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Jarzynski equality and related fluctuation theorems can be formulated for various setups. Such an equality was
recently derived for nonunitary quantum evolutions described by unital quantum operations, i.e., for completely
positive, trace-preserving maps, which preserve the maximally mixed state. We analyze here a more general case
of arbitrary quantum operations on finite systems and derive the corresponding form of the Jarzynski equality. It
contains a correction term due to nonunitality of the quantum map. Bounds for the relative size of this correction
term are established and they are applied for exemplary systems subjected to quantum channels acting on a
finite-dimensional Hilbert space.
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I. INTRODUCTION

Recent theoretical and experimental advances in dealing
with small quantum systems has led to a growing interest in
their mechanics and thermodynamics [1]. A certain amount
of progress has been connected with studies of the Jarzynski
equality [2] and related fluctuation theorems [3–6]. Recent
attention is mainly focused on the quantum version of these
results. Quantum analogs of the Jarzynski equality were first
studied by Kurchan [7] and Tasaki [8]. Since then various
topics connected with the fluctuation relations and the range
of their validity and applicability were investigated.

There exist many ways to approach the Jarzynski equality
[9–17]. Most of them are based on a dynamical description
within an infinitesimal time scale. Making use of the per-
turbation approach, the author of Ref. [6] analyzed quantum
fluctuation and work-energy theorems that focus on the time-
reversal symmetry. We will advocate here a different approach
applicable for systems which can be described by discrete
quantum operations.

The formalism of quantum operations is one of the basic
tools in studying dynamics of open quantum systems [18,19].
Fluctuation theorems for open quantum systems were recently
considered in Refs. [20–24]. In particular, some results have
been shown to be valid in the case of unital quantum operations,
while the general case of quantum systems with time evolution
described by nonunital stochastic maps remained not fully
understood.

The main goal of this study is to relax the assumption of
unitality and to generalize previous results for the entire class
of stochastic maps, also called quantum channels. Another
task of the work is to introduce a model discrete quantum
dynamics acting on an N -dimensional system, which forms
a useful generalization of the amplitude damping channel
acting on a two-level system. This nonunital map channel
and its extensions describe effects of energy loss in quantum
systems due to an interaction with an environment [18,19].
Investigation of possible effects due to deviations from
unitality of the map become relevant in the context of possible
experimental tests of quantum fluctuation theorems.

Experimental study of fluctuation relations is easier in the
classical regime [5]. Original formulations of the Jarzynski
equality and the Crooks theorem were tested in experiments

[25–29]. On the other hand, experimental investigation of
quantum fluctuation relations is still forthcoming, although
some possible experimental schemes were already discussed
[30–33]. Existing proposals often deal with a single particle
undergoing a unitary time evolution. Furthermore, current
efforts to construct devices able to process quantum informa-
tion might offer new possibilities to test quantum fluctuation
relations. Notably, quantum systems are very sensitive to
interaction with an environment. In this regard, fluctuations in
systems with an arbitrary form of quantum evolution deserve
theoretical analysis. Therefore, we do not focus our attention
on a specific class of unital channels, but we study the most
general form of arbitrary quantum operations.

The original formulations of the Jarzynski equality and
the Tasaki-Crooks fluctuation theorem remain valid under the
assumption that changes of the system state are represented by
a unital quantum operation [22,23]. Attention to bistochastic
maps is natural, when we deal with the Tasaki-Crooks
fluctuation theorem. Indeed, its formulation involves both the
forward quantum channel and its adjoint. If the latter channel
preserves the trace, then the former one is necessarily unital.

Meantime, nonunital quantum channels are of interest in
various respects. In this work we provide a formulation of
the Jarzynski equality for arbitrary quantum operations. The
contribution of our paper is twofold. First, we formulate
a generalization of the Jarzynski equality for a nonunital
quantum channel. Second, we investigate the problem for
which the standard Jarzynski equality remains valid nonunital
quantum channels.

This paper is organized as follows. In Sec. II, we introduce
basic definitions and recall relevant results. The special case of
unital channels and bistochastic maps is analyzed in Sec. III.
In Sec. IV, we characterize nonunitality of an arbitrary
quantum stochastic map while in Sec. V we generalize
the corresponding Jarzynski equality for this class of maps
and derive Eq. (43)—a key result of the paper. Several
examples of nonunital quantum channels acting on two- and
three-level systems are analyzed in Sec. VI. We investigate
also a general model of nonunitary dynamics described
in an arbitrary finite-dimensional Hilbert space which can
be considered a generalization of the amplitude damping
channel.
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II. DEFINITIONS AND NOTATION

Let L(H) denote the space of linear operators on N -
dimensional Hilbert space H. By Ls.a.(H) and L+(H), we
respectively mean the real space of Hermitian operators and
the set of positive ones. For arbitrary Â,B̂ ∈ L(H), we define
their Hilbert-Schmidt inner product by [34]

〈Â ,B̂〉hs := Tr(Â†B̂). (1)

This product induces the norm ‖Â‖2 = 〈Â ,Â〉1/2
hs . For any

Â ∈ L(H), we put |Â| ∈ L+(H) as a unique positive square
root of Â†Â. The eigenvalues of |Â| counted with multiplicities
are the singular values of Â, written sj (Â). For all real p � 1,
the Schatten p norm is defined as [34]

‖Â‖p := (Tr(|Â|p))1/p =
⎛
⎝ N∑

j=1

sj (Â)p

⎞
⎠

1/p

. (2)

This family includes the trace norm ‖Â‖1 = Tr|Â| for
p = 1, the Hilbert-Schmidt (or Frobenius) norm ‖Â‖2 =
(Tr(Â†Â))1/2 for p = 2, and the spectral norm ‖Â‖∞ =
max{sj (Â) : 1 � j � N} for p = ∞. For all q > p � 1, we
have

‖Â‖q � ‖Â‖p. (3)

This relation is actually a consequence of theorem 19 of the
classical book of Hardy, Littlewood, and Polya [35].

