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Mechanical control of heat conductivity in molecular chains
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We discuss a possibility to control heat conductivity in molecular chains by means of external mechanical loads.
To illustrate such possibilities we consider first well-studied one-dimensional chain with degenerate double-well
potential of the nearest-neighbor interaction. We consider varying lengths of the chain with fixed number of
particles. Number of possible energetically degenerate ground states strongly depends on the overall length of
the chain, or, in other terms, on average length of the link between neighboring particles. These degenerate states
correspond to mechanical equilibria; therefore, one can say that formation of such structures mimics a process
of plastic deformation. We demonstrate that such modification of the chain length can lead to quite profound
(almost fivefold) reduction of the heat conduction coefficient. Even more profound effect is revealed for a model
with a single-well nonconvex potential. It is demonstrated that in a certain range of constant external forcing, this
model becomes effectively double-well and has a multitude of possible states of equilibrium for fixed value of the
external load. Due to this degeneracy, the heat-conduction coefficient can be reduced by two orders of magnitude.
We suggest a mechanical model of a chain with periodic double-well potential, which allows control of the heat
transport. The models considered may be useful for description of heat transfer in biological macromolecules
and for control of the heat transport in microsystems. The possibility of the heat transport control in more
realistic three-dimensional systems is illustrated by simulation of a three-dimensional model of polymer α-helix.
In this model, the mechanical stretching also brings about the structural inhomogeneity and, in turn, to essential
reduction of the heat conductivity.
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I. INTRODUCTION

Heat conduction in low-dimensional systems has attracted
a lot of attention and has been a subject of intensive studies
[1,2]. The main objective here is to substantiate from the
first principles the Fourier law—proportionality of the heat
flux to the temperature gradient J = −κ∇T , where κ is the
heat conduction coefficient. To date, there exists quite an
extensive body of works devoted to the numerical modeling of
the heat transfer in the one-dimensional chains. Anomalous
characteristics of this process are well known since the
celebrated work of Fermi, Pasta, and Ulam [3]. In integrable
systems (harmonic chain, Toda lattice, the chain of rigid disks)
the heat flux J does not depend at all on the chain length
L, therefore, the thermal conductivity formally diverges. The
underlying reason for that is that the energy is transferred
by noninteracting quasiparticles, and therefore one cannot
expect any diffusion effects. Nonintegrability of the system is a
necessary but not sufficient condition to obtain the convergent
heat-conduction coefficient. Well-known examples are the
Fermi-Pasta-Ulam (FPU) chain [4–6], disordered harmonic
chain [7–9], diatomic 1D gas of colliding particles [10–12],
and the diatomic Toda lattice [13]. In these, nonintegrable
systems also have divergent heat conduction coefficient; the
latter diverges as a power function of length: κ ∼ Lα , for
L → ∞. The exponent is nonuniversal and lies in the interval
0 < α < 1.

On the other side, the 1D lattice with onsite potential can
have finite heat conductivity. The simulations had demon-
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strated the convergence of the heat-conduction coefficient for
Frenkel-Kontorova chain [14,15], the chain with hyperbolic
sine onsite potential [16], the chain with φ4 onsite potential
[17,18], and for the chain of hard disks of nonzero size
with substrate potential [19]. An essential feature of all
these models is an existence of external potential modeling
the interaction with the surrounding system. These systems
are not translationally invariant, and, consequently, the total
momentum is not conserved. In Ref. [14] it has been suggested
that the presence of an external potential plays a key role
to ensure the convergence of the heat conductivity. This
hypothesis has been disproved in Refs. [20,21], where it was
shown that the isolated chain of rotators (a chain with a
periodic potential of the nearest-neighbor interaction) has the
convergent thermal conductivity.

In recent papers [22,23], the thermal conductivity of an
isolated chain with asymmetric nearest-neighbor potential was
studied. The authors claimed that with a certain degree of
interaction asymmetry, the thermal conductivity measured in
nonequilibrium conditions converges in the thermodynamical
limit. The authors of Refs. [22,23] attribute the convergence of
the thermal conductivity to the uneven thermal expansion of
the asymmetric chain. More detailed investigation undertaken
in Refs. [24–26] pointed out that this numeric conclusion is
wrong in thermodynamic limit and is caused by finite-size
effects. Indeed, the heat conductivity in the α-β-Fermi-Pasta-
Ulam chain diverges [24,25]. It seems that the asymmetry of
the nearest-neighbor potential is insufficient to provide the
convergence; however, possibility of the chain dissociation
might be sufficient [26].

In the systems mentioned above, the strong nonhomo-
geneities, which critically effect the heat transfer, are conjec-
tured to be caused by the thermal fluctuations. In the current
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work, we would like to explore a somewhat different idea—to
design the interaction potential and external conditions in a
way that the inhomogeneities will appear in a controllable
manner and with desired density. Thus, it might be possible
to control the heat-conduction coefficient in wide range by
simple variation of the external conditions—for instance, by
stretching the chain.

Modification of the heat conduction by mass loading of
certain nanostructures has been revealed in a number of recent
experiments [27,28]. We would like to pursue here a more
systematic study with a simple model and to figure out the
basic mechanism responsible for these phenomena. In order
to accomplish this goal, we study a chain with a double-well
(DW) potential of the nearest-neighbor interactions. We also
study certain modification of the DW model, which has only
one minimum but can acquire the double-well structure under
action of external force. These systems are studied both under
nonequilibrium conditions using Langevin thermostats and
within the framework of equilibrium molecular dynamics
using Green-Kubo formula [29].

The main results presented in this paper were obtained
for one-dimensional models. To assess to some extent the
effects caused by higher dimensionality, we also consider the
stretching-induced modification of heat transfer in a three-
dimensional model of polymer α-helix.

