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Numerical comparison of a constrained path ensemble and a driven quasisteady state
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We investigate the correspondence between a nonequilibrium ensemble defined via the distribution of phase-
space paths of a Hamiltonian system and a system driven into a steady state by nonequilibrium boundary
conditions. To discover whether the nonequilibrium path ensemble adequately describes the physics of a driven
system, we measure transition rates in a simple one-dimensional model of rotors with Newtonian dynamics
and purely conservative interactions. We compare those rates with known properties of the nonequilibrium path
ensemble. In doing so, we establish effective protocols for the analysis of transition rates in nonequilibrium
quasisteady states. Transition rates between potential wells and also between phase-space elements are studied
and found to exhibit distinct properties, the more coarse-grained potential wells being effectively further from
equilibrium. In all cases the results from the boundary-driven system are close to the path-ensemble predictions,
but the question of equivalence of the two remains open.
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I. INTRODUCTION

Equilibrium thermal systems obey the principle of detailed
balance [1], a physical law concerning the rates of a system’s
microscopic dynamical processes, which can ultimately be
traced to the statistics of the heat bath that supplies noise to the
system. A class of far-from-equilibrium system, which shares
the Hamiltonian of an equilibrium system, can be defined by a
subset of the equilibrium ensemble of phase-space trajectories,
conditioned by a finite flux [2–5]. That is to say, those members
of the equilibrium ensemble of systems, which exhibit a given
flux during some time interval, are defined as belonging to
the nonequilibrium constrained-flux ensemble. For such a
constrained-flux ensemble, the rates of microscopic processes
have been shown [2,3,6,7] to respect physical laws equivalent
to (but different from) equilibrium detailed balance, which
can ultimately be traced to the statistics of a nonequilibrium
reservoir that supplies biased noise to the system [8].

Such an ensemble is appealing in that it shares many
features of an equilibrium ensemble and admits elegant
techniques for investigation of its properties, both in the case
where the constrained dynamical quantity is antisymmetric
under time reversal (a flux) [4,5,9] and where it is symmetric
(a “dynamical activity”) [4,5,10–16]. However, it remains
unclear whether such ensembles are realized in practice, i.e.,
whether a nonequilibrium ensemble defined via the distribu-
tion of its phase-space trajectories in this way corresponds to
a physically realistic system driven away from equilibrium.

Here, we test whether such an ensemble is a good
description of a system subjected to torsional shear flow, by
investigating relationships between its transition rates ωij ,
defined as the probability per unit time that the system
occupying microstate i transforms to microstate j within a
vanishingly small time interval. For the steady state of an
ensemble of trajectories conditioned by a finite mean shear
flux, the values of such transition rates are related to the
rates ω

eq
ij measured in the same fluid (i.e., with the same
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Hamiltonian) at equilibrium (in contact with an equilibrium
heat bath and not constrained to flow). The relationships [6]
are as follows.

(i) The product of forward and reverse transition rates
between any two microstates is the same in the equilibrium
and sheared ensembles, i.e.,

ωij ωji = ω
eq
ij ω

eq
ji ∀ i,j. (1)

(ii) The exit rate (i.e., the sum of all outward transition
rates) from any given microstate differs from its equilibrium
value by a shear-rate-dependent constant that is the same for
all microstates, i.e.,

∑
j

(
ωij − ω

eq
ij

) = Q ∀ i. (2)

If, in addition to the mean flux, the mean potential energy
〈U 〉 (a time-reversal symmetric quantity) is also constrained,
further conditioning the nonequilibrium ensemble of trajec-
tories, then Eq. (2) no longer holds for all microstates i

but continues to hold for all microstates of equal potential
energy [5].