For any state of the N -level system we are going to use
the Bloch-vector representation, as it might be linked to
experimental data [36]. By λ̂j ∈ Ls.a.(H), j = 1,2, . . . ,N2 −
1, we denote the generators of SU(N ) which satisfy Tr(λ̂j ) = 0
and

Tr(λ̂i λ̂j ) = 2δij . (4)

The factor 2 in Eq. (4) is rather traditional and may be chosen
differently. Each traceless operator X̂ ∈ Ls.a.(H) can be then
represented in terms of its Bloch vector as [19,36]

X̂ = 1

2

N2−1∑
j=1

τj λ̂j , τj = Tr(X̂λ̂j ). (5)

Thus, we represent a traceless Hermitian X̂ by means of
the corresponding (N2 − 1)-dimensional real vector τ =
(τ1,τ2, . . . ,τN2−1). For the case N = 2, the generators are
the standard Pauli matrices σ̂j , where j = 1,2,3. In the case
N = 3, the eight Gell-Mann matrices are commonly used.
In N -dimensional space H, the completely mixed state is
expressed as

ρ̂∗ = 1

N
1, (6)

where 1 is the identity operator on H. For a given density
matrix ρ̂, the operator ρ̂ − ρ̂∗ is traceless, whence a Bloch
representation of ρ̂ follows Refs. [19,36].

Let us consider a linear map � : L(HA) → L(HB) that
takes elements of L(HA) to elements of L(HB). This map
is called positive if �(Â) ∈ L+(HB) whenever Â ∈ L+(HA)
[37]. To describe physical processes, linear maps have to
be completely positive [18,19]. Let idR be the identity map

on L(HR), where the space HR is assigned to a reference
system. The complete positivity implies that the map � ⊗ idR

is positive for any dimension of the auxiliary space HR .
The authors of Ref. [38] examined an important question,
whether the dynamics of open quantum systems is always
linear. Further, we will consider only completely positive linear
maps. A completely positive map � can be written by an
operator-sum representation,

�(Â) =
∑

n

K̂nÂK̂†
n. (7)

Here, the Kraus operators K̂n map the input space HA to
the output space HB . When physical process is closed and
the probability is conserved, the map preserves the trace,
Tr(�(Â)) = Tr(Â). This relation satisfied for all Â ∈ L(HA) is
equivalent to the following constraint for the set of the Kraus
operators: ∑

n

K̂†
nK̂n = 1A. (8)

Here 1A denotes the identity operator on the input space HA.
By the cyclic property and the linearity of the trace, formula (8)
implies Tr(�(Â)) = Tr(Â) for all Â ∈ L(HA). To each linear
map � : L(HA) → L(HB), one assigns its adjoint map, �† :
L(HB) → L(HA). For all Â ∈ L(HA) and B̂ ∈ L(HB), the
adjoint map is defined by [34]

〈�(Â),B̂〉hs = 〈Â ,�†(B̂)〉hs. (9)

For a completely positive map (7), its adjoint is written as
�†(B̂) = ∑

n K̂
†
nB̂K̂n. If this adjoint is trace preserving, the

Kraus operators of Eq. (7) satisfy the condition∑
n

K̂nK̂
†
n = 1B. (10)

In other words, we have �(1A) = 1B . In this case, the map is
said to be unital [37]. If a quantum map is completely positive
and the Kraus operators satisfy properties (8) and (10) the map
is called bistochastic [19], as it can be considered as an analog
to the standard bistochastic matrix, which acts in the space of
probability vectors. A quantum map � can be characterized
using the norm

‖�‖ := sup{‖�(Â)‖∞ : ‖Â‖∞ = 1}. (11)

Let us quote here one of useful results concerning the norm of
a map. If a map � is positive, then

‖�‖ = ‖�(1)‖∞, (12)

see Bhatia [37], item 2.3.8. In terms of the completely mixed
state (6), we have ‖�‖ = N ‖�(ρ̂∗)‖∞.

The Jamiołkowski isomorphism [39] leads to another
convenient description of completely positive maps. We recall
its formulation for the symmetric case if both dimensions are
equal, HA = HB = H. The principal system A is extended by
an auxiliary reference system R of the same dimension N . Let
{|n〉} be an orthonormal basis in H. Making use of this basis in
both subspaces, we define a maximally entangled normalized
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pure state,

|φ+〉 := 1√
N

N∑
n=1

|n〉 ⊗ |n〉. (13)

For any linear map � : L(H) → L(H), we assign an operator

η̂(�) := � ⊗ idR(|φ+〉〈φ+|), (14)

which acts on the extended space H ⊗ H. The matrix D̂(�) =
N η̂(�) is usually called dynamical matrix or Choi matrix [40].
For any X̂ ∈ L(H), the action of the map � can be recovered
from D̂(�) by means of the relation [34]

�(X̂) = TrR(D̂(�)(1 ⊗ X̂T )), (15)

in which X̂T is the transpose operator to X̂. The complete
positivity of � is equivalent to the positivity of the dynamical
matrix D̂(�). The map � preserves the trace if and only if its
dynamical matrix satisfies [34]

TrA(D̂(�)) = 1. (16)

In a shortened notation, we will write the dynamical matrix
and the rescaled one as D̂� and η̂�, respectively. Substituting
the completely mixed state ρ̂∗ = 1/N into Eq. (15), we obtain

�(ρ̂∗) = TrR(η̂�). (17)

In the subsequent section we will examine a nonunitality
operator, closely related with the partial trace (17).