The thermal conductivity of the chain with double-well
potential was considered in Ref. [20], with the help of
nonequilibrium molecular-dynamics simulation with Nose-
Hoover thermostats. It was shown that the use of Nose-Hoover
thermostat for the nonequilibrium problems can be misleading
[30,31]. More accurate modeling of the heat transfer using
Langevin thermostat was presented in Ref. [32]. It seems that
neither of these previous works considered the relationship
between the variations of the chain length and the thermal
conductivity. An important feature of the chain with the
DW potential is the existence of a large number of possible
ground states of the chain. So, the chain with N particles and
periodic boundary conditions has 2N−1 possible ground states
with the same energy; the only possible difference between
these states is the overall equilibrium length of the chain.
We show that the thermal conductivity of the chain depends
essentially on its ground state, governed by the length. At
least, it happens when the temperature is not much higher
than the potential barrier—in the regime of high temperatures
the details of potential relief will become less important. In
each particular simulation, the overall length of the chain is
fixed, and all ground states corresponding to this particular
value of the length are considered to be equivalent. So, we
are going to show that the variation of the chain length brings
about significant change of its thermal conductivity. We also
show that the same (and even much stronger) effect can be
achieved for special design of a single-well nearest-neighbor
potential; in this case, the multiplicity of the ground states
is achieved by application of a uniform external stretching.
Besides, we demonstrate that also the phenomena related to
a nonequilibrium heat conduction, like relaxation modes of
thermal perturbations, are strongly affected by the number of
competing ground states

It should be mentioned that the heat conduction coefficient
of some models considered in this paper is believed to

be divergent in the thermodynamic limit. This point is
not significant here, since we discuss the effect of length,
stretching, and number of the ground states in a chain with
fixed number of particles. Therefore, the heat conduction
coefficient is well-defined in all considered cases.

II. DESCRIPTION OF THE MODEL

Let us consider a chain with N particles. In a dimensionless
form the Hamiltonian of the chain can be written as

H =
N∑

n=1

1

2
u̇2

n +
N−1∑
n=1

V (un+1 − un), (1)

where N is the total number of particles in the chain, un is a
coordinate of the nth particle, dot denotes differentiation with
respect to dimensionless time t , V (ρn) is the nearest-neighbor
interaction potential, and ρn = un+1 − un is the length of the
nth link between the neighboring particles. The coordinate of
the particle un cannot only describe the position of the particles
with respect to the chain axis; it may also correspond to the
rotation angle of the nth monomer around the rotation axis. In
this sort of model, ρn will denote the relative angle between
the (n + 1)th and the nth monomer.

We choose the double-well (DW) potential of the interpar-
ticle interaction in the following form:

V (ρ) = ε(ρ − 1)2(ρ − 2)2, (2)

where we choose ε = 1/2; it leads to V ′′(1) = V ′′(2) = 1. The
shape of the potential is presented in Fig. 1. The height of the
barrier between the minima of the potential E0 = V (1.5) =
1/25 = 0.0313. Such a model can, for instance, describe a
polymer macromolecule with two energetically degenerate
gauche states.

To simulate the heat transfer in the chain, we use the
stochastic Langevin thermostat. The chain has in general N+ +
N + N− particles. We connect N+ particles from one side of
the chain to a “hot” Langevin thermostat with temperature
T+, and N− particles from the other side—to the Langevin
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FIG. 1. (Color online) Sketch of double-well potential Eq. (2)
(curve 1) and single-well potential Eq. (8). The straight line
connecting the the points [1,V (1)] and [2,V (2)] of graph single-well
potential sets its convex hull.
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thermostat with temperature T−. The corresponding system of
equations of motion of the chain can be written as

ün = −∂H/∂un − γ u̇n + ξ+
n , n � N+,

ün = −∂H/∂un, N+ < n � N+ + N, (3)

ün = −∂H/∂un − γ u̇n + ξ−
n , n > N+ + N,

where γ = 0.1 is a relaxation coefficient, ξ±
n models a white

Gaussian noise normalized by the conditions 〈ξ±
n (t)〉 = 0,

〈ξ+
n (t1)ξ−

k (t2)〉 = 0, and 〈ξ±
n (t1)ξ±

k (t2)〉 = 2γ T±δnkδ(t2 − t1).
The system of equations of motion (3) was integrated

numerically. Considered a chain with fixed ends: u1 ≡ 0,
uN ≡ (N − 1)a. Used on-initial condition

{un(0) = (n − 1)a,u̇n(0) = 0}N++N+N−
n=1 ,

where 1 � a � 2—average value of the chain link length.
After an initial transient, thermal equilibrium with the ther-
mostats was established and a stationary heat flux along the
chain appeared. A local temperature is numerically defined
as Tn = 〈u̇2

n〉t and the local heat flux—as Jn = ā〈jn〉t , where
jn = −u̇nV

′(un − un−1). In numerical simulations we used the
following values of temperature T± = (1 ± 0.1)T (T = 0.01,
0.03, 0.1), the relaxation coefficient γ = 0.1, the number of
units N± = 40, N = 20, 40, 80,..., 10240.

This method of thermalization overcomes the problem of
the thermal boundary resistance. The distribution of the heat
flow Jn and the temperature in the chain Tn (Fig. 2) clearly
demonstrates that inside the “internal” fragment of the chain
N+ < n � N+ + N we observe a heat flux independent on
the chain site, as one would expect in an energy-conserving
system. Temperature profile also is almost linear. Thus,
from this simulation one can unambiguously define the heat
conduction coefficient of the internal chain fragment:

κ(N ) = J (N − 1)/(TN++1 − TN++N ). (4)

In the thermodynamical limit, one can say that the system
obeys the Fourier law, if there exists a finite limit

κ̄ = lim
N→∞

κ(N ).