Testing the applicability of this nonequilibrium counterpart
to detailed balance requires the rates of transitions between
microstates to be measured, in a suitably driven system that has
physically valid equations of motion (rather than one in which
nonequilibrium transition rates are specified a priori). Such
a model system—a line of angular-momentum-conserving
rotors with nearest-neighbor interactions—was simulated in
Ref. [17], in the Brownian limit, where frictional and stochastic
forces between neighbors dominate over momentum degrees
of freedom. In the present study, we test the proposed statistical
laws in a deterministic Hamiltonian system with nontrivial
interactions and with no friction or stochastic forces (other than
the emergent quasirandom motion of the many deterministic
degrees of freedom). This model allows us to investigate a
phase space with nontrivial momenta as well as positional
coordinates.

Because the model has continuous degrees of freedom, the
“microstates” that we analyze are, by necessity, not strictly
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FIG. 1. The model system under investigation: a one-dimensional
chain of simple rotors with conservative nearest-neighbor interac-
tions. The chain may be allowed to equilibrate, or can be driven by
continuously twisting the boundary rotors. This many-body system
is a simple model for a complex fluid in shear flow.

single states, but finite regions of phase space, which we define
in two different ways. In the first test (Sec. IV A), we assume
that momentum degrees of freedom are well thermalized and
therefore irrelevant, while positional degrees of freedom make
distinct transitions between minima of a potential that play
the role of microstates. In the second test (Sec. IV B), we
divide phase space into a grid of coarse-grained “microstates”
characterized by both positional and momentum coordinates
and study transitions between the cells of that grid. Comparing
the two characterizations of the same system—with and
without regard of momenta—reveals some important issues
concerning the statistical mechanics of deterministic systems
in nonequilibrium environments.

II. THE MODEL

The model, in which we measure transition rates for
comparison with the predictions for constrained ensembles,
is depicted in Fig. 1. It consists of a one-dimensional chain of
simple rotors. The dynamical variables are the angles θi of the
rotors (each labeled by its index i), relative to some overall
reference direction, and their angular momenta I θ̇i , where the
moment of inertia I will henceforth be set to unity without
loss of generality. Nearest neighbors in the chain apply equal
and opposite torques to each other, thus exactly conserving
angular momentum.

Unlike Ref. [17], in which only the zero-mass, over-
damped regime with added noise was studied, here we
investigate the deterministic model in which the torques
are purely conservative, being the negative gradient of the
potential U (�θ ) = − cos(�θ ) − cos(4�θ ) shown in Fig. 2.
This symmetric function of the angular difference between
the rotors, �θi ≡ θi+1 − θi , has four wells, allowing us to
measure and compare the transition rates between various
states, approximating microstates.

The equations of motion are

∂2θi

∂t2
= U ′(�θi) − U ′(�θi−1), (3)

with U ′ being the derivative of the function U . The boundary
conditions are periodic, and the equations of motion are
numerically time-stepped using the velocity Verlet algorithm

FIG. 2. The interaction potential between neighboring rotors,
U (�θ ) = − cos(�θ ) − cos(4�θ ), in terms of the angular difference
�θ between the neighbors.

[18], which approximately conserves energy in the absence of
external work. The time step used was 10−3, as this was found
to be sufficiently small to obtain data that were independent of
time step. We use a system of N = 300 rotors, as this is found
to be sufficiently large to avoid any system-size dependence
of the results.

As described thus far, this is an equilibrium model. Once
initial transients have died away, the time-averaged distribution
of relative angles �θ between neighbors was measured and
plotted logarithmically in Fig. 3, together with the function
−U (�θ ) for comparison. Despite having deterministic dy-
namics, this steady-state system exhibits Boltzmann statistics

FIG. 3. The steady-state distribution of relative angles �θ be-
tween neighbors in the chain without driving. The vertical axis
shows ln(f ), where f is the probability per unit angle of finding a
given relative angle between neighbors. Also plotted as a continuous
curve is −βU (�θ ) + c for the function U defined in the legend of
Fig. 2, where β and c are fitting parameters. Agreement between
the curve and the data confirms that the deterministic system is
at thermodynamic equilibrium, respecting Boltzmann’s law: f ∝
exp(−βU ).