III. JARZYNSKI EQUALITY FOR BISTOCHASTIC MAPS

We will consider the case in which a thermostatted system
is operated by an external agent. It is assumed that this
agent acts according to a specified protocol. Hence, the
Hamiltonian of the system is time dependent. To formulate
the Jarzynski equality, a special kind of averaging procedure
is required [8,41]. Initially, we describe this procedure for
arbitrary two Hermitian operators. Let us consider operators
Â ∈ Ls.a.(HA) and B̂ ∈ Ls.a.(HB). In terms of the eigenvalues
and the corresponding eigenstates, spectral decompositions are
expressed as

Â =
∑

i

ai |ai〉〈ai |, (18)

B̂ =
∑

j

bj |bj 〉〈bj |. (19)

The eigenvalues in both decompositions are assumed to be
taken according to their multiplicity. In this regard, we treat ai

and bj as the labels for vectors of the orthonormal bases {|ai〉}
and {|bj 〉}. Let evolution of the system in time be represented
by a quantum channel �. If the input state is described by an
eigenstate |ai〉, then the output of the channel is �(|ai〉〈ai |).
Suppose that we measure the observable B̂ in this output state.
The outcome bj occurs with the probability

p(bj |ai) = 〈bj |�(|ai〉〈ai |)|bj 〉. (20)

This quantity can also be interpreted as the conditional
probability of the outcome bj given that the input state is

|ai〉. The trace-preserving condition implies that∑
j

p(bj |ai) = Tr(�(|ai〉〈ai |)) = 1. (21)

The standard requirement on conditional probabilities is thus
satisfied for any quantum channel. Furthermore, we suppose
that the input density matrix ρ̂A has the form

ρ̂A =
∑

i

p(ai)|ai〉〈ai |, (22)

where
∑

i p(ai) = 1. According to Bayes’s rule, one defines
the joint probability distribution with elements

p(ai,bj ) = p(ai) p(bj |ai). (23)

This is the probability that we find the system in the i-th
eigenstate of Â at the input and in the j -th eigenstate of B̂

at the output. Let f (a,b) be a function of two eigenvalues.
Following Ref. [8], we define the corresponding average

〈〈f (a,b)〉〉 :=
∑
ij

p(ai,bj ) f (ai,bj ). (24)

Double angular brackets in the left-hand side denote the
averaging over the ensemble of possible pairs of measurement
outcomes. A pair of single angular brackets denotes an
expectation value of an observable Â in a state ρ̂, in consistence
with the standard notation common in quantum theory, 〈Â〉 =
Tr(ρ̂Â). More general forms of the described scenario were
considered in Refs. [20,22].

The Jarzynski equality relates an averaged work with the
difference between the equilibrium free energies. Since the
notion of work pertains to a process, it cannot be represented
as a quantum observable [5,42]. A more detailed discussion
of the notion of work in the context of quantum fluctuation
theorems was recently provided by Van Vliet [6].

In any case, the energy can be measured twice, at the initial
and the final moments. The difference between outcomes of
these two measurements describes the work performed on the
system in a particular realization [42]. Therefore, the averaging
of the form (24) is used with respect to two Hermitian
operators: the initial and the final Hamiltonians Ĥ0 and Ĥ1.

Fluctuation theorems are usually obtained under the as-
sumption that the work is determined by projective mea-
surements at the beginning and the end of each run of the
protocol. In several cases one applies, however, much broader
classes of quantum measurements. Recently Venkatesh et al.
[43] analyzed fluctuation theorems for protocols in which
generalized quantum measurements are used.

In this paper we discuss the most general case of a discrete
nonunitary dynamics and consider arbitrary measurements
which are error-free in the following sense: With each outcome
of a generalized measurement, we can uniquely identify the
corresponding eigenstate of an actual Hamiltonian [43].

The system under investigation is initially prepared in the
state of the thermal equilibrium with a heat reservoir. It is
convenient to denote the inverse temperatures of the reservoir
at the beginning and at the end of the protocol, by β0 and β1,
respectively. In principle, these two temperatures may differ,
but in the following we will eventually discuss the case in
which both temperatures are equal. The initial density matrix
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reads

ω̂0(β0) = Z0(β0)−1 exp(−β0Ĥ0), (25)

where Z0(β0) = Tr(exp(−β0Ĥ0)) is the corresponding parti-
tion function. We further suppose that the transformation of
states of the system is represented by a quantum channel �,
which maps the set of density matrices of size N onto itself.
In general, the final density matrix �(ω̂0(β0)) differs from the
matrix

ω̂1(β1) = Z1(β1)−1 exp(−β1Ĥ1), (26)

corresponding to the equilibrium at the final moment. Here, the
partition function Z1(β1) = Tr(exp(−β1Ĥ1)) corresponds to
the state of the thermal equilibrium with the final Hamiltonian
Ĥ1.

Eigenvalues of the Hamiltonians Ĥ0 and Ĥ1 will be denoted
by {ε(0)

m } and {ε(1)
n }, respectively. Let channel � be unital. Using

notation (24) for a function of two eigenvalues, we then obtain

〈〈exp(β0ε
(0) − β1ε

(1))〉〉
≡

∑
mn

p
(
ε(0)
m ,ε(1)

n

)
exp

(
β0ε

(0)
m − β1ε

(1)
n

)

= Z1(β1)

Z0(β0)
. (27)

This result was recently derived in Ref. [23] and earlier
by Tasaki [8] under a weaker assumption of a unitary
evolution. Formula (27) directly leads to the Jarzynski equality
formulated for unital quantum channels.

In the approach considered the term Wnm = ε(1)
n − ε(0)

m is
naturally identified with the external work performed on the
principal system during the process [8,24]. In the case β0 =
β1 = β, formula (27) gives

〈〈exp(−βW )〉〉 = exp(−βF ), (28)

where the equilibrium free energies read F0,1(β) =
−β−1 ln Z0,1(β). Expression (28) relates, on average, the
nonequilibrium external work with the difference between the
equilibrium free energies, F = F1 − F0. Thus the above
statement can be interpreted as a version of the original
Jarzynski equality [2,9], which holds for an arbitrary unital
quantum channel.

