terms of maximizing
the signal-to-noise ratio) does not convey information imme-
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diately useful to connect resonance with transport parameters
relevant to particle manipulation. From the experimental side,
Spagnolo and co-workers demonstrated the emergence of
stochastic resonance behavior in a bistable electronic device,
i.e., the tunnel diode, and also the dynamics of short polymer
translocation driven by an oscillating force [9–11]. These
studies revealed many intriguing phenomena such as resonant
crossing of the energy barrier and enhanced diffusion by
manipulation of the system noise strength [12–14]. Here we
focus on the residence time distribution of Brownian species in
a spatially periodic array of constrictions under the influence
of a temporally periodic longitudinal driving force with a
constant transverse component [6–8] and employ Brownian-
dynamics simulations to elucidate how proper selection of
parameters associated with both domains of periodicity makes
it possible to induce resonance associated with the escape rate
from the local energy barrier. A key difference between our
approach and those in the aforementioned references is that
we achieve SR by tuning the frequency and amplitude of an
external periodic force, in contrast to previous studies where
SR effects were accessed by tuning the noise strength. Our
formulation makes it possible to design systems of particular
relevance to biological and separation applications where the
underlying randomness associated with entropic phenomena
can be exploited to direct species transport in a controlled way.

II. RESULTS AND DISCUSSION

A. Stochastic resonance in a single constriction geometry

We begin by considering a two-dimensional topology
consisting of upper and lower bounding surfaces that impose
periodically spaced constrictions [Fig. 1(a)]. The resulting
cross-sectional profile is defined as [7]
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FIG. 1. Confinement geometry and energy landscape. (a) The
microchannel geometry considered incorporates periodically spaced
constrictions w(x) described by Eq. (1). In terms of scaled variables,
the narrowest and widest regions are defined by b and 2ε + b,
respectively (in this study we choose b = 0.1 and ε = 0.25). A
time-periodic driving force Fx is applied along the x direction and
a constant transverse force Fy is imposed in the y direction. (b)
The scaled energy landscape in the absence of the driving force
Fx is approximated by a double potential well, where the energy
maxima and minima are located at x̃max = 0 and x̃±min = ±1,
respectively. Energy landscapes are plotted for three different scaled
transverse force conditions expressed in terms of Pey . The energy
barrier vanishes when the magnitude of the transverse force is small
(Pey = 0.01 and Ũ ≈ 0), becoming steeper and eventually losing the
entropic contribution as the transverse force increases [8]. We assume
Pey = 0.1 in the subsequent analysis.

where the upper and lower walls of the channel are denoted
by w+ and w−, respectively. The constriction width at x = 0
is defined by the product Lxb, where Lx is the axial distance
from the constriction to the maximum channel width position
(x = Lx or −Lx). The product 2Ly expresses the reduction in
channel width from x = Lx or −Lx to the constriction at x = 0.

Transport is formulated in terms of the Langevin equation
describing overdamped particle motion

γ
dr
dt

= −Gey + F (t)ex + FB, (2)

where FB is the Brownian force with zero mean and correlation
function 〈FB(t)FB(t ′)〉 = 2kBT γ δ(t − t ′), kB is Boltzmann’s
constant, T is absolute temperature, γ is the friction coef-

ficient, r represents the position of the particle (Cartesian
coordinates with unit vectors ex and ey in the x and y

directions, respectively), G is the magnitude of the transverse
force, and the longitudinal sinusoidal force has the form
F (t) = F0 sin(�t).

