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The concepts of weighted reciprocal of temperature and weighted thermal flux are proposed for a heat engine
operating between two heat baths and outputting mechanical work. With the aid of these two concepts, the
generalized thermodynamic fluxes and forces can be expressed in a consistent way within the framework of
irreversible thermodynamics. Then the efficiency at maximum power output for a heat engine, one of key topics
in finite-time thermodynamics, is investigated on the basis of a generic model under the tight-coupling condition.
The corresponding results have the same forms as those of low-dissipation heat engines [M. Esposito, R. Kawai,
K. Lindenberg, and C. Van den Broeck, Phys. Rev. Lett. 105, 150603 (2010)]. The mappings from two kinds of
typical heat engines, such as the low-dissipation heat engine and the Feynman ratchet, into the present generic
model are constructed. The universal efficiency at maximum power output up to the quadratic order is found to
be valid for a heat engine coupled symmetrically and tightly with two baths. The concepts of weighted reciprocal
of temperature and weighted thermal flux are also transplanted to the optimization of refrigerators.

DOI: 10.1103/PhysRevE.89.012129 PACS number(s): 05.70.Ln

I. INTRODUCTION

Entropy production rate is a crucial physical quantity
in irreversible thermodynamics [1]. This quantity can be
expressed in a canonical form that is the sum of products of
generalized thermodynamic fluxes and forces. When a system
is in contact with two heat baths, the heat absorbed from one
bath per unit time is equal to that released into another bath
per unit time if no work exchange takes place between the
system and the environment. Thus the thermodynamic flux
related to the heat transfer between two baths, which is briefly
called the thermal flux, can be taken as either the absorbed
heat or released heat per unit time within the framework of
irreversible thermodynamics [1]. However, the absorbed heat
is unequal to the released heat if the system (for example,
a heat engine or a refrigerator) outputs or inputs mechanical
work. Therefore, we face a difficult circumstance when we
construct the thermal flux for the heat engine or the refrigerator.
There exists some arbitrariness when we choose either the
absorbed heat or released heat per unit time as the thermal
flux. To eliminate this arbitrariness, Jarzynski and Mazonka [2]
intuitively suggested adopting the mean value of the absorbed
heat and released heat per unit time as the thermal flux when
they discussed a simple, discrete model of the Feynman ratchet
operating between two heat baths. This convention was also
followed by Nakagawa and Komatsu [3] when they discussed
the Feynman ratchet as a heat pump. However, there is still
a lack of a rigorous and systematic scheme to eliminate this
arbitrariness.

The other classic topic on nonequilibrium processes is
finite-time thermodynamics [4–21] which is concerned mainly
with the energy conversion efficiency for heat devices includ-
ing heat engines and refrigerators that complete thermody-
namic cycles in finite time or operate in finite net rate. The
most celebrated result in the finite-time thermodynamics is
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the efficiency at maximum power output for endoreversible
heat engines [4–6], ηCA ≡ 1 − √

1 − ηC with ηC representing
the Carnot efficiency. Interestingly, the corresponding result
was also obtained by Yan and Chen for endoreversible
refrigerators [11]. They suggested taking the product of the
coefficient of performance (COP) and the heat absorbed by
the working substance from the cold bath per unit time as
the optimization target function, which was also called the χ

criterion by de Tomás et al. in recent work [12]. The COP
at maximum χ criterion was found to be εYC ≡ √

εC + 1 − 1
for endoreversible refrigerators [11] or symmetrically low-
dissipation refrigerators [12], where εC represents the Carnot
COP for reversible refrigerators.

The relationship between irreversible thermodynamics and
finite-time thermodynamics was first realized by Van den
Broeck [17]. In an elegant investigation on the efficiency at
maximum power output for a heat engine, he adopted a generic
model shown in Fig. 1(a) and selected Q̇h, the heat absorbed
from the hot bath per unit time, as the thermal flux. Under
the assumption of local equilibrium for the heat engine such
that the effective temperature of working substance can be well
defined, he found that the efficiency at maximum power output
is ηC/2 up to the linear order for a tight-coupling heat engine
within the framework of linear irreversible thermodynamics.
In principle, one can also choose Q̇c, the heat released into
the cold bath per unit time, as the thermal flux. Although the
arbitrariness in selecting the thermal flux has no serious effect
on the major results up to the lowest order for heat engines,
this arbitrariness may lead to fatal consequences when we
consider some optimization problems for refrigerators. For
example, if we follow Van den Broeck’s procedure in Ref. [17]
and optimize refrigerators, the results of COP at maximum
χ criterion with taking Q̇c or Q̇h as the thermal flux are
quite different from each other: One approaches 0 and the
other approaches

√
2εC (which takes a large value) when the

temperatures of two baths get close to one another (see details
in Appendix A). Therefore, it is urgent for us to construct
a unified rule to select the thermal flux for a system which
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FIG. 1. (Color online) Generic model of a heat engine: (a) the
conventional version and (b) the refined version.

is coupled with two heat baths and exchanges work with the
outside.

Recent developments in finite-time thermodynamics are
focused on the higher order universality [22–30] and the
bounds [31–42] of efficiency at maximum power output
for heat engines. It seems that these two issues can hardly
be achieved within the conventional generic model shown
in Fig. 1(a). Instead of this generic model, Esposito et al.
considered a process of particle transport and verified that the
efficiency at maximum power output up to the quadratic order,
ηC/2 + η2

C/8, can be achieved for tight coupling between the
mass and energy flows and in the presence of a left-right
symmetry in the whole system [25,26]. In addition, Esposito
et al. also found the efficiency at maximum power output of
heat engines to be bounded between ηC/2 and ηC/(2 − ηC)
under the low-dissipation condition [31]. The similar issues
related to the COP at maximum χ criterion were also addressed
in Ref. [43–46]. It is quite interesting if one can reproduce
these results on the basis of the generic model or some revised
version.

The above researches raise the following questions: (1) Is
there a consistent way to express the generalized thermody-
namic fluxes and forces for a heat engine or a refrigerator
in contact with two heat baths and outputting or inputting
mechanical work within the framework of irreversible ther-
modynamics? (2) Can the universal efficiency at maximum
power output up to the quadratic order and the bounds of
efficiency at maximum power output be achieved on the basis
of the generic model of heat engine? In their previous work
[46], the present authors try to solve these two problems
by introducing the concept of weighted thermal flux for a
system coupling with two heat baths and exchanging work
with the outside under the assumption of local equilibrium.
Although this work guides a right direction, it still contains
some shortcomings. First, we have not exactly expressed the
entropy production rate in a canonical form that is the sum
of products of generalized thermodynamic fluxes and forces.
Second, the physical meaning of the weighted thermal flux
is still unclear. Third, we have not explicitly constructed the

mappings from two kinds of typical heat engines (such as the
low-dissipation heat engine [31] and the Feynman ratchet [47])
to the generic model. Fourth, as it was commented by Jarzynski
[48], the assumption of local equilibrium might be unnecessary
because the effective temperature is just a parameter in our
previous work [46].