Some other approaches to obtaining the quantum Jarzynski
equality were recently considered by Vedral [20] and Albash
et al. [22]. Furthermore, formula (28) was derived in [23]
directly from Eq. (27) for any bistochastic channel. In the
following we shall relax the unitality condition and generalize
this reasoning for nonunital quantum maps.

IV. NONUNITALITY OBSERVABLE

In this section, we introduce a notion useful to analyze
the Jarzynski equality for quantum stochastic maps. In order
to characterize deviation from unitality, we are going to
use the following operator. For any trace-preserving map
� : L(HA) → L(HB), one assigns a traceless operator

Ĝ� := �(ρ̂∗A) − ρ̂∗B, (29)

where ρ̂∗A = 1A/NA and ρ̂∗B = 1B/NB . This operator is
Hermitian, i.e., Ĝ� ∈ Ls.a.(HB), whenever the map � is

Hermiticity preserving. Let us derive a useful statement about
the above nonunitality operator. For given two operators
Â ∈ Ls.a.(HA), B̂ ∈ Ls.a.(HB) and real parameters α, β, we
introduce the density matrices

�̂A(α) := Tr(exp(−αÂ))−1 exp(−αÂ), (30)

�̂B(β) := Tr(exp(−βB̂))−1 exp(−βB̂). (31)

Functional forms of such a kind pertain to equilibrium in the
Gibbs canonical ensemble. We will consider average of the
type (24) with respect to the density matrices (30) and (31)
at the input and output, respectively. The following statement
holds true.

Proposition 1. Let Â ∈ Ls.a.(HA), B̂ ∈ Ls.a.(HB), and let α
and β be real numbers. If the input state is described by density
matrix (30), then the average defined in Eq. (24) reads

〈〈exp(αa − βb)〉〉

= NATr(exp(−βB̂))

NBTr(exp(−αÂ))
(1 + NBTr(�̂B(β)Ĝ�)). (32)

Proof. Using the linearity of the map � and Eq. (29), we
obtain∑

i

p(bj |ai) = 〈bj |
∑

i

�(|ai〉〈ai |)|bj 〉

= NA〈bj |�(ρ̂∗A)|bj 〉 = NA

NB

+ NA〈bj |Ĝ�|bj 〉.
(33)

Taking p(ai) = Tr(exp(−αÂ))−1 exp(−αai) in Eq. (23) and
using Eq. (33), we represent the left-hand side of Eq. (32) in
the form∑

ij

exp(−αai)

Tr(exp(−αÂ))
p(bj |ai) exp(αai − βbj )

= NA

NBTr(exp(−αÂ))

∑
j

exp(−βbj )(1 + NB〈bj |Ĝ�|bj 〉).

(34)

The latter term is easily rewritten as the right-hand side of
Eq. (32). �

If the operator �(1A) is proportional to 1B , we have
�(1A) = (NA/NB)1B by the trace preservation. In this case,
the right-hand side of Eq. (29) becomes zero. Then relation
(32) is reduced to the previous result given for unital channels
in Ref. [23]. A deviation from unitality can be quantified
by norms of the operator (29). In the following, the case
NA = NB = N will be considered. That is, the input and
output Hilbert spaces have the same dimension N . Note
that two different quantum channels may lead to the same
non-unitality observable. This Hermitian operator is traceless
and belongs to the space Ls.a.(H) of dimensionality N2. Due to
the Jamiołkowski isomorphism, the set of quantum channels is
isomorphic with the set of their dynamical matrices satisfying
Eq. (16). As the latter set has N4 − N2 real dimensions
[19], there is no one-to-one correspondence between quantum
channels and the nonunitality operators. Let us estimate the
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Hilbert-Schmidt norm of the operator Ĝ� from above. The
following bound holds.

Proposition 2. Let H be N -dimensional Hilbert space. If
� : L(H) → L(H) is positive and trace preserving, then

‖�(1) − 1‖2 �
√

N (‖�‖ − 1). (35)

Proof. As the map is positive and trace preserving, we
have �(1) ∈ L+(H) and Tr(�(1)) = Tr(1) = N . Hence, the
squared Hilbert-Schmidt norm is expressed as

〈�(1) − 1,�(1) − 1〉hs = ‖�(1)‖2
2 − N. (36)

By positivity, we obtain ‖�(1)‖1 = Tr(�(1)) = N . Lemma 3
of Ref. [44] states that ‖Â‖2

2 � ‖Â‖∞ ‖Â‖1 for all Â ∈ L(H).
Combining these points with Eq. (36) finally leads to

‖�(1) − 1‖2
2 � N (‖�(1)‖∞ − 1). (37)

The claim (35) follows from Eqs. (12) and (37). �
Using Eq. (17) we rewrite Eq. (35) in the form

‖TrR(η̂�) − ρ̂∗‖2 � N−1/2
√

‖�‖ − 1. (38)

In terms of the map norm, one characterizes a deviation of
the partial trace of the rescaled dynamical matrix from the
completely mixed state. If the map � is unital one has �(1) =
1 and ‖�(1)‖∞ = 1. Using Eq. (12), the right-hand side of
Eq. (35) vanishes for unital maps. On the other hand, the
condition ‖�‖ = 1 immediately leads to the relation ‖�(1) −
1‖2 = 0. The latter is equivalent to �(1) = 1, since the norm
cannot be equal to zero for a nonzero matrix, which completes
the reasoning.

Corollary 3. Let � : L(H) → L(H) be positive and trace
preserving. If ‖�‖ = 1, then � is unital, i.e., �(1) = 1.

