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Efficiency and dissipation in a two-terminal thermoelectric junction, emphasizing small dissipation
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The efficiency and cooling power of a two-terminal thermoelectric refrigerator are analyzed near the limit
of vanishing dissipation (ideal system), where the optimal efficiency is the Carnot one, but the cooling power
vanishes. This limit, where transport occurs only via a single sharp electronic energy, has been referred to as
“strong coupling” or “the best thermoelectric.” Confining the discussion to the linear-response regime, it is found
that “parasitic” effects that make the system deviate from the ideal limit, and reduce the efficiency from the Carnot
limit, are crucial for the usefulness of the device. Among these parasitics, there are: parallel phonon conduction,
finite width of the electrons’ transport band, and more than a single energy transport channel. In terms of a
small parameter characterizing the deviation from the ideal limit, the efficiency and power grow linearly, and
the dissipation quadratically. The results are generalized to the case of broken time-reversal symmetry, and the
major nontrivial changes are discussed. Finally, the recent universal relation between the thermopower and the
asymmetry of the dissipation between the two terminals is briefly discussed, including the small dissipation limit.
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I. INTRODUCTION

There has been major interest in thermoelectric energy
conversion [1–8]. An important application is converting
wasted thermal energy into, say, useful and storable electrical
energy. Also, deriving electricity from the more easily avail-
able thermal energy in remote environments is often relevant
[2,4]. Thermoelectric cooling is a real possibility. Obviously,
there exist rigid thermodynamic limitations to such processes.
However, the efficiency of existing devices is severely further
limited by material and device properties [9], so that getting
a sizable fraction of the thermodynamic Carnot efficiency
(especially with a reasonable power) is still an unattained goal.

A key idea in this connection is that of trying to obtain a
“strongly coupled” thermoelectric [7], in which there would
be a well-defined ratio between electrical and thermal current.
Mahan and Sofo [8] suggested a way to achieve that, for
electrons, by funneling the electrical transport to a very narrow
energy band. The deviation from the ideal Carnot efficiency
would then be determined by “parasitic” effects, such as the
small width of the above-mentioned electronic band and the
nonelectronic thermal conductivity.

Our paper is devoted to the question of maximum efficiency
and so does not touch upon the interesting issue of the efficiency
at maximal power [10]. For definiteness, we shall consider here
cooling in a two-terminal electronic setup, whose terminals
are kept at different temperatures, TL and TR , and different
chemical potentials, μL and μR . The total entropy production
of the electrons in such a device is

Ṡtot = ĖL − μLṄL

TL

+ ĖR − μRṄR

TR

≡ Q̇L

TL

+ Q̇R

TR

. (1)

*Present address: Department of Physics, University of Toronto, 60
St. George Street, Toronto, Canada, Ontario M5S 1A7.

Here, ĖL,R is the rate of energy change in the L,R reservoir,
ṄL,R is minus the particle current leaving that reservoir, and
Q̇L,R is the heat current entering it. Current conservation
implies ṄL + ṄR = 0, and energy conservation requires ĖL +
ĖR = 0 [11]. Consequently,

Ṡtot = J
Q
L

(
1

TR

− 1

TL

)
+ JL

TR

(μL − μR), (2)

where J
Q
L ≡ −ĖL + μLṄL is the heat current and JL ≡ −ṄL

is the particle current leaving the left reservoir.
Assuming for concreteness that the left terminal is to be

cooled, then TL − TR < 0 and the working conditions for a
thermoelectric refrigerator configuration are positiveness of
the used power W ,

W = μL − μR

e
eJL ≡ eV JL > 0 (3)

(e being the charge of the carriers and V is the voltage drop),
and positiveness of the cooling power P ,

P ≡ J
Q
L > 0. (4)

The efficiency η of the cooling process (sometimes called
“coefficient of performance”) is defined as the ratio between
the cooling power and the used one; it is advantageous to
express it in terms of the entropy production [see Eq. (2)], i.e.,
the dissipation [4]

η = P

W
= ηC

(
1 − TRṠtot

W

)
. (5)

Here ηC is the Carnot efficiency for cooling, Tcold/(Thot −
Tcold) in our setup it is given by

ηC = TL

TR − TL

. (6)

Note that Eq. (5) can be cast into the form TRṠtot = W (1 −
η/ηC), emphasizing that indeed the entropy production is
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related to the dissipation, i.e., to the fraction of the supplied
power which is not useful.