012132-2



NUMERICAL COMPARISON OF A CONSTRAINED PATH . . . PHYSICAL REVIEW E 89, 012132 (2014)

in the absence of driving. At low temperature (i.e., evolved
from an initial condition with low energy per rotor) the relative
angles between neighbors are then mostly confined close to
the local potential minima, with only occasional transitions
between potential wells.

The rates of those transitions (without driving) have also
been measured and were found to respect detailed balance,
thus suggesting that this 1D deterministic system is ergodic, at
least in the absence of driving. Note that detailed balance is not
imposed a priori; it emerges from the dynamics at equilibrium.

To drive the system, in a way reminiscent of shearing a
fluid, we modify the boundary condition, which is a simple
periodic boundary condition for the equilibrium case. We could
simply control the motion of the first and last rotors (i = 1
and i = N ), to impose a torsional shear rate, but this might
introduce nontrivial edge effects by breaking the translational
symmetry. Instead, we impose an angular version of Lees-
Edwards boundary conditions [19], in which rotor N is coupled
to rotor 1 with an angular offset that increases linearly with
time, by defining

�θN = �θ0 = θ1 − θN + Nγ̇ t, (4)

where the parameter γ̇ is the shear rate. So the N th rotor
interacts with the first rotor via a potential that has a minimum,
not at θ1 − θN = 0 (i.e., parallel alignment), but at θ1 − θN =
−Nγ̇ t (an increasing angle). Nevertheless, these boundary
rotors could feel a constant interaction force if one of them
spins relative to other rotors in the chain. Hence, the effect
of the boundary condition is nonlocal, imposing an overall
torsional shear flow with average relative velocity between
neighbors 〈θ̇i+1 − θ̇i〉 = γ̇ , while treating all rotors equally.

III. DATA ACQUISITION FROM QUASISTEADY STATES

We repeated the deterministic simulations 250 times at each
shear rate, with randomly varying initial conditions. The initial
angles were set to θi = 0 ∀i in each case (to keep the initial
energy low) and the velocities randomly scattered about an
affinely sheared state, so that the values of �θ̇i have a mean
of γ̇ and a Gaussian distribution whose variance determines
the initial energy density. This initial condition is sometimes
called a “water bomb” initialization, because when a child’s
water bomb (a balloon filled with water) hits the ground, all of
the water is initially in the same location, but with a scatter of
velocities that soon cause the water to spread out. We found
it convenient to set the variance of the initial Gaussian equal
to γ̇ /2, to allow a statistically significant number of the rarest
transitions to be observed within a reasonable time, for a range
of shear rates. Starting transients were allowed to decay before
any data were taken.

Since no dissipation is present, the driven system “heats up,”
i.e., its energy density on average increases with time, since
the nonequilibrium boundary condition applies work to the
system. This is true also of an adiabatic experimental system.
The quasisteady-state statistics of such a system remain well
defined and reproducible so long as it does not heat up too
quickly on the timescale of the measurements.

To measure transition rates at a well-defined energy density
(corresponding to a constant temperature in the case of an
equilibrium simulation), and in a quasistationary state, we

FIG. 4. (Color online) Mean potential energy per rotor as a
function of time, for one of the many simulations performed at a
shear rate γ̇ = 2. Vertical dashed lines delineate the interval during
which data were obtained with the appropriate mean potential energy
per rotor. Note the slow systematic energy increase, only apparent
on the longest timescale. Note also the rapid noisy variation on a
timescale much shorter than the measurement interval.

took data over only short intervals � t , within each of the
much longer simulations, during which there was negligible
systematic rise in the energy density compared with its noisy
variation (see Fig. 4).