It is instructive to compare this result with the Russo-Dye
theorem. One of its formulations says that if a positive map
� is unital, then ‖�‖ = 1 (see, e.g., point 2.3.7 of Ref. [37]).
In a certain sense, Corollary 3 is a statement in the opposite
direction. Namely, if a trace-preserving positive map � obeys
‖�‖ = 1, then it is necessarily unital. Note that this conclusion
pertains to all trace-preserving positive maps and not only
to completely positive ones. Although legitimate quantum
operations are completely positive, positive maps without
complete positivity are often used as an auxiliary tool in
the theory of quantum information. For instance, one of the
basic methods to detect quantum entanglement is formulated
in terms of entanglement witnesses and positive maps [45].

Due to (35), a deviation from unitality is characterized by
the difference between the norm ‖�‖ and unity. It is possible to
find an upper bound for this quantity in terms of the dimension
N of the Hilbert space. From Eq. (3), we obtain ‖�(1)‖∞ �
N = ‖�(1)‖1. Combining this with Eqs. (12) and (35) we get

‖�(1) − 1‖2 �
√

N (N − 1). (39)

This inequality is valid for all trace-preserving positive maps
� : L(H) → L(H), including quantum channels with the
same input and output spaces. Rescaling the above bound by
the dimensionality, we have

‖Ĝ�‖2 � (‖�(ρ̂∗)‖∞ − N−1)1/2 �
√

1 − 1/N. (40)

Thus, the Hilbert-Schmidt norm of the operator Ĝ� =
�(ρ̂∗) − ρ̂∗ is strictly less than 1. The left-hand side of

Eq. (40) can be interpreted as the Hilbert-Schmidt distance
between �(ρ̂∗) and ρ̂∗. This distance is maximal if inequality
(40) is saturated so the output state �(ρ̂∗) = |ψ〉〈ψ | is pure.
This is the case for the map generated by Kraus operators
K̂n = |ψ〉〈n|, where the {|n〉} is an orthonormal basis in H.
Such a map represents a complete contraction to a pure state:
For any state ρ̂ one has �(ρ̂) = |ψ〉〈ψ |. Taking |ψ〉 as a ground
state one can describe in this way the process of spontaneous
emission in atomic physics.

Systems near the thermal equilibrium can be treated as
ergodic in the following sense: Any quantum state can
be reached, directly or indirectly, from any other state. In
this regard, the completely contracting channel has opposite
properties, as for any initial state only a single state |ψ〉 can
be reached during the process.

Using representation (5), the nonunitality operator Ĝ�

can be represented in terms of its generalized Bloch vector
τ [40,46] with components τj = Tr(Ĝ�λ̂j ). Therefore we
arrive at a handy expression for the nonunitality operator,
Ĝ� = (1/2) τ · λ̂, where λ̂ denotes the (N2 − 1)-dimensional
vector of generators of SU(N ). We also obtain an upper bound
for the modulus of the Bloch vector,

|τ | �
√

2 (‖�(ρ̂∗)‖∞ − N−1)1/2 �
√

2 − 2/N. (41)

It follows from Eq. (40) and the expression for the squared
Hilbert-Schmidt norm 〈Ĝ� ,Ĝ�〉hs = (1/2)

∑N2−1
j=1 τ 2

j . In the
case N = 2, the bound (41) gives |τ | � 1 for all quantum
channels, as in the normalization used in this work the set
of one-qubit states forms the Bloch ball of radius one. The
right-hand side of Eq. (41) tends to

√
2 for large N .

V. JARZYNSKI EQUALITY FOR ARBITRARY
STOCHASTIC MAPS

We now apply Eq. (32) in a physical setup corresponding
to the context of the Jarzynski equality [1]. One assumes
that a thermostatted system is acted upon by an external
agent, which operates according to the prescribed protocol.
The principal system is assumed to be prepared initially in
the state of the thermal equilibrium with a heat reservoir. As
before we denote the initial and the final inverse temperatures
of the reservoir by β0 and β1. Therefore, the input state is
described by density matrix (25). According to the actual
process, the final density matrix �(ω̂0(β0)) may differ from
the state (26), which corresponds to the equilibrium at the final
moment. Considering the same system, we also assume that
both dimensions are equal, NA = NB = N . By substitutions,
relation (32) leads to the equality

〈〈exp(β0ε
(0) − β1ε

(1))〉〉 = Z1(β1)

Z0(β0)
(1 + NTr(ω̂1(β1)Ĝ�)).

(42)

For unital quantum channels, the term NTr(ω̂1(β1)Ĝ�) is
zero, so formula (42) forms an extension of the previous
result (27) and for a unitary evolution it reduces to the result
of Tasaki [8]. The right-hand side of Eq. (42) depends not
only on equilibrium properties of the system but also on the
realized process. The authors of Ref. [4] emphasized such a
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feature in connection with nonequilibrium relations for the
exponentiated internal energy and heat.

Note also that concrete details of the realized quantum
process are represented by means of a single operator Ĝ�.
To formulate fluctuation relation (42), no additional character-
ization of the map is required. In this regard, we need not to
specify a kind of coupling between the principal system and
its environment.

The quantity Wnm = ε(1)
n − ε(0)

m can be identified with the
external work performed on the principal system during a
process [8,24]. For the case β0 = β1 = β, formula (42) leads
to a generalized form of the Jarzynski equality for arbitrary,
nonunital quantum channels,

〈〈exp(−βW )〉〉 = exp(−βF )(1 + NTr(ω̂1(β)Ĝ�)). (43)

This is the central result of the present work. The correction
term NTr(ω̂1(β)Ĝ�) characterizes a deviation induced by the
nonunitality of a map. In general, this term can be positive,
equal to zero, or negative. If the channel � is unital, then
the operator Ĝ� and the correction term are equal to zero, so
the standard form (28) of the Jarzynski equality is recovered.
It is essential to note that the correction term may vanish also
for nonunital quantum channels, provided Tr(ω̂1Ĝ�) = 0.