If such a limit does exist, one can say that the chain has normal
(finite) or convergent heat conduction. In the opposite case, an
anomalous heat conduction is observed.

An alternative way for evaluation of the heat conduction
coefficient is based on linear response theory, which leads, in
particular, to the famous Green-Kubo expression [29],

κc = lim
t→∞ lim

N→∞
1

NT 2

∫ t

0
c(τ )dτ, (5)

where the autocorrelation function of the heat flux in the chain
is defined as c(t) = 〈Js(τ )Js(τ − t)〉τ . Here a total heat flux in
the chain is defined as Js(t) = ∑

n jn(t).
In order to compute the self-correlation function c(t) we

simulate a cyclic chain consisting of N = 104 particles and
couple all these particles to the Langevin thermostat with
temperature T . After initial thermalization, the chain has been
detached from the thermostat and Hamiltonian dynamics has
been simulated. In order to improve the accuracy, the self-
correlation function has been computed by averaging over 104
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FIG. 2. (Color online) Profile of (a) local heat flux Jn and (b)
local temperature Tn in the chain with DW potential Eq. (2) for
N± = 40, N = 80, T+ = 0.11, T− = 0.09. Linear approximation of
the temperature distribution (thin red line) is used for evaluation of
the heat-conduction coefficient κ(N ).

realizations with independent initial conditions, corresponding
to the same initial temperature T .

The heat conduction turns out to be convergent if the self-
correlation function c(τ ) decreases fast enough as τ → ∞.
Namely, if the integral in Eq. (5) converges then the heat
conduction may be treated as normal.

III. CHAIN WITH SYMMETRIC DW POTENTIAL

First, we explore thermodynamical properties of the DW
chain in thermal equilibrium. For this sake, in Fig. 3 we
present a dependence of heat capacity of the chain (defined
as Cv = dE/dT for fixed length of the chain) on the average
temperature for three different values of the interatomic
distance. We observe that all these dependencies exhibit a
hump in a region of low temperatures—below the value of
potential barrier. This hump characterizes the state where the
potential has the strongest effect on the chain dynamics. For
the case with the largest number of competing ground states,
a = 1.5, the hump is the most pronounced. It means that in
this case one should expect the strongest nonlinear scattering,
in good correlation with further findings.

Dependence of the heat-conduction coefficient κ on the
length of the chain fragment between the Langevin thermostats
N for the chain with symmetric DW potential Eq. (2)
is presented in Fig. 4. As one can see from this figure,
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FIG. 3. (Color online) Dependence of the heat capacity of the
chain Cv with DW potential Eq. (2) on the temperature T for the
average interatomic distances a = 1, a = 1.1, and a = 1.5 (curves 1,
2, 3, respectively).

both for a = 1 and a = 1.5 the heat conduction coefficient
grow monotonously with N and demonstrates no trend for
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FIG. 4. (Color online) Dependence of the heat conduction coeffi-
cient κ on the size of the internal chain fragment N for the chain with
the DW potential Eq. (2) for the average interatomic distance (a) a = 1
and (b) a = 1.5 for temperatures T = 0.01, 0.03, 0.1 (curves 1, 2, 3,
respectively).
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FIG. 5. (Color online) Dependence of the heat conduction coeffi-
cient κ on the size of the internal chain fragment N for the chain with
the DW potential Eq. (2) for the average interatomic distance a = 1.5
for temperatures T = 0.01, 0.03, 0.1 (curves 1, 2, 3, respectively).
The graphs are presented in double logarithmic scale and straight
lines correspond to fitting Nα , α = 0.09,0.29,0.29, for curves 1, 2,
3, respectively.

convergence. For a = 1.5 the heat conduction coefficient
grows like Nα , with α = 0.09 for the temperature T = 0.01
and α = 0.29 for T = 0.03, 0.1, as is demonstrated in Fig. 5.

Numeric analysis of the heat-flux autocorrelation function
c(t) as t → ∞ supports the conclusion on divergent heat
conductivity in the system. For all values of the average
link length 1 � a � 2 the function c(t) decreases as t → ∞
according to the power law t−β with exponent β < 1, as it is
demonstrated in Fig. 6. According to the Green-Kubo formula,
Eq. (5), one arrives to the same conclusion on divergence of the
heat-conduction coefficient κ(N ) as N → ∞. Two approaches
used here are independent and point in the same direction—one
obtains clear indication that the heat conductivity in the chain
with DW potential diverges.

So, as it was already mentioned in the Introduction, it
is reasonable to explore and compare the heat-conduction
coefficient κ(N ) for some fixed chain length. To be specific, we
choose N = 640 and consider the temperature dependence of
the heat conductivity for fixed number of particles and varying
average link length. The results are presented in Fig. 7. For
all presented values of the link length the heat conductivity
in the case of low temperatures T < 0.01 sharply decreases
as the temperature grows. For large temperatures the heat
conductivity weakly increases with the temperature. In all
cases the minimum is achieved in the temperature interval
0.01 ÷ 0.04, which is close to the height of the potential
barrier. The lowest values of the heat-conduction coefficient
are obtained for a = 1.5. This result is expectable, since
namely for this value of the average link length the number
of topologically different degenerate ground states achieves a
maximum.