In this work, we will overcome the above four shortcomings
by simultaneously introducing the concepts of weighted
reciprocal of temperature and weighted thermal flux. In Sec. II,
we discuss our logic for introducing the concepts of weighted
reciprocal of temperature and weighted thermal flux. With
the aid of these concepts, the generalized thermodynamic
fluxes and forces can be defined in a consistent way without
the assumption of local equilibrium for the heat engine. The
entropy production rate can be expressed in a canonical form.
The physical meanings of weighted reciprocal of temperature,
weighted thermal flux, and weighted numbers are clearly
interpreted on the basis of a refined generic model. In Sec. III,
the universal efficiency at maximum power output up to the
quadratic order and the bounds of efficiency at maximum
power output are obtained for a tight-coupling engine abiding
by a linear constitutive relation between the generalized
thermodynamic fluxes and forces. It is surprising that these
results share the same forms as those obtained by Esposito
et al. for the low-dissipation heat engine [31]. In Sec. IV we
explicitly construct the mappings from two kind of typical heat
engines including the low-dissipation heat engine [31] (as a
representative of cyclic heat engines) and the Feynman ratchet
[47] (as a representative of autonomous heat engines) into the
refined generic model. In particular, using our refined generic
model, we find that the low-dissipation heat engine is a kind of
tight-coupling engine abiding by a linear constitutive relation.
In Sec. V, we transplant the concepts of weighted reciprocal
of temperature and weighted thermal flux to the optimization
of refrigerators. Section VI contains a brief summary and
discussions.

II. GENERIC MODEL AND WEIGHTED QUANTITIES
OF HEAT ENGINE

In this section, we will introduce a generic model and the
concepts of weighted reciprocal of temperature and weighted
thermal flux for a heat engine.

A. Conventional generic model

Let us consider a generic model of heat engine shown
in Fig. 1(a). The engine absorbs heat Q̇h per unit time
from the hot bath at temperature Th and outputs power Ẇ .
Simultaneously, it releases heat Q̇c per unit time into the
cold bath at temperature Tc. For an autonomous engine, we
assume it operates in a steady state such that Q̇h, Q̇c, and
Ẇ are time-independent. For a cyclic engine, Q̇h, Q̇c, and Ẇ

represent the average heat Qh/t0 absorbed from the hot bath,
the average heat Qc/t0 released into the cold bath, and the
average work output W/t0 in each cycle, respectively, where
t0 is the period of the cycle.

The first law of thermodynamics requires

Q̇h − Q̇c = Ẇ . (1)
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Since the entropy variation of working substance is vanishing
either for a cyclic engine in the whole cycle or an autonomous
engine in the steady state, the entropy production rate σ may
be expressed as [1]

σ = βcQ̇c − βhQ̇h (2)

with βc = 1/Tc and βh = 1/Th. Here and in the following the
Boltzmann factor is set to 1.

B. Weighted reciprocal of temperature and
weighted thermal flux

Now we will try to express the entropy production rate
in a canonical form, i.e., the sum of products of generalized
thermodynamic fluxes and forces within the framework of
irreversible thermodynamics. On the one hand, Eq. (1) implies
Q̇c = Q̇h − Ẇ , from which Eq. (2) can be transformed into

σ = −βcẆ + Q̇h (βc − βh) . (3)

On the other hand, Eq. (1) implies Q̇h = Q̇c + Ẇ , from which
Eq. (2) can be transformed into

σ = −βhẆ + Q̇c (βc − βh) . (4)

Introduce two nonnegative weighted numbers sc and sh

such that sc + sh = 1. Multiply Eqs. (3) and (4) by sc and sh,
respectively. Then the sum of both products leads to

σ = −(scβc + shβh)Ẇ + (scQ̇h + shQ̇c)(βc − βh), (5)

which enlightens us to define the weighted reciprocal of
temperature

β ≡ scβc + shβh (6)

and weighted thermal flux

Jt ≡ scQ̇h + shQ̇c. (7)

The generalized force conjugated to Jt may be defined as

Xt ≡ βc − βh. (8)

The generalized thermodynamic flux and force related to the
mechanical process, which are briefly called the mechanical
flux and force, can be expressed as

Jm ≡ 1/t0 and Xm ≡ −βW, (9)

respectively, for the cyclic engine. For the autonomous engine
operating in the steady state, the power output Ẇ can be
expressed as the product of the net rate r and the elementary
work w in each mechanical step. The mechanical flux and
force may be expressed as

Jm ≡ r and Xm ≡ −βw, (10)

respectively, for the autonomous engine. The minus sign
is added in the expression of Xm because the heat engine
performs output work rather than input work.

We emphasize that the analogous form of Jm and Xm in
Eq. (9) was first adopted by Izumida et al. [36,37] for the
cyclic engine. In comparison with the previous work [17], this
kind of definition of the mechanical flux and force for the
cyclic engine has three advantages: (1) it is not necessary to
introduce the effective temperature of working substance when
we define the generalized thermodynamic force related to the

external load (briefly called the mechanical force in the present
paper). (2) The dimensions of mechanical flux and force for
cyclic engine are the same as those for autonomous engine,
respectively. (3) With the consideration of Eqs. (6)–(10), we
can exactly transform Eq. (5), the entropy production rate, into
a canonical form

σ = JmXm + JtXt . (11)

C. Physical meanings of the weighted quantities and refined
generic model of heat engine

In the above definitions of generalized thermodynamic
fluxes and forces, the assumption of local equilibrium for
the heat engine, based on which the effective temperature
of working substance is well defined, is discarded through
introducing the concept of weighted reciprocal of temperature
(6). If we still adopt the assumption of local equilibrium,
then β−1 might be regarded as an effective temperature of
working substance. It is beyond the scope of this paper to
construct an example of statistical mechanics to confirm this
interpretation. However, our following discussions are still
meaningful because we just treat β−1 as a parameter defined
by Eq. (6) rather than the effective temperature in the following
content.

In addition, from Eqs. (1) and (7), we can derive

Q̇h = Jt + shẆ , Q̇c = Jt − scẆ , (12)

from which one may revise the conventional generic model in
Fig. 1(a) into a refined version in Fig. 1(b). The engine absorbs
heat Q̇h per unit time from the hot bath, an amount of heat
shẆ will be transformed into the work output per unit time
due to the coupling between the engine and the hot bath. A
thermal flux Jt flows through the heat engine, then an amount
of heat scẆ will be transformed into the work output per unit
time due to the coupling between the engine and the cold
bath. Finally, the engine releases heat Q̇c per unit time into
the cold bath. Based on this picture, we can directly write out
the entropy production rate in canonical form (11) according
to Eq. (3.12) in the book by Prigogine [1] if we consider the
extended system including two heat baths and the engine (the
details are shown in Appendix B).