For a convex function y �→ exp(−βy), the Jensen inequal-
ity implies 〈〈exp(−βW )〉〉 � exp(−β〈〈W 〉〉). Combining this
with Eq. (43) gives

〈〈W 〉〉 � F − β−1 ln(1 + NTr(ω̂1(β)Ĝ�)). (44)

This inequality provides a lower bound on the average work
performed on a driven quantum system. If the correction term is
strictly negative, the right-hand side of Eq. (44) is strictly larger
than F . The latter bound is commonly known and takes place
for quasistatic processes. On the other hand, positivity of the
correction term will reduce this bound. It is an evidence for
the fact that the averaged external work may, in principle, be
less than F , provided the macroscopic process investigated
is sufficiently far from unitality.

It is instructive to discuss limiting cases of high and low
temperatures. For sufficiently high temperatures, if |βεn|  1
with some typical value εn, the correction term can be
expanded as

NTr(ω̂1(β)Ĝ�) = NZ−1
1 (β)( − βTr(Ĥ1Ĝ�) + O(β2)).

(45)
Since the nonunitality operator Ĝ� is traceless, the expan-
sion starts with the first-order term with respect to β. If
Tr(Ĥ1Ĝ�) = 0, the right-hand side of Eq. (45) also vanishes
in the first order. Within this approximation, the standard
form (28) and its consequences remain valid. For very low
temperatures, the correction term can be expressed in terms
of the ground-state energy, ε0 = min{ε(1)

n }. If this state is
nondegenerate, we approximately write

NTr(ω̂1(β)Ĝ�) = N〈ε0|Ĝ�|ε0〉. (46)

Neglected terms are of the order of O(exp(−βε)), where
βε � 1 and ε > 0 is a typical distance between nearest-
neighbor levels, for instance, the energy difference between
the ground state and the first excited state. Up to a high
accuracy the deviation from the unitality is represented by
a single matrix element 〈ε0|Ĝ�|ε0〉, as probabilities of excited

states becomes negligible for low temperatures. In general,
this matrix element characterizes a difference of the matrix
element 〈ε0|�(ρ∗)|ε0〉 from the equiprobable value 1/N . If
the ground state is not involved in the undergoing process, the
correction term vanishes. Thus, in the low-temperature limit
the standard form (28) may be adequate, even if the process
itself is generally far from equilibrium. We also observe that
the right-hand side of Eq. (46) does not depends on the
temperature.

The above results can be put into the context of the heat
transfer between two quantum systems. The composite Hilbert
space HAB = HA ⊗ HB is a tensor product of the Hilbert
spaces HA and HB of individual systems. Let us rewrite
Eq. (32) so the initial state of the composite system reads

�̂AB := Tr( exp(−αÂ))−1 Tr( exp(−βB̂))−1

× exp(−αÂ) ⊗ exp(−βB̂), (47)

where Â ∈ Ls.a.(HA) and B̂ ∈ Ls.a.(HB). Using an observable
Ĉ := αÂ ⊗ 1B + 1A ⊗ βB̂, we may rewrite operator (47) as

�̂AB = Tr( exp(−Ĉ))−1 exp(−Ĉ). (48)

Assume now that the evolution of the composite system is
represented by a quantum channel � : L(HAB) → L(HAB).
By corresponding substitutions in Eq. (32), we obtain

〈〈exp(αa + βb − c)〉〉 = 1 + NANBTr(�̂ABĜ�), (49)

where Ĝ� = �(ρ̂∗AB) − ρ̂∗AB . The operator Ĝ� vanishes for
unital channels and the right-hand side of Eq. (49) becomes
equal to unity as discussed in Ref. [23]. We now consider
the following situation. Two separated systems are initially
prepared in equilibrium with the inverse temperatures β0

and β1, respectively. Then the combined system is initially
described by the tensor product �̂01 := ω̂0(β0) ⊗ ω̂1(β1).
Making use of Eq. (49) we obtain

〈〈exp(β0(ε(0) − ε′(0)) + β1(ε(1) − ε′(1)))〉〉
= 1 + NANBTr(�̂01Ĝ�). (50)

Following Ref. [8] we introduce the quantity

S := 〈〈β0(ε′(0) − ε(0)) + β1(ε′(1) − ε(1))〉〉. (51)

As the terms 〈〈ε′(0) − ε(0)〉〉 and 〈〈ε′(1) − ε(1)〉〉 are average
variations of self-energies of the two subsystem, quantity (51)
describes a contribution of these variations into a change of the
total entropy. Combining Eq. (50) with the Jensen inequality
finally gives a bound S � − ln(1 + NANBTr(�̂01Ĝ�)). If
variations of the inverse temperatures are sufficiently small
and the contributions of interaction energy are negligible, then
the quantity S provides an estimate of changes of the total
entropy of the system [8]. If the correction term is strictly
negative, then S > 0. Negativity of the correction term also
implies 〈〈W 〉〉 > F . Since contributions on the interaction
energy are small enough, a perturbative description of the
process is reasonable. On the other hand, positivity of the
correction term implies S < 0. In such a case, contributions
of the interaction can be relevant, so quantity (51) does not
provide a legitimate estimate for changes of the total entropy.
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(a) (b) (c)

(d) (e) (f)

FIG. 1. One-qubit quantum channels acting on the Bloch ball. Correction term in the Jarzynski equality (43) depends on the product τ · B
and vanishes in the unital case (a) and in the case (d), for which both vectors are perpendicular. Correction term is maximal in the cases (b) and
(f), for which these vectors are parallel.

VI. EXEMPLARY NONUNITAL QUANTUM MAPS

In this section we discuss some simple nonunital quantum
channels and analyze the correction term present in the
Jarzynski equality (43). Analyzed channels describe the effects
of the energy loss from an interacting quantum system and can
be considered as a generalization of the amplitude damping
channel [18,19].