From Fig. 7 one can see that if the average link length
a varies from 1 to 1.5, the heat-conduction coefficient
decreases monotonously. In order to estimate the efficiency
of the heat-conductivity reduction, we define the reduction
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FIG. 6. (Color online) Power-law decrease of the autocorrelation
function c(t) for the chain with symmetric DW potential Eq. (2)
for average link length a = 1 and temperatures T = 0.01, 0.03,
0.1 (curves 1, 2, 3, respectively) and a = 1.5, T = 0.01, 0.03,
0.1 (curves 4, 5, 6, respectively). The graphs are presented in
double logarithmic scale and straight lines correspond to fitting t−β ,
β = 0.9,0.87,0.85,0.7,0.72,0.77 for curves 1, 2,..., 6, respectively.

coefficient μa = κ(a,N,T )/κ(1,N,T ), where κ(a,N,T ) de-
notes the heat-conduction coefficient for the average link
length a, number of particles N and temperature T . We note
that by symmetry considerations it is enough to consider only
the interval 1 � a � 1.5.

A dependence of μa on the temperature and the average
link length is presented in Fig. 8. The heat conductivity
decreases with increase of a for all studied values of the
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FIG. 7. (Color online) Dependence of the heat conduction coef-
ficient κ on temperature T of the chain containing in general 720
particles (N = 640, N± = 40) with the DW potential Eq. (2) for
a = 1.5, 1.1, 1.0 (curves 1, 2, 3, respectively).
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FIG. 8. Dependence of the reduction coefficient of heat conduc-
tivity μa = κ(a)/κ(1) on the temperature T and the average link
length a [κ(a)–heat conductivity of the chain with the average link
length a].

temperature. Maximal efficiency of the reduction is achieved
for the temperature T = 0.02, which is close to the height
of the potential barrier E0 = 0.0313. As one could expect,
maximal reduction of the heat conductivity occurs at a = 1.5.

However, other aspect of the reduction phenomenon is
somewhat unexpected. In Fig. 9 we present the dependence
of the reduction efficiency for different temperatures μN =
κ(1.5,N,T )/κ(1,N,T ) as a function of the particle number
N . It is somewhat surprising to see that this dependence
is not monotonous. The chain length for which the most
efficient reduction of the heat conductivity is observed strongly
depends on the temperature. For instance, for T = 0.01 the
most efficient reduction is observed when N0 = 1280, and for
higher temperatures T = 0.03,0.1—when N0 = 160.

It is easy to explain why for relatively short chains the
reduction efficiency is higher when the chain gets longer.
We believe that the reduction of the heat conductivity occurs
due to increase of a number of the degenerate ground states.
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FIG. 9. (Color online) Dependence of the reduction coefficient
of heat conductivity μN = κ(1.5)/κ(1) on the chain length N for
temperature values T = 0.01,0.03,0.1 (curves 1, 2, 3, respectively).
Here κ(a) is heat conductivity of the chain with average link
length a.
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Quite obviously, this effect becomes more profound as the
number of particles grows. The decrease of the reduction
efficiency for relatively high N is more difficult to explain.
Qualitatively, one can speculate that, since the heat-conduction
coefficient in the chain with DW potential diverges, for very
large N the heat transfer is governed by long-wavelength
weakly interacting phonons. Such waves are less sensitive
to the details of the chain structure and “feel” only average
density of the particles.

It is also instructive to compare the process of nonstationary
heat conduction in the DW model with different average link
length. For this sake, following a methodology developed in
Refs. [33,34], we simulate a relaxation of various spatial
modes of a thermal perturbation in the cyclic DW chain with
N particles. Thus, the initial temperature distribution is defined
according to the following relationship:

Tn = T0 + A cos[2π (n − 1)/Z], (6)

where T0 is the average temperature, A is the amplitude of
the perturbation, and Z is the length of the mode (number
of particles). The overall number of particles N has to be
a multiple of Z in order to ensure the periodic boundary
conditions.

In order to realize this initial thermal perturbation, each
particle in the chain is first attached to a separate Langevin
thermostat. In other terms, we integrate numerically the
following system of equations:

ün = −∂H/∂un − γ u̇n + ξn, (7)

where n = 1,2,...,N , γ = 0.1, and the action of the thermostat
is simulated as white Gaussian noise normalized according to
conditions

〈ξn(t1)ξk(t2)〉 = 2γ Tnδknδ(t2 − t1).

After the initial heating in accordance with Eq. (6), the
Langevin thermostat is removed and relaxation of the system
to a stationary temperature profile is explored. The results were
averaged over 106 realizations of the initial profile {Tn}Nn=1 in
order to reduce the effect of fluctuations.

Samples of the nonstationary simulations are presented in
Figs. 10 and 11. In both figures, we compare the relaxation
of similar thermal perturbation profiles with similar average
temperature, perturbation amplitude, and spatial wavelength.
The only difference is the average link length. We compare
the two extreme cases a = 1 and a = 1.5. In Fig. 11 one can
see that the same thermal perturbation for a = 1 decays in
oscillatory manner, whereas for a = 1.5 the decay is smooth.
Thus, one can conclude that for the case a = 1 the relaxation
cannot be reliably described by common diffusion equation.
In such cases, higher-order corrections are invoked and the
thermal relaxation may be described by equations of hyper-
bolic type, like, e.g., the Cattaneo-Vernotte equation [33,34].
In the same time, for the case a = 1.5 one observes primarily
diffusive behavior. This conclusion is further confirmed by
simulation results presented in Fig. 10. There we can see
that for a = 1 the oscillatory behavior is observed for very
broad diapason of the wavelengths. For all these modes,
the thermal perturbations for a = 1.5 decay in a primarily
diffusive manner. The reason for this difference, again, is a
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FIG. 10. Relaxation of initial periodic thermal profile in the
periodic chain with potential Eq. (2) N = 1024, T0 = 0.01, A = 0.05,
Z = 64 for (a) a = 1 and (b) a = 1.5.