Equations (1) and (2) are made dimensionless using a base
length scale Lx , time scale γL2

x/kBT , and force kBT /Lx ,
yielding

w̃± = ∓εx̃4 ± 2εx̃2 ± b

2
, (3)

d r̃
dt̃

= −Peyey + Pex(t̃)ex + F̃B (4)

in terms of the dimensionless variables w̃, x̃, r̃ , and t̃ , where
ε = Ly/Lx . Two Péclet coefficients are defined as Pey =
GLx/kBT and Pex(t̃) = F̃0sin(�̃t̃), with F̃0 = F0Lx/kBT .
Note that γ and F0 are both species dependent. Following
Kim et al. [15], we express the Brownian force as FB =
( 4γ kBT

δt
)1/2ni, where δt is the time step used in the simulation

and ni is a random vector with each component uniformly
distributed over [–1,1]. We then obtain a scaled Brownian
force F̃B = √

4/δt̃ni.
Next we express the energy landscape by assuming a

pseudohomogeneous field (i.e., forces do not vary in the y

direction). In this way, the y-averaged potential can be used to
obtain a simplified expression in the absence of a longitudinal
force that depends only on the particle’s x position [8]

U (x) = −(kBT ) ln

(∫ w+
w−

e−U (x,y)/kBT dy

w+ − w−

)
. (5)

Substituting U (x,y) = Gy into Eq. (5) and scaling the energy
by kBT enables the landscape to be expressed by the one-
dimensional relationship

Ũ (x̃) = − ln

[
1

(w̃+ − w̃−)Pey

(e−Pey w̃− − e−Pey w̃+)

]
, (6)

where the maximum and minimum energies are located at
x̃ = 0 and ±1, respectively [Fig. 1(b)]. The trap strength is
therefore controlled by the magnitude of G in the unperturbed
system.

Now we consider application of a time-periodic longitudi-
nal driving force and ask how its period �̃ = 2π/�̃ can be
tuned to match the escape rate from the local energy barrier
(i.e., 2π/�̃ ∼ 1/r̃K , where r̃K is the escape rate) [5]. In the
absence of the longitudinal force, the scaled escape rate in the
energy landscape described by Eq. (5) is given by the Kramers
formula

r̃K =
√

−(
d2Ũ (x̃)

dx̃2

∣∣
x̃=0

)(
d2Ũ (x̃)

dx̃2

∣∣
x̃=1

)
2π

× exp[Ũ (x̃)|x̃=1 − Ũ (x̃)|x̃=0]. (7)

A trial-and-error approach is sufficient to identify a reso-
nance condition associated with parameter values Pey = 0.1,
�̃ = 0.01, and F̃0 = 0.05. Since the system state at SR is
sensitively impacted by these values [Fig. 2(a)], this method is
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FIG. 2. (Color online) Stochastic resonance in the confining geometry. (a) Stochastic resonance occurs in the confining microchannel
depicted in Fig. 1(a) when F̃0 = 0.05, �̃ = 0.01, and Pey = 0.1. Transport of Brownian particles in response to a periodic driving force (period
�̃ = 628, initial location at x̃ = −1) causes their position to oscillate between x̃ = 1 and −1 at a similar period but with a phase lag. The effects
of driving force amplitude F̃0 and frequency �̃ on particle displacement are shown. (b) Statistical distributions of the time interval between
passages through successive energy maxima (x̃ = 0) and minima (x̃ = ±1) display synchronization with the driving force period (�̃ = 628),
where t̃0, t̃1, and t̃−1 represent the time between successive crossings. The average value of t̃0 is approximately half of the driving force period
due to the fact that each species passes through the energy maximum position twice in a single oscillatory period. (c) After dividing the time
intervals in (b) by �̃, a histogram of the remainder is plotted to reveal the corresponding phase lag distributions. A comparison of the averages
associated with t̃−1 and t̃1 to 3�̃/4 = 471 and �̃/4 = 157 yields a characteristic phase lag of t̃lag ≈ 100.

appropriate for the purposes of our study, where the primary
goal is to illustrate the key phenomena. Substituting Pey = 0.1
into Eq. (7) yields a characteristic escape rate of r̃K � 10−4 in
the unperturbed system. This analysis suggests that an order of
magnitude increase in the escape rate is attainable by lowering
the energy barrier via the periodically applied driving force
r̃K = ( 2π

�̃
)−1 = 1.6 × 10−3. Notice that we ensure that the

model is applied only in the entropic regime by imposing a
relatively small transverse force Pey [8].