It is important to choose a value of � t longer than the
timescale of the noise but shorter than the timescale on which
the internal energy significantly increases in a systematic
manner. The data in Fig. 5 were used to assess the most
suitable choice of � t . The figure shows a graph of the
standard deviation in mean potential energy per rotor (averaged
over many simulations) as a function of the measurement
interval � t . The data shown are for simulations at a shear
rate γ̇ = 1. For other values of γ̇ , the corresponding graphs
are qualitatively (and in most cases quantitatively) the same.
The graph shows a shoulder, at a timescale required to

FIG. 5. Graph of the standard deviation in mean potential energy
per rotor (averaged over many simulations) as a function of the
measurement interval � t . The data shown are for simulations at
a shear rate γ̇ = 1.
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representatively sample the noisy variations in energy. Further
increasing the measurement interval beyond this shoulder
value increases the standard deviation only slowly, as it en-
compasses a systematically increasing range of temperatures
(a range of different quasisteady states). From the figure, a
value of � t in the interval (150, 200) is judged to be the most
suitable quasisteady timescale. In practice, for each of the
investigations presented below, data were collected until the
rarest transition, in each case, was observed a given number
of times. That number was chosen, for each investigation, to
yield values of � t in the interval (150, 200).

The total duration of each simulation was 104 natural
time units, chosen to provide a useful amount of data
following starting transients. Within each of the 250 simulated
trajectories for each shear rate, several distinct measurements
of duration � t were taken.

At the end of each of these measurement intervals, counting
began again for a new measurement interval. The mean
potential energy per rotor was recorded during each interval.
Hence, from the many simulations, we obtained a large set
of quasistatic measurements with a range of different energy
densities.

To obtain statistically significant data at a well-defined
energy density, we combined only those measurements for
which the mean potential energy per rotor was in the interval
(−0.11,−0.09). One of the intervals from which data were
used is indicated by the vertical lines in the example of
Fig. 4. As discussed below Eq. (2), this extra constraint on
the (time-reversal-symmetric) potential energy density only
has the effect of confining Eq. (2) to a set of microstates of
equal potential energy density [5].

It was difficult to obtain statistically significant results
above a shear rate of γ̇ = 2 because the system heated up
more quickly at higher shear rate, therefore spending less time
in the chosen energy interval.

We choose to characterize the macrostates by their potential
energy density because it is well defined, whereas kinetic en-
ergy density in the sheared periodic system depends on system
size and rest frame. We chose as low an energy as possible,
whilst still achieving statistically significant counting, in order
to observe nontrivial variations in transition rates, controlled
by an interplay between interactions and driving (rather than
just a shear-dominated high-temperature regime).

To check that our protocol truly yielded quasisteady-state
results that are independent of initial conditions, we performed
detailed comparisons at γ̇ = 0.4, 1, 1.6, and 2. For each
of these shear rates, we performed a further set of 250
simulations with the initial peculiar velocities drawn from
a Gaussian with a smaller variance: a quarter of that in our
standard protocol. For these simulations, we reperformed all
measurements. In each case, we found that the two sets of
results differed by only small amounts, consistent with our
quoted uncertainties. We therefore interpret the driven system
as reaching an ergodic quasisteady state, independent of the
initial conditions, although the time taken to reach a given
value of the internal energy must depend on the initial energy.

The equilibrium state γ̇ = 0 is an exception. Because the
velocity-Verlet dynamics are approximately conservative, the
internal energy of the system remains equal to its initial value,
in the absence of driving. Hence, the results never become

independent of the initial variance of the velocity distribution
in this case. For this reason results are given, below, for nonzero
values of γ̇ only.

IV. RESULTS AND DISCUSSION

The potential, shown in Fig. 2, acts on the variables �θi ,
which are the angular differences between neighboring rotors.
These variables are associated with the gaps, or spaces between
rotors. It is the gaps, then, that occupy the potential and make
occasional transitions between its wells, under the influence
of the erratic forces from the rest of the system. The rest of the
system, then, acts as a nonequilibrium reservoir that supplies
biased noise to a rotor gap, with an average tendency to make
�θ increase with time. If the motion of neighboring gaps is not
strongly correlated, then each gap can be treated as an inde-
pendent system, weakly coupled to the noisy nonequilibrium
reservoir, and driven by it. This situation is directly analogous
to an equilibrium system, for which the microstate (rather than
the motion) must be uncorrelated with its surroundings in order
for Boltzmann’s law to hold and the reservoir to be regarded
as weakly coupled. Subject to the assumption of uncorrelated
dynamics, then, we regard each gap as an independent system,
with phase-space coordinates (�θ,�θ̇ ), for which we can test
the statistical laws stated in Sec. I.