With the consideration of Eq. (9) or (10), the power output
can be expressed:

Ẇ = −β−1JmXm. (13)

Since the mechanical flux is in the liner order for small
thermodynamic force, Eq. (13) implies that the leading term
of Ẇ is a quadratic order for small thermodynamic forces. Q̇h

should at least contain the linear term since Ẇ/Q̇h � ηC → 0
for small relative temperature. Combining Eq. (12), we regard
Jt as the common leading term shared by Q̇c and Q̇h. The
parameter sc (or sh) represents the fraction of power output
occupied by the higher order term in Q̇c (or Q̇h). We argue
that sc (or sh) depends on the degree of coupling between
the engine and the cold (or hot) bath. That is, the coupling
between the working substance and the baths is significant
for finite-time heat engines while it is unimportant for the
conventional quasistatic heat engines.
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III. EFFICIENCY AT MAXIMUM POWER OUTPUT FOR A
TIGHT-COUPLING HEAT ENGINE

Maximizing the power output Ẇ in Eq. (13) with respect
to Xm for given Tc and Th, we obtain

Xm(∂Jm/∂Xm) + Jm = 0. (14)

Let us consider a tight-coupling heat engine, in which the
weighted thermal flux is proportional to the mechanical flux,
satisfying

Jt/Jm = ξ, (15)

where ξ is a quantity independent of the thermodynamic
forces. Then the efficiency η ≡ Ẇ/Q̇h is transformed into

η = −Xm/βξ

1 − shXm/βξ
(16)

with the consideration of Eqs. (12) and (13).
For simplicity, we consider a linear constitutive relation

between the thermodynamic fluxes and forces:

Jt = LttXt + LtmXm, Jm = LmtXt + LmmXm, (17)

where the Onsager coefficients satisfy Lmt = Ltm, Ltt � 0,
Lmm � 0, and LttLmm � LmtLtm. Combining tight-coupling
condition (15) with linear constitutive relation (17), we obtain

Ltt/Ltm = Lmt/Lmm = ξ. (18)

Substituting Eq. (17) into Eq. (14), we can derive the optimal
mechanical force

X∗
m = −(ξ/2)Xt (19)

with the consideration of Eq. (18). Substituting the above
equation into Eq. (16), we obtain the efficiency at maximum
power output

η∗ = ηC

2 − shηC

(20)

with the consideration of βc ≡ 1/Tc, βh ≡ 1/Th, ηC ≡ 1 −
Tc/Th, Eqs. (6) and (8). This result shares the same form as the
efficiency at maximum power output for the low-dissipation
heat engine [31] (or the stochastic heat engine [22], which can
be regarded as a special low-dissipation heat engine).

When the heat engine couples symmetrically with the cold
and the hot baths, sc = sh = 1/2, Eq. (20) is transformed
into η∗ = 2ηC/(4 − 2ηC) ≈ ηC/2 + η2

C/8 + · · · . This fact is
consistent with the universal efficiency at maximum power
output (ηC/2 + η2

C/8) up to the quadratic order for tight-
coupling heat engines in the presence of left-right symmetry
[25,26]. On the other hand, Eq. (20) implies that η∗ increases
monotonically with sh. It follows that η∗ is bounded between
the lower bound η− ≡ ηC/2 and the upper one η+ ≡ ηC/(2 −
ηC). Furthermore, the lower and upper bounds are reached
in the case of extremely asymmetric coupling. These bounds
are also shared by the low-dissipation engine and reached
in the case of extremely asymmetric dissipations [31]. These
surprising results enlighten us to investigate the relationship
between our refined generic model and the low-dissipation
engine.

IV. MAPPING TWO KINDS OF TYPICAL HEAT ENGINES
INTO OUR REFINED GENERIC MODEL

In this section, we will construct the mappings from two
kinds of typical heat engines such as the low-dissipation engine
and the Feynman ratchet into our refined generic model.

A. Low-dissipation engine

A low-dissipation engine [31] undergoes a thermodynamic
cycle consisting of two “isothermal” and two adiabatic pro-
cesses. The word “isothermal” merely indicates that the heat
engine is in contact with a heat bath at constant temperature.
In the process of “isothermal” expansion during time interval
th, the engine absorbs heat Qh from the hot bath at temperature
Th. The variation of entropy in this process is denoted as 	S.
On the contrary, in the process of “isothermal” compression
during time interval tc, the engine releases heat Qc into the cold
bath at temperature Tc. There is no heat exchange and entropy
production in two adiabatic processes. Assume that the time
for completing the adiabatic processes is negligible relative to
tc and th. So the period of the whole cycle is t0 = tc + th. The
entropy production in each “isothermal” process is assumed to
be proportional to the reciprocal of time interval for completing
that process, which is called low-dissipation assumption [31].
This assumption is quite reasonable for large enough t0.
According to this assumption, the heats Qh and Qc can be
expressed as

Qh = Th(	S − 
h/th), − Qc = Tc(−	S − 
c/tc), (21)

with two dissipation coefficients 
h and 
c, respectively.
Introducing two parameters αc ≡ tc/t0 and αh ≡ th/t0

which satisfy αc + αh = 1, we obtain Q̇h ≡ Qh/t0 = Th	S/

t0 − Th
h/αht
2
0 and Q̇c ≡ Qc/t0 = Tc	S/t0 + Tc
c/αct

2
0 .

The work output W ≡ Qh − Qc can be expressed as

W = (Th − Tc)	S − (Th
h/αh + Tc
c/αc)/t0. (22)

The weighted thermal flux (7) can be further expressed
as Jt = (scTh + shTc)	S/t0 + (shTc
c/αc − scTh
h/αh)/t2

0 .
Because Jt is regarded as the common leading term of Q̇c

and Q̇h as mentioned in Sec. II C, we require shTc
c/αc −
scTh
h/αh = 0 to keep the quadratic term vanishing. With
consideration of sc + sh = 1, the weighted parameters may be
expressed as

sh = Th
h/αh

Th
h/αh + Tc
c/αc

, sc = Tc
c/αc

Th
h/αh + Tc
c/αc

.

(23)

It is easy to see that these weighted parameters indeed reflect
the degree of coupling between the heat engine and the hot bath
or the cold one. With these weighted parameters, the weighted
reciprocal of temperature and the weighted thermal flux can
be expressed as

β = 
h/αh + 
c/αc

Th
h/αh + Tc
c/αc

(24)

and

Jt = βThTc	S/t0, (25)
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respectively. The above equation implies that the thermal flux
Jt couples tightly with the mechanical flux Jm ≡ 1/t0. In this
sense, the low-dissipation heat engine is exactly a kind of
tight-coupling heat engine.