B. Stochastic resonance-mediated trapping

A key manifestation of SR is attainment of coherence
between a species’ oscillatory motion and an imposed peri-
odic driving force, suggesting potential to achieve selective

immobilization or separation in an appropriately designed
microchannel network. To explore this possibility in the
context of the simplified geometry depicted in Fig. 1(a),
we employed Brownian-dynamics simulations to monitor
particle displacements over a simulation time encompassing
250 driving force periods [Fig. 2(a)]. These data were
analyzed to identify times associated with transit through the
energy maximum and minimum positions in Fig. 1(b) (t̃x=0

and t̃x=±1, respectively). A histogram of the time intervals
between each passage through successive energy maxima
and minima (�t̃0 and �t̃±1, respectively) reveals a narrow
distribution centered around a mean value close to the driving
force period �̃ = 628 [Fig. 2(b)]. This high degree of
synchronization is accompanied by a phase shift between
the applied driving force and particle displacement through
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FIG. 3. (Color online) Array of repeated periodic geometries for
trapping and separation. (a) A microchannel based on the arrangement
depicted in Fig. 1(a) incorporates four repeated constriction units.
Energy minima are located at x̃ = −1, 1, 3, 5, and 7. Energy maxima
are located at x̃ = 0, 2, 4, and 6. (b) Phase shifts in the applied
driving force τi (i = 2, 3, and 4) are applied to direct confinement
within the corresponding constriction units. The distribution of these
phase shifts is obtained from Brownian-dynamics simulation of a 400-
particle ensemble, yielding 〈τ2〉 ≈ 〈t̃x̃=1 − t̃x̃=0〉 ∼ 100 and 〈τ3〉 −
〈τ2〉 ≈ 〈τ4〉 − 〈τ3〉 ≈ 〈t̃x̃=1 − t̃x̃=−1〉 ∼ 200 (〈τ1〉 = 0 by default since
particles are initially located at x̃ = 0 in unit 1). Resonant conditions
of F̃0 = 0.05, �̃ = 0.01, and Pey = 0.1 are imposed with particles
initially located at x̃ = 0.

the microchannel. Closer examination of our data reveals a
characteristic phase lag of t̃lag ≈ 100 [Fig. 2(c)], in good
agreement with the theoretically predicted value obtained from
t̃lag�̃ = ϕ̄ ≈ arctan(�̃/2r̃K ) [16].

C. Trapping in a geometry with repeating constriction units

We next consider a topology containing repeated constric-
tion units bridging adjacent segments of wider cross section
[Fig. 3(a)]. Transport between successive constriction units
can be achieved by applying a driving force with different
phase values in each unit as

F̃i(t̃) = F̃0sin[�̃(t̃ − τi)], (8)

where τi (i = 2, 3, and 4) compensates for the time associated
with each particle’s entry into each unit (τ1 = 0 by default
since particles are initially located in unit 1). The average value
of τ is determined from the aforementioned synchronization
between transport and the applied driving force.

We determined the τi values by simulating the displace-
ments of an ensemble of 400 particles through the microchan-
nel geometry shown in Fig. 3(a) and recording the time of
initial entry into each subsequent constriction unit. Once
a particle in constriction unit i travels beyond the energy
minimum in the adjacent zone of larger cross section, the
driving force is switched to a value corresponding to unit i +
1 with τi+1 [Eq. (8)], while the transverse force is held constant.
The resulting distributions [Fig. 3(b)] confirm that transit times
are narrowly distributed with average values 〈τ3〉 = 300 and
〈τ4〉 = 500, consistent with the results in Fig. 2(c). As a result
of resonance behavior, the time interval during which species
travel between x̃max and x̃±min in each constriction unit [e.g.,
x̃ = 0 and x̃ = ±1 in Fig. 1(b)] is narrowly distributed. In
this framework, τ2 represents the time to travel from x̃max to
x̃min within the first unit [i.e., corresponding to 〈t̃x̃=1 − t̃x̃=0〉 ∼
100 in Fig. 3(b)], whereas the subsequent τi correspond to
the transit times associated with traveling between x̃±min in
successive units [i.e., 〈t̃x̃=1 − t̃x̃=−1〉 ∼ 200 in Fig. 3(b)]. By
applying these τi values, species can be successfully trapped
at prescribed locations (Fig. 4).