“perfect” structure of the ground state for a = 1 and large
number of the degenerate ground states for a = 1.5.

IV. A MODEL WITH NONCONVEX
SINGLE-WELL POTENTIAL

The results presented in the previous section suggest that
the increase of the number of the ground states peculiar for
the DW chain leads to suppression of the heat conduction.
One should expect even stronger suppression effect, when the
chain is modified in a way that the potential changes from
single-well to double-well. Possibility of such modification in
a particular chain model under action of an external force and
the consequences for the heat conductivity are discussed here.
First of all, we suggest a model of the chain with a nonconvex
single-well potential of the nearest-neighbor interaction:

V (ρ) = ε(ρ − 1)2(ρ − 2)2 + βρ + c, (8)

where ε = 1/2, β = 0.15, à and (physically insignificant)
constant c may be found from a condition min V (ρ) = 0.
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FIG. 11. (Color online) Evolution of the relaxation profile in the
periodic chain with double-well potential Eq. (2) (N = 2048, T0 =
0.01, A = 0.05) for (a) a = 1 (Z = 23+k , k = 1,2,...,7, tk = 0.15,
0.3, 0.6, 1.2, 2.0, 4.0, 10.0) and (b) a = 1.5 (Z = 23+k , tk = 0.1 ×
2k−1, k = 1,2,...,6). Time dependence of the mode maximum T (1 +
Z/2) [red (gray) lines] and minimum T(1) [blue (black) lines] are
depicted.

Under these values of parameters potential function Eq. (8)
has a single minimum at ρ0 = 0.89 (Fig. 1).

Let us consider the case when the chain with potential
Eq. (8) is elongated by external force F applied to one of its
ends, whereas the other end remains fixed. It is easy to see
that such external forcing is equivalent to a modification of the
interaction potential Eq. (8) while adding a linear term with
negative slope. This modified potential will have the following
form:

V ∗(ρ) = ε(ρ − 1)2(ρ − 2)2 + βρ − Fρ + c. (9)

Thus, the application of the external force can modify the
topology of the potential function. Namely, it is easy to demon-
strate that for F < Fmin = β − ε/3

√
3 and for F > Fmax =

β + ε/3
√

3 the potential V ∗(ρ) remains single-well. However,
for Fmin < F < Fmax the effective potential becomes double-
well, and thus one can expect significant reduction of the heat
conductivity as a result of application of the external force.

In our numeric experiments we control the average link
length a rather than the value of the external force. However, it
is easy to translate between these quantities. Namely, potential
function Eq. (9) will have two wells if the following condition
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FIG. 12. (Color online) Dependence of heat-conduction coeffi-
cient κ on the chain length N for the chain with single-well
nearest-neighbor potential Eq. (8) for different values of the average
link length: (a) a = ρ0, (b) a = 2.0, (c) a = 1.5. In all cases the
temperature T = 0.01.

holds: amin < a < amax, where amin = 3/2 − 1/
√

3 ≈ 0.9226
and amax = 3/2 + 1/

√
3 ≈ 2.0774.

Creation of the effective double-well potential can be
also explained from observation of the single-well potential
function Eq. (8) depicted in Fig. 1. One can see that this
function is not convex (the second derivative is negative for
1 � ρ � 2). Homogeneous extension of such a chain, when all
the links have the same length ρn ≡ a > ρ0, is energetically
favorable only when the average link length belongs to the
interval where the potential function coincides with its convex
hull: a � ρ1 = 1 and a � ρ2 = 2. If ρ1 < a < ρ2, it is more
favorable to have part of the links with the length ρn ≡ ρ1 = 1,
and the rest–with the length ρn ≡ ρ2 = 2. In this case, the
dependence of the average potential energy per particle on the
average link length will follow the straight line connecting
the points [ρ1,V (ρ1)] and [ρ2,V (ρ2)], as it is demonstrated in
Fig. 1 [35,36]. Thus, as the average link length increases, the
numbers of “short” and “long” links vary accordingly, thus
giving rise to a large number of possible realizations and large
variations of the heat conduction coefficient.

Heat transfer in this system has been simulated with the help
of Langevin thermostats Eq. (3) under fixed-ends boundary
conditions: u1(t) ≡ 0, uN++N+N− = (N+ + N + N− − 1)a,
where again a � ρ0 is the average length of the link.

Numeric simulation of the heat conduction demonstrated
that for all studied values of the average link length a � ρ0,
the heat-conduction coefficient diverges: κ(N ) ↗ ∞ as N ↗
∞—see Fig. 12. Equilibrium simulations based on Green-
Kubo formula Eq. (5) bring about the same conclusion.

The dependence of the heat-conduction coefficient κ on
the average link length a for the chain with the single-well
nonconvex potential of the nearest-neighbor interaction Eq. (8)
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FIG. 13. (Color online) Dependence of the heat conduction coef-
ficient κ in the chain with single-well potential of the nearest-neighbor
interaction Eq. (8) on the average link length a for temperatures
T = 0.002, 0.02, 0.2 (curves 1, 2, 3, respectively). Note a logarithmic
scale for κ . Simulated chain contained in all cases N+ + N + N−
particles, N = 640 of them were free and N± = 40 were immersed
in the Langevin thermostats with temperatures T± = (1 ± 0.1)T .

is presented in Fig. 13. One can observe very strong effect of
the chain extension on the heat-conduction coefficient. This
drastic reduction is observed for values of the average link
length approximately in the interval 1 < a < 2, in accordance
with earlier findings on the relationship between a number of
possible degenerate (or close energetically) ground states and
the reduction of the heat conductivity.