Several physical remarks on the dissipation are called for
here. The total entropy of the world must not decrease. Usually,
for example, the ohmic part of the dissipation occurs in the
resistor connecting the two reservoirs. In the two-terminal
Landauer-type formulation used here, there is no reservoir
taking the heat off that resistor. The dissipation occurs in the
two reservoirs L and R [12]: the charge carriers exiting or
entering these reservoirs are supposed to equilibrate (usually
by the unmentioned electron-electron or electron-phonon
interactions) in the huge reservoirs. The interesting question
of how the dissipation is divided between the two reservoirs
has been recently introduced and discussed in Ref. [13].
It is found that the dissipation occurs symmetrically in
the two reservoirs only in the limit of full electron-hole
symmetry (i.e., when the energy-dependent conductivity or
transmission of the junction is symmetric around the average
chemical potential) and then the thermopower vanishes.
The larger is this asymmetry (and the thermopower), the
more asymmetric is the distribution of the dissipation be-
tween the two reservoirs. Thus, the thermopower and the
asymmetry of the dissipation are monotonic functions of
one another! We will come back to this interesting point
in Sec. III.

Equation (5) suggests that a vanishing dissipation can lead
to a full Carnot efficiency, η = ηC . This is indeed true, but,
as is well-known, in that limit both the used and the cooling
power will also vanish. This happens for a junction obeying
time-reversal symmetry; breaking it modifies this conclusion
[14]. One might be tempted to consider the possibility that the
two terms forming the dissipation, Eq. (2), cancel one another
while each remains finite. This might have been possible,
since the thermal part of the dissipation, J

Q
L (TL − TR)/TL,

is in fact negative (the cooling heat current flows against the
temperature drop). However, the above is only apparent: at
the zero-dissipation limit all currents and input and output
powers vanish. One might have hoped to overcome this caveat
by breaking time-reversal symmetry; however, at least in a
Landauer-type formulation, it has been shown [15] that there
are in fact strong limitations (beyond the Carnot one) on η.
Nevertheless, if one considers, as we shall do here, a system
very close (characterized by a small parameter ζ ) to the ideal
limit of Carnot efficiency, both the used and the cooling
powers will vanish proportional to ζ , while the dissipation will
vanish like ζ 2.

To appreciate this point, we confine ourselves to the linear-
response regime and relate the dissipation to the properties of
the Onsager matrix M, which connects the currents and the
thermodynamic “driving” forces (sometimes called affinities)
via transport coefficients.

[
eJL

J
Q
L

]
= M

[
(μL − μR)/(eTR)

(1/TR) − (1/TL)

]
. (7)

In the linear-response regime, the elements of M do not
depend on the driving forces and are determined by the
equilibrium properties of the setup. (For a system invariant
to time-reversal the matrix M is symmetric.) The dissipation,

Eq. (2), can be written in the form

TRṠtot = [μL−μR

e
−η−1

C

] M
TR

[
μL−μR

e

−η−1
C

]
. (8)

As the Onsager matrix M is positive definite, it follows that
the dissipation vanishes when the lowest eigenvalue of M is
zero. A 2 × 2 symmetric matrix whose determinant is zero is
necessarily of the form

M ∝
[

1 α

α α2

]
. (9)

Such a matrix implies that the charge and the heat currents are
proportional to one another. This was termed by Kedem and
Caplan [7] “strong coupling”. The strong-coupling configura-
tion is the limit of the “best thermoelectric” of Mahan and Sofo
[8]. Thus, if one could achieve the ideal limit of Refs. [7] and
[8], the “driving force” vector {(μL − μR)/e, − η−1

C } would
be proportional to {−α,1}. One would then get the Carnot
efficiency, but both currents would vanish, along with zero
power in the linear-response regime.