D. Confinement stability and sensitivity

An important potential application of these resonance
phenomena is separation of a target species from different-
sized background components. To explore the feasibility of
employing SR in this way, we characterized trapping stability
and sensitivity to the applied driving force by simulating an
ensemble of 400 particles during 100 driving force periods
over a range of peak amplitude values F̃0 in the geometry
shown in Fig. 3(a). The influence of F̃0 on trap stability
in the fourth constriction unit is visually depicted by the
trajectories in Fig. 5(a). Stable trapping is sustained only at
resonance (Pey = 0.1, �̃ = 0.01, and F̃0 = 0.05), whereas
particles escape the trap and diffuse away with nontrivial
probability under other conditions. These trends are clearly
seen when displacements are quantified in terms of a survival
percentage (i.e., the instantaneous fraction of species that
remain trapped [Fig. 5(b)]). The onset of trapping is signaled
by an initial jump in survival percentage from zero to unity
as F̃0 approaches the resonant value of 0.05, but the weak
confinement gives way to a steady decrease in survival
percentage toward zero at a rate dependent on the extent
to which F̃0 deviates from resonance. In contrast, trapping
stability dramatically increases once resonance is established,
with the survival percentage remaining solidly near unity for
over 100 driving force periods. Trapping is extremely selective
owing to the sensitive dependence of the resonant state on
system parameters (e.g., a 10% decrease in F̃0 from 0.05 to
0.045 enables escape from the trap after approximately ten
driving force periods).

III. CONCLUSION

In this paper, we have explored resonant transport in
a microchannel geometry incorporating a spatially periodic
array of constrictions under the influence of a temporally
periodic driving force. Proper selection of the parameters
associated with both domains of periodicity makes it possible
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Trapping completely breaks down at F̃0 values that deviate even
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remaining virtually unchanged from 0 (i.e., F̃0 = 0.065 and
0.035). Remarkably stable trapping is attained at resonance when
F̃0 is close to 0.05, where the survival percentage reaches and
maintains a value of 1 throughout the entire simulation time.
Conditions of �̃ = 0.01 and Pey = 0.1 are imposed in all cases
with particles initially located at x̃ = 0.
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to induce stochastic resonance associated with escape from the
local energy barrier. Instead of the concept of signal-to-noise
ratio employed in most previous literature involving SR,
we have examined the rate of species displacement through
the energy landscape and its degree of synchronization with
the periodically applied driving force. The period of particle
motion and its phase difference with the driving force were
quantified by Brownian dynamics simulations, yielding results
that display good agreement with the established theoretical
understanding of SR. We demonstrated application of this
idea in the context of a microchannel geometry incorporating
periodic constrictions and modulated the periodic driving force
at a different phase in each constriction unit so that particles
become selectively confined at prescribed locations within the
network.

To obtain a sense of scale for these effects we consider
transport of a 50-nm species carrying a charge of 10e in the
constriction unit geometry of Fig. 1(a), where the microchan-
nel is 3 μm wide at x̃ = ±1 and 0.5 μm wide at x̃ = 0 and
Lx = 5 μm. A potential on the order of 1 mV would be required

to actuate transport between successive energy minima in this
configuration, suggesting that a standard AA-size battery could
be capable of providing a sufficient driving force to direct
transport through an array of 1000 constriction units (on a scale
of the order of 1 cm). Stochastic resonance-based approaches
also may help overcome limitations of electrostatic-based
trapping because low-salt buffering conditions are not required
to augment the electrostatic double layer. This level of
robustness, combined with the ability to achieve highly stable
and selective trapping, suggests the intriguing possibility of
exploiting SR effects as an alternative approach to perform
manipulation and sorting at the microscale.
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