It is possible to say that these drastic modifications of the
heat-conduction coefficient occur due to “latent” double-well
nature of the nonconvex potential of the nearest-neighbor
interaction. Notably, the most efficient reduction is achieved
when the temperature is close to the height ε of the “latent”
potential barrier. The reduction of the heat conductivity by two
orders of magnitude is achieved for T = 0.02.

It is important to mention that the effective nonconvex
single-well potential is obtained in effective models of some
quasi-one-dimensional objects. For instance, it is realized in
α spirals of protein macromolecules, double helix of DNA
[35,36], as well as in a model of intermetallic NiAl crystalline
nanofilms [37]. In these structures the external extension
brings nonhomogeneous equilibrium configurations. Then,
one should expect strong effect of external mechanic loads
on transport properties in systems of this sort.

V. CONTROL OF THE HEAT TRANSPORT IN MODELS
WITH CONVERGENT HEAT CONDUCTION

All simple models considered above are believed to have
the divergent heat conductivity in the thermodynamical limit.
In this section, we are going to consider a modification of
chain of rotators, which allows external control of the heat-
conduction coefficient. Simple chain of rotators is believed to
exhibit convergent heat conductivity [20,21].

n−2 n−1 n n+1 n+2

a
r φn

ln

x
y

z

FIG. 14. (Color online) Sketch of the modified chain of rotators.

To explain the idea of possible modification, let us consider
a mechanical model sketched in Fig. 14—a chain of equal
parallel disks of radius r with centers fixed at equal intervals
of length a along x axis. The disks can rotate along the x

axis and the rotation angle of the nth disk is denoted as φn.
Neighboring disks are coupled by harmonic springs of equal
stiffness and equilibrium length. The Hamiltonian of such a
model can be simply expressed as follows:

H =
N∑

n=1

1

2
I φ̇2

n + V (φn+1 − φn), (10)

where I is a moment of inertia of the disk. Potential energy
of relative rotation appears due to deformation of the springs,
which couple the neighboring disks, and is expressed as
V (�φn) = 1

2K(ln − L0)2

= 1
2K{[a2 + 2r2(1 − cos(�φn)]1/2 − L0}2. (11)

Here, �φn = φn+1 − φn is a relative rotation angle of the
neighboring disks, K and L0 are the stiffness and equilibrium
length of the springs, respectively, and ln is the length of the
nth spring. Potential function Eq. (11) will be double-well
provided that a < L0 < [a2 + 4r2]1/2. The potential minima
in this case correspond to the following values of the relative
rotation angle:

�φ0 = ±2 arcsin
{[(

L2
0 − a2

)/
4r2

]1/2}
.

The characteristic shape of the modified potential function
Eq. (11) is presented in Fig. 15. Without affecting the
generality, one can set I = 1, a = 1, and K = 1. To be specific,
we also choose r = 1. Thus, the potential will have two
wells for the equilibrium length of the spring in the interval
1 < L0 <

√
5. The function V (�φ) is 2π -periodic and has two

potential barriers 0 < ε0 < ε1. If the equilibrium spring length
L0 will only slightly exceed the distance a between the disk
centers, then one will obtain ε0 � ε1. For instance, for L0 =
1.2 one obtains the potential minima �φ0 = ±0.2152π ≈
0.6761, and the barriers ε0 = 0.02, ε1 = 0.5367.

We expect that, similar to the simple chain of dipole
rotators [20,21], the chain with Hamiltonian Eq. (10) will have
converging heat conduction coefficient.

To simulate the heat conductivity, we attach the chain
ends with N± = 40 disks to Langevin thermostats with tem-
peratures T± = (1 ± 0.1)T . Then, we simulate numerically
the system of Eq. (3) with potential function obtained from
Eq. (11) under fixed boundary conditions ϕ0 ≡ 0, ϕM ≡
(N+ + N + N− − 1)ϕ0 and with initial conditions

{ϕn(0) = (n − 1)ϕ0,ϕ̇n(0) = 0}N++N+N−
n=1 ,

where ϕ0—average value of angle between neighboring disks.
In other terms, we keep constant relative rotation angle
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FIG. 15. (Color online) Shape of potential function Eq. (11)
V (�φ) for a = 1, r = 1, L0 = 1.2, K = 1. Heights of the potential
barriers are ε0 = 0.02, ε1 = 0.5367. The potential function achieves
the minima for �φ = ±0.2152π .

between the ends of the chain (in other terms, we apply
constant momentum to the chain) and study the dependence of
the heat conduction coefficient on these external conditions.

Dependence of the heat-conduction coefficient κ on the
length of the chain fragment between the Langevin thermostats
N for the chain with periodic potential Eq. (11) is presented
in Fig. 16. As one can see, the value of N for which the
heat conductivity converges strongly depends on the average
temperature T .

For average temperature T = 0.2 comparable to a value
of the higher potential barrier ε1, the convergence is reliably
achieved already for N = 320. We also see that the heat
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ln
 κ

N
FIG. 16. (Color online) Dependence of the heat conduction co-

efficient κ on the size of the internal chain fragment N for the
chain with periodic potential Eq. (11) for the average angle between
the disks ϕ0 = �φ0 and ϕ0 = 0, respectively (curves 1 and 2 for
temperature T =0.01, curves 3 and 4—for T = 0.02, curves 5 and
6—for T = 0.2).
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FIG. 17. (Color online) Dependence of the heat conduction co-
efficient κ in the chain with periodic potential of the nearest-
neighbor interaction Eq. (11) on the average interdipole angle ϕ0

for temperatures T = 0.01, 0.02 (curves 1, 2, respectively).

conduction coefficient almost does not depend on ϕ0. The latter
result seems natural, since the temperature is large enough to
allow frequent transitions over the higher barrier; then, the
initial mutual rotation of the disks is relaxed.