A. Two-level system

Consider the simplest case N = 2 representing a one qubit
system. Let a magnetic moment with spin 1/2 and a charge −e

be in contact with a thermal bath at the inverse temperature β.
The corresponding Hamiltonian reads

Ĥ1 = −μB B · σ̂ . (52)

Here μB = e�/(2mc) is the Bohr magneton, B is the vector of
an external field, and σ̂ is the vector of the three Pauli matrices.
Suppose that the time evolution of the system is represented
by the amplitude damping channel [18,19] described by the
Kraus operators

K̂0 =
(√

1 − p 0
0 1

)
, K̂1 =

(
0 0√
p 0

)
, (53)

with p ∈ [0,1]. For this channel the image of the maximally
mixed state, �(ρ̂∗), can be represented by the Bloch vector τ =
(0,0,−p). The length |τ | = p of the Bloch vector characterizes
the degree of the nonunitality of the map. In the original map �

described by the operators K̂0 and K̂1 the translation vector τ is
parallel to the axis z, but this can be changed, if the nonunitary

dynamics is followed by an arbitrary unitary rotation,

ρ̂ �→ ρ̂ ′′ = Û�(ρ̂)Û †, (54)

where Û ∈ U(2). Then the rotated translation vector τ can
take an arbitrary orientation with respect to the magnetic
field, pointing along the z axis; see Fig. 1. In general, the
nonunitality observable (29) reads therefore Ĝ� = (1/2) τ · σ̂ .
The correction term in Eq. (43) becomes then

2 Tr(ω̂1(β)Ĝ�) = Tr(ω̂1(β)τ · σ̂ ) = p tanh(βμBB) cos θ,

(55)
where B = |B| and θ denotes the angle between the Bloch
vector τ and the magnetic field B. Another interpretation of the
angle θ follows from the scalar product in the Hilbert-Schmidt
space of operators,

〈Ĥ1 ,Ĝ�〉hs = −p μBB cos θ. (56)

In this example, the product |p cos θ | is a natural measure
of deviation from unitality. Writing the correction term in
a coordinate-independent manner, we obtain the Jarzynski
equality

〈〈exp(−βW )〉〉 = exp(−βF )(1 + tanh(βμBB)B−1τ · B).

(57)

For high temperatures, the right-hand side of (57) reads
exp(−βF )(1 + βμBτ · B) due to tanh(βμBB) ≈ βμBB. If
the translation vector is perpendicular to the external field,
τ ⊥ B, the correction term vanishes for arbitrary values of
β. This case provides a concrete physical example, in which
the standard form of Jarzynski equality holds for nonunital
quantum channels. The absolute value of the correction term
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is maximal for τ ‖ B. Some configurations of the vectors τ

and B are shown in Figs. 1(a)–1(f). A size of the correction
term also depends on the temperatures and it is small in
the high-temperature limit. In the low-temperature limit,
tanh(βμBB) → 1 and the right-hand side of Eq. (55) is merely
reduced to p cos θ . When the parameters β, B, and θ are fixed,
the correction term becomes maximal for p = 1. Here we deal
with a spontaneous emission channel, which maps all inputs
to some prescribed pure state. In the sense of Eq. (54), this
prescribed state can be chosen arbitrarily.

With the above example, we can return to the discussion
of the notion of work in the context of quantum fluctuation
relations [5,6,42]. In the nonunital cases in Figs. 1(b) and 1(f),
one has an energy shift of the “center of mass” of the set
of states, resulting in maximization of the correction term.
Such an effect means that one takes into account, on average,
the work against the magnetic field. In Fig. 1(d), the shift is
orthogonal to the field, whence no energy change occurs and
the correction term vanishes.

Overall, the average energy cost due to the work against the
field depends on both the length of τ and its direction, as it is
described by the last, nonunitality term in Eq. (43). Note that
this term, vanishing, for instance, for any unitary evolution, is
not related to average changes of the von Neumann entropy
of the quantum state during nonunitary processes. As the
evolution � is not unitary, pure states may be converted into
mixed states, or mixed states into pure, due to the interaction
with an environment. Thus, to produce a nonunitary map �,
some work has to be exchanged between the principal system
and the environment.

B. Three-level system

We now consider a generalized amplitude damping channel
acting on a N = 3 quantum state and parametrized by two real
numbers, p,q ∈ [0,1]. The map is described by a set of three
Kraus operators. It contains a single diagonal matrix, K̂0 =
diag(

√
1 − p,

√
1 − q,1), and two nondiagonal matrices,

K̂1 =
⎛
⎝ 0 0 0

0 0 0√
p 0 0

⎞
⎠, K̂2 =

⎛
⎝0 0 0

0 0 0
0

√
q 0

⎞
⎠. (58)

For this channel we find the nonunitality observable Ĝ� =
(1/3) diag(−p,−q,p + q). As the choice p = q = 0 leads to
the identity map, we assume in the following that p �= 0 or
q �= 0. For a massive particle with spin 1 and charge e, we
write the final Hamiltonian,

Ĥ1 = e

mc
B · Ĵ. (59)

Let us take the axis z such that the component Ĵz commutes
with Ĝ�, i.e., Ĵz = � diag(+1,0,−1). In their common eigen-
basis, the two other components of the spin are expressed as

Ĵx = �√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, Ĵy = �√

2

⎛
⎝0 −i 0

i 0 −i

0 i 0

⎞
⎠. (60)

In this case, an expression for the correction term is more
complicated than Eq. (55). For sufficiently high temperatures,

when β is small, one has a simple approximation,

3 Tr(ω̂1(β)Ĝ�) = (2p + q)β
e�

3mc
ez · B + O(β2), (61)

where ez is the unit vector of the axis z. If B ⊥ ez, the correction
term vanishes in the first order with respect to β. In this respect,
expression (61) is analogous to Eq. (55). On the other hand, for
a generic value of the temperature, the correction term typically
differs from zero. When we fix β and B, then the correction
term in the first order becomes maximal for p = q = 1. As in
the above case N = 2, this choice gives a complete contraction
to some pure state. In the low-temperature limit, we can rewrite
Eq. (61) in the form

3 Tr(ω̂1(β)Ĝ�) =
(

p + q

2

)
cos θ + q

8
(1 + 3 cos 2θ ), (62)

where θ is the angle between ez and B. As mentioned above,
the right-hand side of Eq. (62) neglects contributions of order
exp(−βe�B/(mc)) with very large values of the exponent
βe�B/(mc).