A. Test 1: Transition rates between potential wells

If transitions between potential wells are rare on the
timescale of temporal correlations in �θ̇ (i.e., the gap “forgets”
its value of �θ̇ between transitions in �θ ), then momenta can
be neglected, and potential wells can be regarded as effective
microstates, labeled a, b, c, and d in Fig. 2.

A transition is deemed to have occurred when a gap-
angle �θ is found crossing the bottom of a potential well,
having previously crossed the bottom of another well. This
criterion prevents multiple counting due to erratic motion at the
threshold of a well. These transition counts are divided by the
occupancies of the potential wells, to obtain all eight transition
rates between the wells. Note that many transitions were
observed, in both the forward and reverse directions, across
all four potential barriers. This provides further confidence
that the system is in an ergodic state.

Equation (2) relates transition rates for the driven system to
those at equilibrium. Rather than comparing our driven system
with an equilibrium one, for which the temperature would be an
unknown fitting parameter, we instead exploit the symmetry
of the potential U (�θ ) and notice that the equilibrium exit
rates from wells b and d must be equal, due to the symmetry
�θ ↔ −�θ of the equilibrium ensemble. Hence, although
that symmetry is broken in the driven ensemble by the shear
flux in the positive �θ direction, substitution into Eq. (2)
nonetheless predicts equal exit rates from wells b and d in the
nonequilibrium ensemble. That prediction is tested, in regimes
of varying shear rate and internal energy, by the data in Fig. 6.

While the four transition rates involved individually behave
quite distinctly as shear rate varies, the predicted invariant
combination remains almost constant up to large shear rates.
So Eq. (2), which applies to a nonequilibrium ensemble
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FIG. 6. (Color online) The measured rates ωba, ωbc, ωda, and ωdc

for a wide range of shear rates γ̇ , both in natural time units. Also
plotted is the combination (ωba + ωbc)/(ωda + ωdc), which is the ratio
of exit rates from wells b and d, predicted to remain constant at
unity in a constrained ensemble, subject to the assumptions that
momentum variables can be neglected, and that potential wells
represent distinct microstates of a system weakly coupled to the
nonequilibrium reservoir embodied by the other rotors. The red line
is the theoretical prediction of this ratio (unity), while results of
simulations are depicted by black squares. The mean potential energy
per rotor is selected in the range −0.1 ± 0.01.

conditioned by flux, appears to be consistent with an ensemble
of systems driven by a nonequilibrium shearing reservoir.

Again appealing to the symmetry of an equilibrium system
with the potential U (�θ ), we test Eq. (1) for the transition from
well a to b, which must be identical to the transition from a to d

at equilibrium, but not when driven. Nevertheless, substitution
into Eq. (1) determines that the products of forward and reverse
transition rates between these pairs of states remain equal in
the constrained nonequilibrium ensemble. That is, ωabωba =
ωadωda irrespective of the constrained flux. This relation is
tested in our driven system by the data in Fig. 7, and the relation
ωcdωdc = ωcbωbc, based on symmetry about well c, is tested in

FIG. 7. (Color online) As described in the legend of Fig. 6, for
the rates ωab, ωba, ωad, ωda, and their combination (ωabωba)/(ωadωda).

FIG. 8. (Color online) As described in the legend of Fig. 6, for
the rates ωcd, ωdc, ωcb, ωbc, and their combination (ωcdωdc)/(ωcbωbc).

Fig. 8. Again, we see that the nonequilibrium invariants remain
almost constant while the relevant individual transition rates
vary distinctly and by large amounts.