If the average temperature will be much lower than the
higher potential barrier T � ε1, the relaxation mentioned
above will require exponentially large time. In this case, the
heat conduction still converges, but the convergence requires
consideration of much larger values of the chain length N . For
every chain length, the heat conductivity in the chains with
ϕ0 = 0 is significantly higher that in the chains with ϕ0 = �φ0.
For the average temperature T = 0.01, the difference is 6.5
times, and for T = 0.02, 5 times.

To check this assumption further, let us consider also the
dependence of κ on the initial angle between the disks ϕ0 for
the chain length N = 1280. In Fig. 17, one can clearly observe
that this dependence is strong enough, provided that the
temperature is sufficiently low to prevent the fast relaxation.

Physical reasons of this behavior are very similar to those
described in the preceding sections. For |ϕ0| � �φ0 the chain
has energetically degenerate ground states, where part of the
neighboring disk pairs have relative equilibrium angle φn+1 −
φn = �φ0, and the other pairs, φn+1 − φn = −�φ0. A number
of possible different ground states grows as |ϕ0| tends to zero.
That is why the heat conductivity decreases in this limit. This
effect becomes more pronounced as the temperature decreases.
Still, for extremely small temperatures the heat conductivity
will cease to depend on |ϕ0|, since even the smaller potential
barriers will become prohibitive.

For exponentially large simulation times the dependence of
the heat conductivity on the initial relative rotation of the disks
is expected to disappear due to thermally activated relaxation
over higher potential barriers. In our simulations the times
were not large enough to observe this relaxation for lower
temperatures. Still, we believe that this problem may be easily
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overcome. It seems sufficient to act with constant external
momentum on the right end of the chain, rather than to fix
it. Then, one should investigate a dependence of the heat
conduction coefficient on the value of this external momentum.

The idea presented in this section could be useful for
practical design of the systems with controlled heat con-
ductivity. One can use, for instance, the stretched polymer
macromolecules. Thermal conductivity in such polymers is
studied rather widely [38,39]. We conjecture that in polymers
with large size groups the heat conductivity can be modified
by application of the external momentum.

VI. HEAT CONDUCTION IN STRETCHED α HELIX

Above we restricted ourselves to one-dimensional models.
In this section we are going to demonstrate that the mechanical
control of the heat transport may be achieved also in a model of
three-dimensional molecular helix. For this sake we consider
a 3D molecular chain describing an ideal α helix.

Particles comprising this helix in the state of equilibrium
have the following Cartesian coordinates:

R0
n = [R0 cos(nφ0),R0 sin(nφ0),n�z0], (12)

where n = 0, ± 1, ± 2,... are numbers of the helix particles,
R0 is a radius of the helix, and φ0 and �z0 are angular and
translational periods of the helix, respectively. Such a helix
can be treated as a quasi-1D crystal; that is, each site can be
obtained from the previous one by the appropriate translation
along longitudinal axis z and rotation around the same axis.

Hamiltonian of the chain is expressed as

H =
∑

n

{
1

2
M(Ṙn,Ṙn) + V (ρn) + U (θn) + W (rn)

}
. (13)

Here, Rn(t) = (Rn,1,Rn,2,Rn,3) is a 3D vector denoting a
position of the nth particle (peptide group) of the helix at time
instance t , and M is a mass of the particle. Potential V (ρn)
corresponds to the energy of the nearest-neighbor interaction,
ρn = |un|, un = Rn+1 − Rn. Energy of deformation of planar
valence angles is described through the term U (θn), where
θn corresponds to a value of the valence angle centered at
particle n, cos(θn) = −(un−1,un)/ρn−1ρn. The last term in the
Hamiltonian, W (rn), describes a deformation energy of the
nth hydrogen bond, coupling between the nth and n + 3rd
particles, rn = |Rn+3 − Rn|.

For the sake of simplicity we consider a reduced dimension-
less model of the helix with M = 1, equilibrium interparticle
distance ρ0 = 1, angular equilibrium step of the helix φ0 =
100◦, and equilibrium valence angle θ0 = arccos(−1/3) =
109.47◦. Then [40], the nondimensional helix radius should
be

R0 = ρ0 cos(θ0/2)/[1 − cos(φ0)] = 0.4919,

and the step along the axis is

�z0 = ρ0

√
| cos(φ0) + cos(θ0)|/[1 − cos(φ0)] = 0.6572,

and the equilibrium length of the hydrogen bond is r0 =
2.0322.
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FIG. 18. (Color online) Sketch of the α helix in the state of
equilibrium. Solid lines correspond to the valence bonds, arches to
the valence angles, and dashed lines to the hydrogen bonds.

To be specific, we describe the deformation of the rigid
valence bond by harmonic potential

V (ρ) = 1
2K(ρ − ρ0)2, (14)

with stiffness K = 4, deformation of the valence angle—by
the potential

U (θ ) = ε1(cos θ − cos θ0)2, (15)

with characteristic energy ε1 = 0.25, and the hydrogen
bond—by Morse potential

W (r) = ε0{exp[−β(r − r0)] − 1}2, (16)

with parameters ε0 = 0.005, β = 10.
A sketch of the equilibrium state of the helix is presented

in Fig. 18. Similar models were used before [40,41] for
analysis of supersonic solitary waves. In Ref. [35] it was
demonstrated that the homogeneous stretching of the helix
leads to appearance of the effective nonconvex single-well
potential. Minimization of potential energy in Eq. (13) for
homogeneous growth of �z leads to effective potential plotted
in Fig. 19. As one can see, the equilibrium value of the angular
step φ grows monotonously and for �z = 0.8181 achieves the
maximum possible value φ = 180◦—thus the helix is decoiled
into a planar trans-zigzag.