Considering definitions (8) and (9), we derive

Jm = Xm


h/αh + 
c/αc

+ ThTc	SXt

Th
h/αh + Tc
c/αc

, (26)

from Eqs. (22) and (24). With consideration of Eqs. (17) and
(24)–(26), we obtain the Onsager coefficients

Lmm = 1


h/αh + 
c/αc

,

Lmt = Ltm = ThTc	S

Th
h/αh + Tc
c/αc

, (27)

Ltt = (
h/αh + 
c/αc)(ThTc	S)2

(Th
h/αh + Tc
c/αc)2
.

Thus the low-dissipation engine can be strictly mapped into
our refined generic model shown in Fig. 1(b) with the Onsager
coefficients and weighted parameters satisfying Eqs. (27)
and (23), respectively. Similar procedure is also available
for a tight-coupling thermoelectric generator investigated in
Ref. [49], which is shown in Appendix C.

With consideration of Eqs. (13), (18), (19), (24), and (27),
the power output after being optimized with respect to Xm can
be expressed as

Ẇ = X2
t

4

(TcTh	S)2

(Th
h/αh + Tc
c/αc)
. (28)

Since αh + αc = 1, the above expression takes maximum
when αh/αc = √

Th
h/Tc
c. Thus we can derive

sh =
√

Th
h/(
√

Th
h +
√

Tc
c) (29)

from Eq. (23). Finally, from Eq. (20) the efficiency at
maximum power output for the low-dissipation engine can
be expressed as

η∗ = ηC

2 − √
Th
hηC/(

√
Th
h + √

Tc
c)
, (30)

which is the same as the result obtained by Esposito et al. for
the low-dissipation engine [31].

B. Feynman ratchet

The Feynman ratchet [47] can be regarded as the Büttiker-
Landauer model [50,51], i.e., a Brownian particle walking in a
periodic lattice labeled by �n,(n = . . . , − 2, − 1,0,1,2, . . . )
with a fixed step size θ . The ratchet potential is schematically
depicted in Fig. 2, where the energy scale and the position
of potential barrier are, respectively, denoted by ε and θh.
The Brownian particle is in contact with a hot bath at
temperature Th in the left side of each potential barrier,
while it is in contact with a cold bath at temperature Tc in
the right side of each barrier. The particle moves against a
load z and outputs work. In the steady state and under the
overdamping condition, the forward and backward jumping
rates can be, respectively, expressed as RF = r0e−βh(ε+zθh) and
RB = r0e−βc(ε−zθc) according to the Arrhenius law [47] with

z

Th ThTc Tc

θ

θ

Θn-1 n+1nΘ Θ
h θc

FIG. 2. (Color online) Schematic digram of Feynman ratchet as
a heat engine.

βh = 1/Th, βc = 1/Tc, and θc = θ − θh. Here r0 represents
the bare rate constant with dimension of time−1.

The net rate may be defined as

r ≡ RF − RB = r0[e−βh(ε+zθh) − e−βc(ε−zθc)]. (31)

If we consider only the energy transaction due to the potential
energy, in each forward step, the particle absorbs heat qh ≡ ε +
zθh from the hot bath. After doing output work w ≡ zθ against
the external load, the remained heat qc ≡ qh − w = ε − zθc

will be released into the cold bath when the particle jumps
over the barrier. The energy conversion in each backward step
is exactly opposite of that in the forward step mentioned above.
With consideration of the net rate r , the net power output can
be expressed as

Ẇ = zθr, (32)

while the heat absorbed from the hot bath and the heat released
into the cold bath per unit time can be respectively expressed
as

Q̇h = (ε + zθh)r = εr + (θh/θ )Ẇ (33)

and

Q̇c = (ε − zθc)r = εr − (θc/θ )Ẇ . (34)

Considering the above two equations and Eq. (12), we can
straightforwardly write out the weighted thermal flux

Jt = εr (35)

and the weighted parameters

sh = θh/θ, sc = θc/θ. (36)

Obviously, the above weighted parameters reflect the asym-
metric degree of the ratchet potential in Fig. 2, which is
equivalent to the asymmetric degree of the coupling regions
between the Brownian particle and the hot bath or the cold
one.

On the other hand, according to Eq. (10), the mechanical
flux and force can be expressed as

Xm = −βzθ, Jm = r, (37)

where β and r satisfy Eqs. (6) and (31), respectively. Thus
Eqs. (35) and (37) imply that the thermal flux couples tightly
with the mechanical flux. This fact holds because we have
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merely considered the energy transaction due to the potential
energy. It might be broken if the kinetic energy cannot be
neglected [52–54]. The specific discussions on this point are
beyond the scope of our present work.

So far, the Feynman ratchet can be strictly mapped into
our generic model shown in Fig. 1(b). Under the linear
approximation, Eq. (31) can be further expressed as r =
r0e−βε(Xm + εXt ). Substituting it into Eqs. (35) and (37), and
comparing the results with Eq. (17), we can derive the Onsager
coefficients

Lmm = r0e−βε, Lmt = Ltm = r0e−βεε, Ltt = r0e−βεε2.

(38)

Therefore, the Feynman ratchet can only be mapped into
an approximately linear model with the Onsager coefficients
and weighted parameters satisfying Eqs. (38) and (36),
respectively. The direct consequence is that the universality
and bounds of efficiency at maximum power output derived
on the basis of the linear constitutive relation (17) in Sec. III
might not hold if we consider the nonlinear terms.

C. Universality of efficiency at maximum power output for heat
engines abiding by a nonlinear constitutive relation

If the constitutive relation contains nonlinear terms, the
mechanical flux for a tight-coupling engine can be formally
expressed as

Jm = Lmm(Xm + ξXt ) + CmX2
m + CtX

2
t

+CmtXmXt + O
(
X3

m,X3
t

)
. (39)

This equation is consistent with Eqs. (17) and (18) under
the linear approximation. O(X3

m,X3
t ) represents the third and

higher order terms. The coefficients Cm, Ct and Cmt of the
quadratic order terms in Eq. (39) may depend on Tc, Th, ξ , sc,
and sh.

In the case of symmetric coupling (sh = sc = 1/2), the
thermodynamic fluxes should be exactly reversed when the
thermodynamic forces are reversed; that is, Jm �→ −Jm under
the operation Xm �→ −Xm and Xt �→ −Xt , which requires
that the coefficients Cm, Ct and Cmt of the quadratic order
terms in Eq. (39) are vanishing. This fact can be confirmed if
we expand Eq. (31) up to the higher order (see Appendix D). It
can also be verified with the maser model in Ref. [25]. Through
simple calculations, we find that the quadratic order terms of
the current, Eq. (23) in Ref. [25], is indeed vanishing for the
symmetric coupling 
l = 
r .

Substituting Eq. (39) with vanishing Cm, Ct , and Cmt into
Eq. (14), we obtain the optimal mechanical force:

X∗
m = −(ξ/2)Xt + O

(
X3

t

)
. (40)

It is not hard to see that the third order term O(X3
t ) has no

effect on the quadratic term in the expression of efficiency
at maximum power output when we substitute Eq. (40) into
Eq. (16). Thus the universal efficiency at maximum power
output (ηC/2 + η2

C/8) holds exactly up to the quadratic order
when the heat engine couples symmetrically and tightly with
two baths.