Mahan and Sofo [8] achieved the strong-coupling configu-
ration by channeling the electronic transport into an infinitely
narrow band. There (see also Ref. [5]), the Onsager matrix
(again limited to electronic processes) takes the form

M
T

= G

[
1 E/e

E/e E2/e2

]
, (10)

where T is the common temperature of the setup, T = (TL +
TR)/2, G is the conductance, and E is essentially the unique,
well-defined energy transferred by each charge carrier between
the two terminals. Replacing TR by T is possible as long
as one restricts oneself to the linear-response regime. In real
life there are always “parasitic” effects, such as phonon heat
conductivity, transport in a finite-width energy band, more
energy channels, etc., which tend to spoil the action of the
device. However, the case of strongly coupled electric and heat
currents is different: as we have now just discovered, in such
a system these “parasitics” can be crucial for the operation
of thermoelectric heat conversion! One is thus led to consider
what these parasitics do to the dissipation, to the power, and
to the efficiency.

From this line of reasoning it follows that we need to
consider the situation when the (nonnegative) determinant of
the Onsager matrix is positive, but still very small [16]. In the
configuration of Refs. [5] and [6] the two-terminal setup is
further connected to a nonelectronic thermal terminal, which
exchanges energy with the electronic system. The Onsager
matrix becomes a 3 × 3 one, M3, which is still singular
(as the electronic transport occurs via a single channel). The
2 × 2 Onsager matrix obtained from it when the energy flow
between the electronic junction and the thermal contact is
blocked is singular as well. However, adding to the picture the
phonon heat currents and the corresponding conductances, and
the various transport coefficients due to elastic and inelastic
(electronic) processes [6] makes the determinant of M3, and
consequently also that of the 2 × 2 one obtained from it, finite.

We show below that when time-reversal symmetry holds,
the effect of all these parasitic processes on the maximal
efficiency and the cooling and used powers can be described
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by a single (small) parameter—the deviation of det[M] from
zero. Moreover, the functional dependence of the maximal
efficiency and the dissipation on that parameter are different:
the total dissipation is affected far less than the efficiency.

In Sec. II we present the details of the calculations. The
question of the symmetry of the dissipation (its distribution
between the two reservoirs) and its relation to the thermopower
[13] is further discussed in Sec. III, together with our
conclusions. The analysis of the optimum driving-force vectors
and the eigenvectors of the Onsager matrix is presented in
Appendix A. We display the general results, when time-
reversal symmetry may not hold. It is straightforward to have
in mind the more usual case, when it holds and the discussion
is simpler.

II. CALCULATIONS AND RESULTS

As is explained above, the dissipation can vanish when the
determinant of the Onsager matrix M is zero. In order to
study the efficiency and the optimal driving forces at small
dissipation, we introduce a parameter that “measures” the
distance of the determinant from the strong-coupling limit
condition:

ζ =
√

1 − M12M21

M11M22

, ζ � 0. (11)

When time-reversal symmetry holds the Onsager matrix is
symmetric, and ζ = [1 + (zT )]−1/2, where zT is the figure of
merit. In that case 0 � ζ � 1. These bounds on ζ persist also
when M is not symmetric, with M12/M21 > 0. However,
when that ratio is negative (the example considered below will
be M21 < 0) then ζ exceeds 1. Namely, a setup lacking time-
reversal symmetry and for which M12/M21 < 0 is always far
away from the strong-coupling limit.