As one can see from Fig. 19 the effective potential E(�z)
is not convex. The convex envelope is obtained by attaching a
line between points [�z1,E(�z1)] and [�z2,E(�z2)], where
�z1 = 0.6725, �z2 = 0.8254. This line describes the scenario
of nonhomogeneous stretching, where some segments of the
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FIG. 19. (Color online) Dependence of (a) energy E and (b)

angular step of the helix φ on its axial step �z. Gray shadow denotes
a region in which the nonhomogeneous stretching turns out to be
energetically favorable.

helix are stretched weakly with the step �z1 and the others
are stretched strongly, with the step �z2. The stretching is
achieved through growth of a number of the strongly stretched
segments. Obviously, such a scenario is more favorable
energetically than the homogeneous stretching.

To simulate the heat transfer in the helix chain, we used
the protocol of equilibrium heat transfer between Langevin
thermostats, similar to that used for the one-dimensional
models. After an initial transient, thermal equilibrium with the
thermostats was established and a stationary heat flux along
the chain appeared. A local temperature is numerically defined
as Tn = 〈(Ṙn,Ṙn)〉t /3 and the local heat flux as Jn = �z〈jn〉t ,
where

jn = −(Ṙn+1,∂V (ρn)/∂Rn+1) − (F3,n + F2,n+1,Ṙn+1)

− (F3,n+1,Ṙn+2) − 3(Ṙn+3,∂W (rn)/∂Rn+3),

vector F2,n = ∂U (θn)/∂Rn, F3,n = ∂U (θn)/∂Rn+1. In numer-
ical simulations we used the following values of temperature
T± = (1 ± 0.1)T , T = 0.0005, the relaxation coefficient γ =
0.1, the number of units N± = 40, N = 20, 40, 80, . . . ,
2560.

Dependence of the heat conduction coefficient κ on
the length of the free helix segment N was computed
according to Eq. (4). The heat conduction coefficient for
the helix diverges in the thermodynamic limit. For initial
state of the system with �z = �z0 = 0.6573, one observes
κ(N ) ∼ N0.20, for N → ∞, and for the stretched helix with
�z = 0.75, κ(N ) ∼ N0.11; for N → ∞, see Fig. 20. Thus,
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FIG. 20. (Color online) Dependence of the heat-conduction coef-
ficient κ on the size of the internal chain fragment N for α helix with
the average longitudinal step �z = �z0 = 0.6573 and �z = 0.75
(curves 1 and 2, respectively).

the stretching should bring about a decrease in the heat
conductivity.

This result is illustrated in Fig. 21. In this simulation, we
choose N = 320 and fix a value of the average helix step �z

for each run. As one can see, the stretching of the helix indeed
brings about the reduction of the heat flux (and, accordingly,
of the heat conduction coefficient). Maximum reduction is
achieved approximately for �z = (�z1 + �z2)/2 = 0.749,
where the lack of homogeneity is the most significant. Further
stretching leads to monotonous growth of the heat flux. The
strongest reduction of the heat conductivity is achieved for
stretching deformation of about 10 ÷ 13%.

As we see, the three-dimensional structure of the model
helix does not bring about any qualitatively new phenom-
ena related to the heat conduction. Still, the reduction of
the heat conductivity is less profound than it was for the
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Δ z
FIG. 21. (Color online) Dependence of the heat flow J on the

helix longitudinal step �z (size of the internal chain fragment
N = 320, size of edge fragments N± = 40, edge temperatures T± =
0.0005 ± 0.00005).
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one-dimensional models considered above. That can be at-
tributed to the fact that the 3D helix has a number of competing
“channels” for the heat transfer related to different phonon
branches, and the stretching effects only a part of them. As
it was already mentioned above, one should expect similar
behavior in other systems, which exhibit the nonhomogeneous
stretching, such as DNA double-helix and helical proteins [35],
as well as in NiAl single-crystal nanofilms [37].

VII. CONCLUDING REMARKS

In this paper we demonstrated that one can efficiently
control the transport properties of model atomic chains by
application of mechanical load. In the case of the chain with
double-well interparticle potential, it is enough to change the
average interparticle distance in order to modify a number of
possible degenerate ground states and to reduce or to increase
the heat conductivity. The effect is rather pronounced (about
fivefold reduction was observed). However, even stronger
effect—reduction by two orders of magnitude—was observed
in more generic model with single-well nonconvex interpar-
ticle potential. In this model the heat conductivity is directly
related to applied external strain. Also in this case it seems
that the reduction effect is caused by formation of “effective”
double-well potential and variation of a number of possible
states of mechanical equilibrium. The effect was shown to

persist (although to lower extent) for the three-dimensional
model of polymer α helix.

Modification of thermal conductivity in conditions of
external mechanical load can be related to broader field of
thermoelasticity. It is well-known that elasticity and plasticity
in real materials can be strongly coupled with thermodynamic
phenomena and heat transport. It seems, however, that this
possible coupling has not received proper attention in numer-
ous recent studies devoted to microscopic foundations of the
heat conductivity. Our results demonstrate that these effects
can be rather profound. One can be tempted to say that the
extension of the chain with the DW potential exemplifies
the effect of plasticity on the heat transport. The chain with
the single-well potential requires constant external forcing to
reduce the heat conductivity; this phenomenon is primarily
elastic. Needless to say, these statements are quite crude and
schematic; still we believe that the subject is of considerable
fundamental interest. Besides, interesting practical implica-
tions are straightforward—one can be interested in simple
mechanical means of control over heat transport in micro-
and nanosystems.
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