V. TRANSPLANTING THE WEIGHTED RECIPROCAL OF
TEMPERATURE AND WEIGHTED THERMAL FLUX TO

THE OPTIMIZATION OF REFRIGERATORS

It is straightforward to transplant the similar procedure
to the optimization of refrigerators. All arrows in Fig. 1 are
reversed for a refrigerator. The entropy production rate can be
expressed as σ = βhQ̇h − βcQ̇c. Through simple calculations,
we find that the weighted reciprocal of temperature, the
weighted thermal flux and the mechanical flux have the same
forms as those in Sec. II, while the generalized thermal
force and mechanical force take the opposite sign for the
refrigerator. In other words, Eqs. (6)–(11) still hold except for
Xt ≡ βh − βc and Xm ≡ βW (or βw). The details are shown
in Appendix E.

The power input can be expressed as Ẇ = β−1JmXm for
the refrigerator. The heat absorbed from the cold bath can be
expressed as

Q̇c = Jt − scẆ = (ξ − scβ
−1Xm)Jm (41)

with consideration of the tight-coupling condition (15). The
COP can be further expressed as

ε ≡ Q̇c/Ẇ = ξβ/Xm − sc. (42)

Thus the target function χ ≡ εQ̇c, suggested in Refs. [11] and
[12] for the refrigerator, can be transformed into

χ = (ξ − scXm/β)2βJm/Xm. (43)

Maximizing χ with respect to Xm for given Tc and Th, we
obtain (

sc + βξ

Xm

)
Jm

Xm

+
(

sc − βξ

Xm

)
∂Jm

∂Xm

= 0. (44)

Now we consider the linear constitutive relation that
satisfies Eqs. (17) and (18). From Eq. (44), we can derive

βξ/Xm =
√

s2
c

/
4 − 2scβ/Xt − sc/2. (45)

Substituting this equation into Eq. (42), we obtain the COP at
maximum χ :

ε∗ =
√

2scεC + 9s2
c

/
4 − 3sc/2 (46)

with the consideration of Xt ≡ βh − βc, εC ≡ Tc/(Th − Tc),
and Eq. (6). Obviously, in the case of symmetric coupling,
sc = sh = 1/2, the above equation leads to

ε∗ =
√

εC + 9/16 − 3/4, (47)

whose leading term is
√

εC for small relative temperature
difference ε−1

C ≡ (Th − Tc)/Tc � 1. In addition, we can prove
that the COP at maximum χ is bounded between 0 and
(
√

8εC + 9 − 3)/2. These bounds are reached for extremely
asymmetric coupling sc = 0 and 1, respectively. It is easy to
see that these bounds are the same as those for low-dissipation
refrigerators [43].

By analogy with the discussion on the symmetrically
tight-coupling heat engine in Sec. IV C, we can also prove
that the universal COP at maximum χ , ε∗ 	 √

εC , still holds
for a symmetrically tight-coupling refrigerator abiding by a
nonlinear constitutive relation.
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VI. CONCLUSION AND DISCUSSION

In summary, we have introduced the concepts of weighted
reciprocal of temperature and weighted thermal flux for a
generic model of heat engines and recovered many key results
on the efficiency at maximum power output for heat engines.
We also transplant these concepts to a generic model of
refrigerators. The mappings from two kinds of typical heat
engines such as the low-dissipation engine and the Feynman
ratchet into our refined generic model are constructed. We find
that the universality of efficiency at maximum power output up
to the quadratic order holds for a heat engine symmetrically
and tightly coupled with two baths regardless of linear or
nonlinear constitutive relation.

Before ending this paper, we address some issues which
have not been fully touched in the main text.

(1) We emphasize that the concept of weighted thermal flux
has been introduced under the assumption of local equilibrium
in our previous work [46]. However, the entropy production
rate cannot be exactly expressed in canonical form (11). Only
within the present framework where the weighted reciprocal of
temperature and the weighted thermal flux are simultaneously
introduced, we can rigorously express the entropy production
rate in canonical form (11) and then map two kinds of
typical heat engines such as the low-dissipation engine and
the Feynman ratchet into our refined generic model.

(2) If we merely keep the thermodynamic fluxes Jm and
Jt up to the linear order, then Eq. (12) tells us that Q̇h and
Q̇c still contain quadratic terms shẆ and scẆ , respectively.
This property is similar to the minimally nonlinear model
proposed by Izumida and Okuda [37] where the minimal
nonlinear terms γhJ

2
m and γcJ

2
m are intuitively imposed. These

minimal nonlinear terms are interpreted as the inevitable
power dissipations accompanied by the finite-time motion
of the heat engines [37]. However, the nonlinear terms in
our model are mathematically strict, and they naturally enter
into the expressions of Q̇h and Q̇c. In addition, the Onsager
coefficients in Eq. (27) are slightly different from those
obtained in Ref. [37]. After a careful analysis, we find that
this distinction comes from different definitions of thermal
flux and mechanical force in these two models. The minimally
nonlinear irreversible heat engine can be mapped into our
refined generic model as shown in Appendix G.

(3) Our proof to the universality of efficiency at maximum
power output up to the quadratic order is quite different
from the procedure of Esposito et al. who adopted a general
model system of particle transport [25,26]. They found that
the universality of efficiency at maximum power output up to
the quadratic order holds for tight coupling between the mass
and energy flows and in the presence of a left-right symmetry
in the whole system. However, it is still a challenge for us to
connect our proof and theirs at the present stage.

(4) Our discussion implies that the symmetric coupling is a
sufficient condition for validating the universality of efficiency
at maximum power output up to the quadratic order. However,
it is not a necessary condition. For example, if we consider
the quasisymmetric coupling sh = 1/2 + O(ηC) where O(ηC)
represents the linear order of ηC , we can still derive η∗ =
ηC/2 + η2

C/8 + O(η3
C) from Eq. (20). In addition, as shown in

Appendix F, the efficiency at maximum power output up to the

quadratic order is still ηC/2 + η2
C/8 for the Curzon-Ahlborn

endoreversible heat engine although this engine is not a strictly
tight-coupling engine. The universality is even independent of
the symmetry of couplings between the Curzon-Ahlborn heat
engine and two heat baths. It is relative difficult for us to
find a sufficient and necessary condition for validating the
universality of efficiency at maximum power output up to the
quadratic order.

(5) We have verified that the efficiency at maximum power
output is bounded between ηC/2 and ηC/(2 − ηC) for a tight-
coupling heat engine which abides by the linear constitutive
relation. We do not know to what extend these bounds are
still valid for a tight-coupling heat engine which abides by the
nonlinear constitutive relation.