Adding a notation for the deviation of M from complete
symmetry

γa = √|M12/M21|, (12)

the positiveness of the Onsager matrix, M11M22 − (M12 +
M21)2/4 � 0, imposes a relation between ζ and the asymme-
try parameter γa ,√∣∣∣∣1 − ζ

1 + ζ

∣∣∣∣ � γa �
√∣∣∣∣1 + ζ

1 − ζ

∣∣∣∣. (13)

[For a time-reversal invariant system, γa = 1 and condition
Eq. (13) is always satisfied.] With this parametrization of the
Onsager matrix, to which we add for convenience

γ = √
M11/M22, (14)

we obtain for the cooling power in the linear-response regime

P = η−1
C M21

TR

[
(ηCV ) − s

γa/γ√
|1 − ζ 2|

]
, (15)

where s ≡ sgn[M21], and for the used power

W = η−2
C M11

TR

{
(ηCV )[(ηCV ) − γa

γ

√
|1 − ζ 2|]

}
. (16)
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FIG. 1. (Color online) The mathematical function of the
efficiency, Eq. (19), as a function of V ηC , for γa = 1, γ = 10,
and s = 1, for various values of ζ , (a) ζ = 0.01, (b) ζ = 0.1, and
(c) ζ = 0.5.

Here and below we measure the voltage in units of 1/γ .
Hence, when M21 is positive, both used and cooling powers
are positive for

(ηCV ) � (γa/γ )/
√

1 − ζ 2, (17)

while if it is negative then the voltage drop V must be negative
as well, with

−(ηCV ) � (γa/γ )/
√

ζ 2 − 1. (18)

Finally, the efficiency is

η

ηC

= s

√
|1 − ζ 2|
γ γa

(V ηC) − s(γa/γ )/
√

|1 − ζ 2|
(ηCV )[(ηCV ) − (γa/γ )

√
|1 − ζ 2|]

. (19)

The efficiency is optimized for a given ηC , by con-
trolling V ηC , the ratio of the two components of the
driving-force vector. To do that, we first show in Fig. 1
graphs of the efficiency η/ηC as a function of V ηC in the
whole range with γa = 1. The mathematical function of the
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efficiency has a “pole” at V ηC =
√

1 − ζ 2/γ and a zero at
V ηC = (γ

√
1 − ζ 2)−1. It is large in the region on the left of the

pole and negative between the pole and the zero. In this region
the system does not operate as a thermoelectric refrigerator (the
region on the left of the pole corresponds to a heat engine),
and consequently this regime is excluded from the analysis.
The extremum of the efficiency is chosen within the domain
given by Eq. (17). The plots in Fig. 1 help us to do that. When
the system tends to the “ideal” limit ζ → 0, the zero and
the pole merge together and the maximum of the efficiency,
η/ηC → 1 is infinitesimally above V ηC = 1/γ . This rather
nontrivial behavior is clearly seen in Fig. 1(a), and Eqs. (15)
and (16) show how both the cooling and used powers approach
zero at the ideal point. The pole and the zero get further apart
as ζ increases, Figs. 1(b) and 1(c), and the value of V ηC for
which the efficiency is maximal increases as well (see below).

The efficiency is optimal for a given ηC at V = Vm, where

VmηC = s
γa

γ

√∣∣∣∣1 + ζ

1 − ζ

∣∣∣∣, (20)

showing that the sign of the bias is determined by the s ≡
sgnM21, as expected. At the voltage drop corresponding to
the optimal efficiency, the cooling power is

Pm = η−1
C |M21|

TR

γa

γ

ζ√
|1 − ζ 2|

, (21)

the used power is

Wm = η−2
C M11

TR

γ 2
a

γ 2
ζ

∣∣∣∣1 + ζ

1 − ζ

∣∣∣∣, (22)

and the optimal efficiency ηm is

ηm = ηC

1

γ 2
a

∣∣∣∣1 − ζ

1 + ζ

∣∣∣∣. (23)

Note that the optimal efficiency never exceeds the Carnot one:
this is ensured by the condition Eq. (13). Finally, the total
dissipation at optimal efficiency is

TRṠm = (
Wm − η−1

C Pm

)
= η−2

C M22
ζ

|1 − ζ |
[
γ 2

a (1 + ζ ) − (|1 − ζ |)]. (24)

Hence, we see that as a time-reversal symmetric junction (γa =
1) approaches the strong-coupling limit, its efficiency, cooling
power, and the used power all deviate from the ideal limit as
ζ ; the total dissipation, however, deviates much more weakly
from zero, as ζ 2, due to the cancellation of the ζ term between
the thermal and the electrical dissipations.