B. Test 2: Phase-space transition rates

As discussed in Sec. I, the predicted relations strictly
concern the rates of transitions between discrete microstates,
and we wish to test them in the continuum limit for a phase
space with nontrivial momentum as well as positional degrees
of freedom. To that end, we again treat each interrotor gap
as a system weakly coupled to a nonequilibrium reservoir
but, in contrast to Sec. IV A, we monitor both its “positional”
coordinate �θ and its “momentum” degree of freedom �θ̇ .
To determine the phase-space occupancies and transition rates,
the two-dimensional phase space spanned by these coordinates
is discretized as shown in Fig. 9. At each time step during

FIG. 9. Discretization of the phase space occupied by the gaps
between neighboring rotors, with coordinates �θ (the relative angle
between the pair) and �θ̇ (their relative angular velocity). The states
α, β, and ε are identified for analysis, as well as states reversed in �θ

only, denoted by ,̂ and time-reversed states denoted by *.
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(a) (b)

FIG. 10. Histograms and density plots of occupancies of the phase-space bins defined in Fig. 9, measured in quasisteady states with mean
potential energy density −0.1 ± −0.01 and shear rate (a) γ̇ = 0.2, (b) γ̇ = 2.

the measuring interval, the values measured in a quasisteady
state are binned into 100 cells (ten columns across a full
turn of the periodic coordinate �θ , and ten rows spanning
a limited domain of �θ̇ values). A transition is recorded
whenever a gap’s coordinates cross a line between two
such cells.

The measured quasisteady-state occupancies at two differ-
ent shear rates, but the same mean potential energy density
−0.1 ± −0.01, are shown in Fig. 10. At low shear rate
[Fig. 10(a)], γ̇ = 0.2, the ensemble of rotors is not far from
equilibrium, with the angular (�θ ) distribution similar to
the Boltzmann distribution of Fig. 3 and the velocity (�θ̇ )
distribution independent of �θ and approximately Gaussian
with a mean value of 0.2. At shear rate γ̇ = 2 [Fig. 10(b)], the
velocity distribution has more nontrivial structure, no longer
resembling the equilibrium Gaussian form, while the angular
distribution is also significantly altered, particularly at the most
negative velocity.

The measured transition rates are compared with the
relationships that hold for a conditioned ensemble of

trajectories, Eqs. (1) and (2). As in Sec. IV A, to test the
relation between exit rates, Eq. (2), we appeal to the symmetry
of the equivalent equilibrium ensemble. In particular, we
concentrate on the cell labeled ε in Fig. 9, and its inverted
image ε̂. Note that these two states are related by the
transformation (�θ,�θ̇ ) ↔ (−�θ,�θ̇ ), equivalent to parity
and time reversal, “PT” (since �θ̇ is not reversed). The
equilibrium ensemble is invariant under that transformation,
so Eq. (2) implies

∑
i ωε i = ∑

i ωε̂ i , an equation involving
eight transition rates in the driven ensemble (transitions into
the four neighbors of ε and the four neighbors of ε̂). Two of
those rates are for forbidden transitions and therefore vanish
both at equilibrium and with driving. They involve escape,
in the direction of increasing �θ , from a state with negative
velocity, which would require an improbably large stochastic
impulse from the reservoir. The remaining six finite rates are
plotted in Fig. 11 for various shear rates, for quasisteady states
selected with mean potential energy density −0.1 ± 0.01, as
in Sec. IV A. The ratio of the two exit rates (the combination
predicted to be invariant at unity) is also plotted.
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FIG. 11. (Color online) Test of the relationship
∑

i ωε i =∑
i ωε̂ i between exit rates from states ε and ε̂, defined in Fig. 9, in

quasisteady states with mean potential energy per rotor −0.1 ± 0.01
as for Fig. 6. The key gives symbols representing the individual rates
ωε← etc. where the arrow indicates the direction (relating to Fig. 9) of
the transition out of the initial state. Black symbols:

∑
i ωε i

/∑
i ωε̂ i

are in very close agreement with the theoretical value (red line) of
unity.