(6) Besides concerning finite-time operation, finite-time
thermodynamics also concerns friction. Bizarro et al. in-
vestigated the effect of friction on the entropy production
and efficiency of heat engines [55–57]. We note that he
also derived a form of weighted reciprocal of temperature,
which is analogous to Eq. (6), when he discussed the rate of
entropy production due to friction in the interface between
the heat engine and the heat bath. However, the weighted
parameters defined in his model and ours look quite different.
The weighted parameters in Ref. [55] represent the fraction
of frictional work dissipated into the engine (or the bath)
in the total frictional work, while the weighted parameters
in the present work represent the degree of coupling between
the engine and the cold (or hot) bath. Although we have not
found the explicit connection between these two models yet,
the similarity of weighted reciprocal of temperatures in these
two models suggests that it is possible to generalize our refined
generic model with consideration of the friction.

The above issues are very significant to both irreversible
thermodynamics and finite-time thermodynamics. We will
make efforts to overcome the difficult problems mentioned
above in future research.
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APPENDIX A: OPTIMIZATION OF REFRIGERATORS
FOLLOWING VAN DEN BROECK’S PROCEDURE

As was done by Van den Broeck [17] for heat engines, here
we consider a generic setup for a tight-coupling refrigerator.
An external force F is applied on the system and inputs a power
P = F ẋ into the system, where x is the thermodynamically
conjugate variable of F . The dot represents the derivative with
respect to time. The corresponding thermodynamic force may
be taken as X1 = F/T , where T is the temperature of the
refrigerator which can be well defined due to the assumption of
local equilibrium. The thermodynamic flux conjugated to X1 is
J1 = ẋ. Then the power input can be expressed as P = J1X1T

in terms of the mechanical flux and force.
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Let J2 and X2 ≡ 1/Th − 1/Tc denote the generalized
thermal flux and force, respectively. According to linear
irreversible thermodynamics, we write the linear constitutive
relation between the thermodynamic fluxes and forces:

J1 = L11X1 + L12X2, J2 = L21X1 + L22X2, (A1)

where the Onsager coefficients satisfy L11 � 0, L22 � 0,
L11L22 − L12L21 � 0, and L12 = L21. Furthermore, the tight-
coupling condition L2

12 = L2
21 = L11L22 leads to

J2/J1 = L12/L11. (A2)

If we take J2 ≡ Q̇c, the COP can be expressed as

ε ≡ Q̇c/P = L21/T L11X1 (A3)

with the consideration of Eq. (A2) and P = T J1X1. From
Eq. (A3) we solve X1 = L12/T L11ε. Substituting it into the
target function, we obtain

χ ≡ εQ̇c = L22(1 + T X2ε)/T . (A4)

It is easy to see that χ takes maximum when

ε∗ = 0 (A5)

due to X2 ≡ 1/Th − 1/Tc < 0.
Similarly, if we take J2 ≡ Q̇h, the COP can be expressed

as

ε ≡ Q̇c/P = L21/T L11X1 − 1 (A6)

with the consideration of P = T J1X1, Q̇c = Q̇h − P , and
Eq. (A2). From Eq. (A6) we have X1 = L12/T L11(ε + 1).
Further, the target function is transformed into

χ ≡ εQ̇c = L22ε
2[1 + T X2(ε + 1)]/T (ε + 1)2. (A7)

Maximizing χ with respect to ε (equivalently to X1), we find
that the COP at maximum χ satisfies ε∗ = √

1/4 − 2/T X2 −
3/2. For small relative temperature difference ε−1

C ≡ (Th −
Tc)/Tc � 1, we have T 	 Tc 	 Th, and then Eq. (A7) is
transformed into

ε∗ 	
√

2εC, (A8)

which is quite different from Eq. (A5) by taking J2 ≡ Q̇c.

APPENDIX B: RELATIONSHIP BETWEEN OUR PICTURE
AND PRIGOGINE’S IDEA

First, we will retype some text on pages 19–20 in Ref. [1].
[begin]We consider again a system consisting of two

closed phases, I and II, maintained respectively at uniform
temperature T I and T II. Applying formula (3.7) or (3.8) to
each phase, we have for the whole system, entropy being an
extensive variable,

dS = dSI + dSII (3.9)

We now split the heat received by each phase into two parts
(cf. 2.22)

d IQ = d I
i Q + d I

eQ, d IIQ = d II
i Q + d II

e Q (3.10)

where d I
i Q is the heat received by phase I from II, and d I

eQ

the heat supplied to phase I from the outside. Taking account

of (2.24), we have for the entropy change of the whole system

dS = d IQ

T I
+ d IIQ

T II
(3.11)

= d I
eQ

T I
+ d II

e Q

T II
+ d I

i Q

(
1

T I
− 1

T II

)
(3.12)

In agreement with (3.3) the entropy change consists of two
parts.[end]

Let us consider an extended system including two heat baths
and the engine. Let the cold bath and the hot bath, respectively,
correspond to phase I and phase II in the book by Prigogine.
There is no entropy change for the cyclic engine in each cycle
or the autonomous engine in the steady state. Thus according to
Prigogine’s Eq. (3.12) and the picture in Fig. 1(b), the entropy
change per unit time of the extended system can be expressed
in canonical form (11) provided that we use the corresponding
relations d I

i Q/dt ↔ Jt , d I
eQ/dt ↔ −scẆ , and d II

e Q/dt ↔
−shẆ , where the minus signs represent the energy outflow
from each phase since the physical quantities Q̇c, Q̇h, and Ẇ

take their absolute values in the present work.

APPENDIX C: MAPPING A THERMOELECTRIC
GENERATOR INTO OUR REFINED GENERIC MODEL

Apertet et al. investigated an autonomous thermoelectric
generator in recent work [49]. Assume that N electrons flow
through the generator during time interval τ . According to
Eq. (19) in their work [49], the heat absorbed from the hot bath
or released into the cold bath per unit time can be expressed as

Q̇h = αThNe/τ − γRN2e2/τ 2,

Q̇c = αTcNe/τ + (1 − γ )RN2e2/τ 2,
(C1)

respectively, where α is the Seebeck coefficient. The symbols
R and e represent the electric resistance of the generator and
the elementary electric charge, respectively. The power output
may be expressed as

Ẇ ≡ Q̇h − Q̇c = αNe

τ
(Th − Tc) − RN2e2

τ 2
. (C2)

From Eq. (7) the weighted thermal flux can be further ex-
pressed as Jt = (scTh + shTc)αNe/τ + (sh − γ )RN2e2/τ 2.
To keep the leading term, we require sh − γ = 0. With
the consideration of sh + sc = 1, we obtain the weighted
parameters:

sh = γ, sc = 1 − γ. (C3)

Then the weighted reciprocal of temperature and the weighted
thermal flux can be expressed as

β = γ Tc + (1 − γ )Th

TcTh

(C4)

and

Jt = αNeβTcTh

τ
, (C5)

respectively. Obviously, the thermal flux Jt couples tightly
with the “mechanical” flux Jm ≡ 1/τ . With consideration of
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definitions (8) and (9), we derive

Jm = TcTh

[γ Tc + (1 − γ )Th]RN2e2
Xm + αTcTh

RNe
Xt (C6)

from Eqs. (C2) and (C4). Using Eqs. (17) and (C4)–(C6), we
obtain the Onsager coefficients

Lmm = TcTh

[γ Tc + (1 − γ )Th]RN2e2
,

Lmt = Ltm = αThTc/RNe, (C7)

Ltt = α2TcTh[γ Tc + (1 − γ )Th]

R
.