The effect of time-reversal symmetry breaking (for a
positive ratio of the two off-diagonal elements of the matrix
M) is examined in Fig. 2. The figures show the dependence
of the efficiency on the driving force in the physical region
of the latter [see Eq. (17)]. The four curves in each panel are
for various values of the asymmetry parameter γa , according
to condition Eq. (13), with the efficiency decreasing as γa

is increasing [see Eq. (23)]. These results show that for
the parameters used here, increasing γa is detrimental to
the coefficient of performance of cooling, the more so as the
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FIG. 2. (Color online) The efficiency as a function of the driving
force, in the physical region. The values of ζ and γ are marked
on each panel; the four curves, in decreasing order, correspond to
different values of the asymmetry parameter, in increasing order
according to Eq. (13); γa = 0.994, 0.998, 1.002, 1.006 for the upper
panel; γa = 0.945, 0.985, 1.025, 1.065 for the next panel; and γa =
0.81, 1.04, 1.27, 1.5 for the lower panel.

deviation from the strong-coupling limit increases (see also
Ref. [17]). This asymmetry has another outcome. Whereas
for γa = 1 a subtle cancellation of the order ζ terms in the
dissipation causes it to deviate less from the ideal limit as
compared to the powers, this ceases to hold as γa �= 1. This is
a notable result of our analysis.

III. DISCUSSION OF THE ASYMMETRY OF THE
DISSIPATION VERSUS THE THERMOPOWER

The treatment of the heat exchange between transport
electrons and an electron reservoir is based on the principle that
a particle with an energy E exiting (entering) a large system
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extracts from (delivers to) it a heat �Q and an entropy �S

given by

�Q = (E − μ); �S = (E − μ)/T , (25)

where μ is the chemical potential in the reservoir. This is
proven thermodynamically, for example, in Ref. [18], adopted
to the mesoscopic regime within the Landauer-transport-
formulation in Ref. [19], and given a statistical-mechanics
proof in Ref. [20]. For two reservoirs with chemical potentials
μL and μR , connected by a single-channel “wire” having
a transmission coefficient T (E), this yields [19] for the
heat −JQ

α ≡ �Qα = T �Sα delivered to reservoir α (α = L

or R),

−JQ
α = 2

h

∫ ∞

−∞
(μα − E)T (E)[fα(E) − fβ(E)]dE, (26)

with β �= α and fL,R(E) being the corresponding Fermi
function. We limit ourselves to the linear-response regime
with a single driving field V = (μL − μR)/e. The electrical
current between the reservoirs gives the conductance G and
the heat current gives the Onsager coefficient L ≡ M21/T ,
[cf. Eq. (7)]. The Seebeck thermopower S is then given
by S = L/(GT ). We consider here only the case where
time-reversal symmetry prevails.

The first crucial observation here from Eq. (26) is the
well-known one that in order to have nonzero thermoelectric
response, T (E) must have an odd component as a function of
E − μ. Next, we note that if such “electron-hole (e − h) sym-
metry breaking” exists, the two powers J

Q
L,R are each linear in

V . However, by adding them, one finds that the total dissipation
(heat generated per unit time) is indeed (see Ref. [19]) the good
old Joule heating, IV , which is second-order in V (I is the net
electrical current).

The novel observation of Refs. [13] is that it is the same
symmetry breaking that also leads to an asymmetry of the
dissipation between the two reservoirs. In fact, by subtracting
Eq. (26) for L and R, one readily obtains, to order V ,

J
Q
R (V ) − J

Q
L (V ) = 2LV = 2GST V. (27)

Thus, the dissipation asymmetry and the thermopower are
proportional to one another, at least within linear response.
The physical reason for this is clear: within linear response,
the energy flow from, say, L to R, which differs by just a
constant from the heat flow, can be regarded as less energy
(and heat) dumped in L and more dumped in R. This transfers
energy from L to R.