Similarly, in Figs. 12–14, the product relations in Eq. (1)
are compared with data for transitions between “microstates”
α and β (see Fig. 9) and their symmetry-related microstates,
which have equal statistical properties at equilibrium. The
symmetries in question are PT, discussed above, and denoted
by a hat (̂ ) and T, simple time reversal, (�θ,�θ̇ ) ↔
(�θ,−�θ̇ ) denoted by an asterisk (*). Some small deviations
from unity are observed in some cases.

Notice that the transition rates vary much less, across the
range of shear rates, than the transition rates measured in
Sec. IV A. Nevertheless, their small changes are sufficient

FIG. 12. (Color online) Test of the relationship ωαβωβα =
ωα̂β̂ωβ̂α̂ for states α and β defined in Fig. 9, in quasisteady states
with mean potential energy per rotor −0.1 ± 0.01 as for Fig. 6.
Black symbols: ωαβωβα/ωα̂β̂ωβ̂α̂ are in very close agreement with
the theoretical value (red line) of unity.

FIG. 13. (Color online) As described in the legend of Fig. 12, for
the relationship ωαβωβα = ωα∗β∗ωβ∗α∗ .

to result in significantly altered occupancies [Figs. 10(a) and
10(b)]. This is because phase space is now being examined
in finer detail (Fig. 9). The occupancies are the result of
many microscopic transition rates, so that tiny changes in each
of those many rates, leading to tiny changes in the relative
occupancies of neighboring cells, can have a large effect on
the large-scale shape of the distribution.

One might ask whether the ensemble under investigation
is near or far from equilibrium. The answer depends on the
level of detail at which its properties are interrogated. In terms
of transitions between the potential wells, the ensemble at
γ̇ = 2 is far from equilibrium, as witnessed by the rates in
Figs. 6–8, which are grossly altered from their equilibrium
values (which can be inferred from the graphs by extrapolating
to γ̇ = 0). The relationships in Eqs. (1) and (2) are tested far
from equilibrium in that case. However, at a more microscopic
level the transitions between “microstates” in Fig. 9 have rates
that are barely perturbed from their equilibrium values by an
imposed shear rate γ̇ = 2, as shown in Figs. 11–14, so that the

FIG. 14. (Color online) As described in the legend of Fig. 12, for
the relationship ωαβωβα = ωα̂∗β̂∗ωβ̂∗α̂∗ .
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relationships [Eqs. (1) and (2)], between the equilibrium and
driven rates trivially hold (approximately) in this case.

This scale-dependence of the distance from equilibrium is
a very general phenomenon. For instance, when polymeric
fluids flow, the constituent polymer-chains become stretched
into highly nonequilibrium conformations on the large scale.
But more detailed measurements of their small-scale con-
formations remain equilibrium-like up to much higher flow
rates. The system exists both near to and far from equilibrium,
depending on the scale of the properties being measured [20].

V. CONCLUSION

It remains the case that all of the quantities tested, that
are invariant in a constrained ensemble, are found to lie very
close to unity in all of the cases that we have measured in
the quasisteady states of our sheared deterministic system.
This is a nontrivial observation but not sufficient in itself
to conclude that the boundary-driven set of coupled systems
are in every way consistent with the hypothetical conditioned

ensemble of trajectories. It is unclear whether the very small
deviations from unity observed in Figs. 13 and 14 arise from a
discrepancy between the two types of ensembles, or only from
the nonideality of the microstates approximated by finite bins
in Fig. 9.

We speculate that this one-dimensional model captures
some of the essential physics of real complex fluids in
steady shear flow. In such fluids, one of the three dimensions
is assigned a special role by the imposition of a velocity
gradient, while the other two dimensions contribute only to
the complexity of the interactions. Nevertheless, it would be
interesting, in future work, to study our driven rotor model on
a higher-dimensional lattice, to observe the effects of added
dimensions perpendicular to the gradient.
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