Thus thermoelectric generator mentioned above can be
strictly mapped into our refined generic model. We should
emphasize that the tight-coupling condition can be broken
when the thermoelectric generator is put in a magnetic field
[49,58,59]. In this case, we need to revise our discussion in
Sec. III.

APPENDIX D: EXPANSION OF MECHANICAL FLUX UP
TO THE HIGHER ORDER FOR THE FEYNMAN RATCHET

Let us continue to expand the net rate for the Feynman
ratchet up to the higher order terms. First, the net rate (31) can
be transformed into

r = r0e−βc(ε−zθc)[e(βc−βh)ε−z(βcθc+βhθh) − 1], (D1)

which can be further transformed into

r = r0e−βεe−[shεXt+scXm+β−1shscXtXm][e(Xm+εXt ) − 1] (D2)

with the consideration of Eqs. (6), (8), (36), and (37).
With consideration of Eq. (37), the mechanical force may

be expressed as

Jm = r0e
−βε

[
Xm + εXt + (sh/2 − sc/2)

(
X2

m − ε2X2
t

)]
+O

(
X3

m,X3
t

)
. (D3)

For symmetric coupling, sh = sc = 1/2, the quadratic order
terms in above equation are vanishing.

Substituting Eq. (D3) into Eq. (14), we obtain the optimal
mechanical force:

X∗
m = −ε

2
Xt + sh − sc

16
ε2X2

t + O
(
X3

t

)
. (D4)

Substituting the above equation into Eq. (16) with ξ = ε, we
obtain the efficiency at maximum power output:

η∗ = ηC

2 − shηC + (sh − sc)βεηC/4
+ O

(
η3

C

)

= ηC

2
+

[
1

8
+ (sh − sc)(2 − βε)

16

]
η2

C + O
(
η3

C

)
. (D5)

Obviously, when sh = sc = 1/2 for the symmetric coupling,
η∗ degenerates into the universal efficiency at maximum power
output (ηC/2 + η2

C/8) up to the quadratic order.

APPENDIX E: THERMODYNAMIC FLUXES AND FORCES
FOR A REFRIGERATOR

A refrigerator can be described as a generic model which
is similar to Fig. 1 with all arrows being reversed. For a cyclic

refrigerator in each cycle or an autonomous refrigerator in the
steady state, the entropy production rate σ may be expressed
as

σ = βhQ̇h − βcQ̇c. (E1)

With consideration of energy conservation (1), the above
equation can be transformed into

σ = βcẆ + Q̇h (βh − βc) (E2)

or

σ = βhẆ + Q̇c (βh − βc) . (E3)

Introducing weighted parameters sc and sh, the above two
equations can be transformed into

σ = (scβc + shβh)Ẇ + (scQ̇h + shQ̇c)(βh − βc), (E4)

which enlightens us to define weighted reciprocal of temper-
ature (6) and weighted thermal flux (7). The thermal force
conjugated to Jt may be defined as

Xt ≡ βh − βc. (E5)

The mechanical flux and force for the cyclic refrigerator can
be expressed as

Jm ≡ 1/t0 and Xm ≡ βW, (E6)

respectively. For the autonomous refrigerator operating in the
steady state, the mechanical flux and force may be expressed
as

Jm ≡ r, and Xm ≡ βw, (E7)

respectively. Note that the signs of generalized thermodynamic
forces Xm and Xt for the refrigerator are exactly opposite of
those for the heat engine.

Finally, the entropy production rate, Eq. (E4), can be written
in canonical form (11) with consideration of Eqs. (6), (7), and
(E5)–(E7).

APPENDIX F: CURZON-AHLBORN ENDOREVERSIBLE
HEAT ENGINE: QUASI-TIGHT-COUPLING ENGINE

The Curzon-Ahlborn heat engine [6] undergoes a Carnot-
like cycle consisting of two isothermal processes and two
adiabatic processes. In the isothermal expansion process, the
working substance is in contact with a hot bath at temperature
Th and absorbs heat Qh from that bath during time interval th.
The effective temperature of the work substance is assumed to
be The (The < Th). The variation of entropy in this process is
assumed to be 	S. In the isothermal compression process, the
working substance is in contact with a cold bath at temperature
Tc and releases heat Qc to that bath during time interval tc.
The effective temperature of the work substance is assumed
to be Tce (Tce > Tc). In two adiabatic processes, both the heat
exchange and the variation of entropy are vanishing. Assuming
the time for completing two adiabatic processes is negligible
relative to tc and th. Thus the total time for completing the
whole cycle can be written as t0 = th + tc.

Because the working substance and the heat baths have
different temperatures during the isothermal processes, the
heat transfers may be expressed as

Qh = κhth(Th − The), Qc = κctc(Tce − Tc), (F1)
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where κh and κc are the heat conductivities. In Ref. [35],
Wang and one of the present authors have proved that the
endoreversible assumption proposed by Curzon-Ahlborn [6]
may be expressed as

	S = Qh/The = Qc/Tce. (F2)

Introducing two parameters γh ≡ κhth/t0 and γc ≡ κctc/t0, we
can derive

Qh = Th	S

1 + 	S/γht0
, Qc = Tc	S

1 − 	S/γct0
(F3)

from Eqs. (F1) and (F2).
With consideration of Q̇h = Qh/t0, Q̇c = Qc/t0, and

Jm ≡ 1/t0, we derive the weighted thermal flux Jt ≡ scQ̇h +
shQ̇c = (scTh + shTc)	SJm + (−scTh/γh + shTc/γc)
(	SJm)2 + (scTh/γ

2
h + shTc/γ

2
c )(	SJm)3 + O(	SJm)4. Ac-

cording to the quadratic order term of Jt is zero as explained
in Secs. II C and IV A, we require shTc/γc − scTh/γh = 0.
With consideration of sh + sc = 1, we obtain the weighted
parameters

sh = Thγc

Thγc + Tcγh

, sc = Tcγh

Thγc + Tcγh

. (F4)

Then the weighted reciprocal of temperature β and the
weighted thermal flux Jt can be further expressed as

β = γh + γc

Thγc + Tcγh

(F5)

and

Jt = ξJm + ξ3J
3
m + O

(
J 4

m

)
(F6)

with ξ = TcThβ	S and ξ3 = TcThβ	S3/γcγh. If we neglect
the higher order terms beyond the third order, the thermal
flux Jt is tight-coupled with the mechanical flux Jm. With
consideration of the higher order terms, Jt is merely quasi-
tight-coupled with Jm, In this sense, the Curzon-Ahlborn heat
engine is called a quasi-tight-coupling engine.