An interesting feature is that the heat flow-dissipation
asymmetry, while small for weak e − h symmetry breaking,
is first order in V . The total dissipation, which exists also with
that symmetry valid, is second order, i.e., much smaller! As
shown in Ref. [13], this thermopower-dissipation-asymmetry
relationship can be used to determine the former quantity
by measuring the latter. We note that when the Seebeck
coefficient, S, vanishes the dissipation is symmetric and
independent of the nature of the two reservoirs (and of any
asymmetry between them).

Although in linear response the currents are odd in V ,
the dissipation in each reservoir is not. In fact, by sub-
tracting Eq. (26) for L, with V and −V , it is found [13]

that, e.g.,

J
Q
L (−V ) − J

Q
L (V ) = 2LV = 2GST V, (28)

as well. These relationships should hold for any meso- and
nanoscale system, including molecular bridges. They were
confirmed by both electronic-structure numerical computa-
tions and by experiments using an innovative nanoscale
temperature detection [13].

We conclude by discussing some simple particular cases,
demonstrating the relevance to our main subject in the
present paper—the case of small dissipation. Having full
e − h symmetry is of no interest here, since both S and the
dissipation asymmetry vanish. A very interesting case is that an
almost full e − h symmetry breaking, when almost all charge
carriers are, e.g., electrons. A simple realization of this is
a narrow Lorentzian resonance of width � much above the
Fermi level (i.e., when its center energy E0 satisfies E0 − μ �
�, kBT ). In the low-temperature and narrow-resonance limit
this becomes the strong-coupling configuration [7] or “best”
[8] thermoelectric, having a singular transport matrix. The
system then has vanishing dissipation and power. The new
insight gained from the thermopower-dissipation-asymmetry
relationship is that the dissipation is negative in one terminal
and positive in the other, such that they fully cancel each other
(while heat is still carried by the electron current from L to R).

A finite width of the resonance or a low but significant
temperature will create the almost singular transport matrix
discussed in this paper. A more complicated case is that of a
mobility edge far above the Fermi level. Again, most charge
carriers will be electrons. This case was treated in Refs. [19]
and [20], and sizable values of the Seebeck coefficient S were
indeed found. This entails large dissipation asymmetry.
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APPENDIX: ANALYSIS OF THE EIGENVALUES AND
EIGENVECTORS OF THE ONSAGER MATRIX WITH

TIME-REVERSAL SYMMETRY (γa = 1)

It is interesting to study the behavior of the driving-force
vector close to the ideal limit, where the dissipation is very
small [21]. As the only variable is ηCV , it suffices to consider
just the ratio of the first to the second component of the
eigenvectors. Writing the Onsager matrix for γa = 1 in the
parametrized form (for brevity, we take both off-diagonal
elements of M to be positive)

M ⇒
[

γ
√

1 − ζ 2√
1 − ζ 2 1/γ

]
, (A1)

we obtain that in the small ζ limit, the lower and the higher
eigenvalues, λ±, are

lim
ζ→0

λ− → ζ 2/(γ + γ −1),

(A2)
lim
ζ→0

λ+ → γ + γ −1 − ζ 2/(γ + γ −1).
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The corresponding (unnormalized) eigenvectors, v±, are

lim
ζ→0

v− →
{

− γ −1

(
1 − ζ 2

2

γ 2 − 1

γ 2 + 1

)
,1

}
,

(A3)

lim
ζ→0

v+ →
{
γ

(
1 + ζ 2

2

γ 2 − 1

γ 2 + 1

)
,1

}
.

We have found that at optimal efficiency our driving-force
vector is [see Eq. (20)]

vm ∝
{

1

γ

√
1 + ζ

1 − ζ
, − 1

}
. (A4)

Hence, vm is directed along the eigenvector belonging to the
lower eigenvalue at ζ → 0, and rotates away from it as the
Onsager matrix deviates from the ideal strong-coupling limit.
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