C. N-level system

Consider the following process defined for an arbitrary N -
dimensional space. Let I and J be two sets of indices such that
I ∩ J = ∅ and I ∪ J = {1,2, . . . ,N}. The map is described by
a set of the Kraus operators. The first of them is chosen to be
diagonal in the eigenbasis of the Hamiltonian,

K̂0 :=
∑
m∈I

zm|εm〉〈εm| +
∑
n∈J

|εn〉〈εn|. (63)

For given n ∈ I and arbitrary m �= n, we define further
operators,

K̂mn := amn|εm〉〈εn|, (64)

for which K̂
†
mnK̂mn = |amn|2 |εn〉〈εn| and K̂mnK̂

†
mn =

|amn|2 |εm〉〈εm|. For all n ∈ I we impose a restriction,

|zn|2 +
∑
m�=n

|amn|2 = 1, (65)

whence |zn| � 1 and |amn| � 1. Hence, condition (8) is satis-
fied, i.e., the considered quantum operation is trace preserving.
For brevity, we put positive numbers ym = ∑

n�=m |amn|2 for
each m ∈ {1,2, . . . ,N}. An explicit form of all Kraus operators
allows us to find the image of the identity operator,

�(1) =
∑
m∈I

(|zm|2 + ym)|εm〉〈εm|

+
∑
n∈J

(1 + yn) |εn〉〈εn|. (66)

Therefore the nonunitality observable Ĝ� is diagonal with
elements xm = N−1(|zm|2 + ym − 1) for m ∈ I and elements
xn = N−1yn for n ∈ J . The correction term in Eq. (43) can be
then written as

NTr(ω̂1(β)Ĝ�) = N

(∑
n

exp(−βεn)

)−1 ∑
n

xn exp(−βεn).

(67)
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Note that the right-hand side of Eq. (67) represents the
correction term for arbitrary Ĝ�. In this case, we merely
replace xn with the diagonal matrix element 〈εn|Ĝ�|εn〉 with
respect to the Hamiltonian eigenbasis. The correction term
is not uniquely defined by a given quantum channel. Hence,
effects of nonunitality in the Jarzynski equality and related
fluctuation relations in some cases may be modeled by a
generalized amplitude damping channel in the described form.
It is possible, provided the diagonal element 〈εn|Ĝ�|εn〉 of
the operator Ĝ� can be represented in terms of the above
introduced numbers zn and yn.

The above two damping channels acting on N = 2 and
N = 3 systems are particular cases of the general scheme.
For instance, matrices (53) are obtained for I = {1} and J =
{2} with z1 = √

1 − p, a21 = √
p. Matrices (58) and diagonal

K̂0 = diag(
√

1 − p,
√

1 − q,1) are recovered by setting I =
{1,2} and J = {3} with z1 = √

1 − p, z2 = √
1 − q, a31 =√

p, a32 = √
q. Another version of the damping channel for

a three-level system is described for I = {1} and J = {2,3}.
Taking z1 = √

1 − p, a21 = √
q, a31 = √

p − q, we obtain
the Kraus matrices K̂0 = diag(

√
1 − p,1,1),

K̂21 =
⎛
⎝ 0 0 0√

q 0 0
0 0 0

⎞
⎠, K̂31 =

⎛
⎝ 0 0 0

0 0 0√
p − q 0 0

⎞
⎠.

(68)

These operators lead to the diagonal matrix �(1) − 1 =
diag(−p,q,p − q). Therefore operators (68) allow a con-
trolled shift of the population between the levels of the
system.

VII. CONCLUDING REMARKS

In this work we formulated Jarzynski equality (43) for a
quantum system described by an arbitrary stochastic map.
This is a direct generalization of earlier results obtained for
unital maps [22,23], for which the maximally mixed state is

preserved. We derived a correction term which compensates
the nonunitality of the map and attempted to estimate its
relative size. Furthermore, it was shown that the correction
term vanishes if the nonunitality observable is perpendicular,
in the sense of the Hilbert-Schmidt scalar product, to the
Hamiltonian of the system. Hence, expression (28) obtained
previously remains valid also for certain cases of nonunital
maps provided the nonunitality does not influence the average
energy of the system.

The results are exemplified on a simple model of the
damping channel. For a two-level system, the correction term
depends on the nonunitality measured by the length of the
translation vector τ and its orientation with respect to the
vector of magnetic field. The latter determines the Hamiltonian
of the system. When other parameters are fixed, the translation
vector is the longest in the case of complete contraction to
a pure state. For the considered two-level example, such a
map leads to the maximal relative size of the correction term.
However, if the translation vector is perpendicular to the field,
the correction term vanishes irrespectively of the length of the
translation vector.

As a by-product of our study we introduced the nonunitality
operator G� associated with a given quantum operation �

and analyzed its properties. Some useful bounds for its norm
have been established. Furthermore, we presented a broad
class of nonunitary dynamics acting in the set of quantum
states of an arbitrary finite dimension N , which can serve as a
generalization of the one-qubit amplitude damping channel.
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