From Eqs.(12), (13), and (F6), we obtain the efficiency of
the heat engine:

η = Ẇ

Jt + shẆ
= −XmJmβ−1/Jt

1 − shXmJmβ−1/Jt

= −Xmβ−1/ξ[
1 + ξ3J 2

m

/
ξ + O

(
J 3

m

)] − shXmβ−1/ξ

= −Xmβ−1/ξ

1 − shXmβ−1/ξ
+ O(Xmβ−1/ξ )3. (F7)

Considering Eqs. (1), (8), (9), and (F3) with Jm ≡ 1/t0, we
have

Xm ≡ − βW = −β(Qh − Qc)

= − (Th − Tc)β	S + (Th/γh + Tc/γc)β	S2Jm

− (
Th/γ

2
h − Tc

/
γ 2

c

)
β	S3J 2

m + O
(
J 3

m

)
, (F8)

from which we solve

Jm = γcγh

(γc + γh)	S2

[
Xm + ξXt + sh − sc

	S
(Xm + ξXt )

2

]

+O
(
X3

m,X3
t

)
, (F9)

with ξ = TcThβ	S. Substituting the above equation into
Eq. (14) and considering TcThβ

2 = 1 + O(Xt ), we can derive
the optimal mechanical force

X∗
m = −ξ

2
Xt + ξ (sh − sc)

8β
X2

t + O
(
X3

t

)
. (F10)

Finally, substituting the above equation into Eq. (F7), we can
obtain the efficiency at maximum power output

η∗ = ηC

2 − ηC/2
+ O

(
η3

C

)

= ηC

2
+ η2

C

8
+ O

(
η3

C

)
, (F11)

with consideration of Eq. (8) and ηC ≡ 1 − Tc/Th. It is
surprising that, up to the quadratic order, the efficiency at
maximum power output for the Curzon-Ahlborn heat engine
is independent of the symmetry of couplings between the heat
engine and two baths.

APPENDIX G: MAPPING MINIMALLY NONLINEAR
IRREVERSIBLE HEAT ENGINE INTO OUR REFINED

GENERIC MODEL

First, we will briefly introduce the minimally nonlinear
irreversible model of heat engine [37]. The minimally nonlin-
ear irreversible heat engine can be applied to both steady-state
and cyclic heat engines. The thermal flux and thermal force are
defined as J2 ≡ Q̇h and X2 ≡ 1/Tc − 1/Th, where Tc (or Th)
denotes the temperature of the cold bath (or hot bath). Qh is the
heat absorbed from the hot bath by the working substance. The
mechanical flux and mechanical force are defined as J1 ≡ ẋ

and X1 ≡ −F/Tc for steady-state heat engines (or J1 ≡ 1/t0
and X1 ≡ −W/Tc for cyclic heat engines). The dot denotes
derivative with respect to time, and t0 is the time interval to
complete the cycle. Then the relations between flux and force
can be described by extended Onsager relations

J1 = L11X1 + L12X2, J2 = L21X1 + L22X2 − γhJ
2
1 ,

(G1)

where L11 � 0,L11L22 − L12L21 � 0 and L12 = L21 still
satisfied. γh is assumed to be a positive constant.

With consideration of tight-coupling condition Eq. (15), the
second terms of Eqs. (14) and (15) in Ref. [37] are vanishing.
Thus, the absolute value of heat absorbed from the hot bath
and released to the cold bath can be expressed as

Q̇h = L21

L11
J1 − γhJ

2
1 , Q̇c = L21Tc

L11Th

J1 + γcJ
2
1 , (G2)

respectively, where γc ≡ Tc

L11
− γh > 0.

Now, we will construct the mapping from minimally non-
linear irreversible heat engine into our refined generic model.
The weighted thermal flux (7) can be further expressed as
Jt = L21

L11
(sc + sh

Tc

Th
)J1 + (shγc − scγh)J 2

1 . To keep the leading
term, we require shTc/L11 − γc = 0. With consideration of
sc + sh = 1, the weighted parameters may be expressed as

sh = γh

γc + γh

, sc = γc

γc + γh

. (G3)
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With these parameters, the weighted reciprocal of temperature
and the weighted thermal flux can be expressed as

β = γh/Th + γc/Tc

γc + γh

(G4)

and

Jt = L21

L11

γcTh + γhTc

Th(γc + γh)
J1 = L21

L11
TcβJ1. (G5)

Further more, from Eq. (G4) we can derive the relationship
between Xm in refined generic model and X1 in minimally
nonlinear irreversible heat engine

Xm = βTcX1 = γcTh + γhTc

Th(γc + γh)
X1, (G6)

with consideration of Eq. (9). Thus, when we adopt the
mapping rules as Xm = βTcX1, Xt = X2, Jm = J1 and Jt =
L21βTcJ1/L11, the relationship shown in Eq. (G1) can be
transformed into Eq. (17) with the Onsager coefficients
satisfying

Lmm = Th(γc + γh)

γcTh + γhTc

L11,

Lmt = Ltm = L12 = L21, (G7)

Ltt = γcTh + γhTc

Th(γc + γh)
L22.

Thus, the tight-coupling minimally nonlinear irreversible heat
engine can be strictly mapped into refined generic model of
heat engine.

[1] I. Prigogine, Introduction to Thermodynamics of Irreversible
Processes, 3rd ed. (Interscience, New York, 1961).

[2] C. Jarzynski and O. Mazonka, Phys. Rev. E 59, 6448
(1999).

[3] N. Nakagawa and T. Komatsu, Europhys. Lett. 75, 22
(2006).

[4] P. Chambadal, Les Centrales Nuclaires (Armand Colin, Paris,
1957).

[5] I. I. Novikov, Sov. J. Atomic Energy 3, 1269 (1957).
[6] F. L. Curzon and B. Ahlborn, Am. J. Phys. 43, 22 (1975).
[7] A. De Vos, Am. J. Phys. 53, 570 (1985).
[8] L. Chen and Z. Yan, J. Chem. Phys. 90, 3740 (1989).
[9] J. Chen, J. Phys. D: Appl. Phys. 27, 1144 (1994).

[10] A. Bejan, J. Appl. Phys. 79, 1191 (1996).
[11] Z. Yan and J. Chen, J. Phys. D: Appl. Phys. 23, 136

(1990).
[12] C. de Tomás, A. Calvo Hernández and J. M. M. Roco, Phys.

Rev. E 85, 010104(R) (2012).
[13] L. Chen, F. Sun, and W. Chen, Energy 20, 1049 (1995).
[14] S. Velasco, J. M. M. Roco, A. Medina, and A. Calvo Hernández,

Phys. Rev. Lett. 78, 3241 (1997).
[15] J. Chen and Z. Yan, J. Appl. Phys. 84, 1791 (1998).
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