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Radial propagation in population dynamics with density-dependent diffusion
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Population dynamics that evolve in a radial symmetric geometry are investigated. The nonlinear reaction-
diffusion model, which depends on population density, is employed as the governing equation for this system.
The approximate analytical solution to this equation is found. It shows that the population density evolves from the
initial state and propagates in a traveling-wave-like manner for a long-time scale. If the distance is insufficiently
long, the curvature has an ineluctable influence on the density profile and front speed. In comparison, the analytical
solution is in agreement with the numerical solution.
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The growth and dispersal of species in populations undergo
density spreading as a traveling-wave front [1]. This phe-
nomenon has been an active research topic for many decades.
In a theoretical framework, the dynamics of a population
can be modeled as diffusion with reaction processes. The
paradigmatic model is known as the Fisher equation [2], which
originated as a model for population genetics [1,3–6]. The
solution to this equation has demonstrated the propagation as
a traveling-wave front in population dynamics [1,2,7]. This
equation and its variant have also appeared in various systems,
including chemical dynamics [1], nerve pulse propagation [3],
flow in porous media [8], combustion theory [3,5,6], wound
healing [9,10], tissue engineering [11,12], and bacterial pattern
formation [1,13,14].

In the original Fisher model [2], the evolution of the
population density u(r,t), at spatial position r and time
t , is governed by the simplest nonlinear reaction-diffusion
equation [1,2]. The reaction term is modeled as a logistic
law and it describes the growth of population with limited
supply. The movement of an individual is modeled as a
random walk [15], where the diffusion coefficient is constant.
However, the motion of a biological population is not purely
random but moves with sense. To remedy this issue, the
directed motion model, in which individuals tend to move
in the direction of decreasing populations as fast as increasing
density, has been proposed [16,17]. The diffusion coefficient
in this model depends on the population density [5,6,16–18].
Later, a general form of the logistic law was found [6]. With
these modifications, the density-dependent reaction-diffusion
equation or the extended Fisher model was presented as
[1,5,6,19,20]
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where p > 0, D is the diffusion constant, α is the rate constant,
and uM is the maximum population density.

The solution to Eq. (1) in one dimension (1D) is known
as a sharp traveling wave, propagating with a constant front
speed [1,5,6,21]. In our previous work, we found a general
form of the solution to Eq. (1) in one-dimensional space
[20]. This solution shows that the population density evolves,
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from a specific initial condition, as a self-similar pattern that
converges to the traveling wave on a long-time scale [20].
Although the solution to Eq. (1) in one-dimensional space
is known [1,5,6,20,21], its behavior in higher dimensions is
not well understood. Typically, the population dynamics takes
place in 2D, sometimes in 3D. Therefore, the solution of Eq. (1)
in dimension higher than one could provide better insight into
the dynamics of populations.

In this work we study the population dynamics that
evolves with radial symmetric geometry. In this form the
system is governed by the extended Fisher equation (1) in an
axisymmetric coordinate system. Before describing further,
we change the following quantities to be dimensionless:
u′ = u/uM , t ′ = αt , and r′ = √

(p + 1)α/Dr. Then the radial
symmetric extended Fisher equation in dimensionless form is
given by

∂u

∂t
= ∂2um

∂r2
+ γ

r

∂um

∂r
+ u − um, (2)

where m = p + 1, r = |r|, 0 � r < ∞, γ = N − 1, and N is
the dimension. Here the primes are dropped for convenience.
Equation (2) recovers dynamics in 1D when γ = 0. Since the
exact solution to Eq. (2) in 1D has been found [20], we focus
on its solution in 2D, as well as in 3D.

Equation (2) does not support the traveling-wave solution
because of the presence of the gradient term (γ /r)∂um/∂r [1].
It reduces to a one-dimensional problem at r → ∞, which
has a planar traveling wave as its solution. Nevertheless, the
behavior of this system at a distance that is not so large has
been unclear. It has been mentioned that the effects of curvature
can make the front propagation in a reaction-diffusion system
somewhat different from the planar case [7,22]. Previously,
Eq. (2) in cylindrical coordinates was analyzed by the
perturbation method [19]; however, the solution is shown over
a large distance that yields the usual traveling wave. More
recently, the Lie symmetry method has been employed to solve
Eq. (2) for m = 2 in cylindrical coordinates (γ = 1) [23].
Although the exact solution has been found, it is another class
and does not reflect the density distribution of the population.
In this work we adopt a technique similar to that from our
previous studies [20,24] to solve for the solution of Eq. (2).
We have found the approximate radial symmetric solution for
Eq. (2) in the intermediate regime, for which the distance
is not so large. The solution explicitly reveals the curvature
effect on the spreading of the population of both the density
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profile and front speed in this regime. To verify the analytical
solution, we have solved Eq. (2) by a numerical method. The
numerical result seems to agree with this approximate solution.
It confirms the plausibility of our approximate solution being
able to describe the intermediate behavior of system.

Before finding the solution in the general case, we first
study the asymptotic behavior of Eq. (2) as time goes to
infinity. Equation (2) can be viewed as a one-dimensional
nonlinear convection-reaction-diffusion equation with the
varying drift coefficient γ /r , similar to [25]. The gradient
term (γ /r)∂um/∂r in Eq. (2) is large in the vicinity of the front
position R(t); otherwise it is small [7]. Thus we change the
gradient term to (γ /R)∂um/∂r . The drift coefficient becomes
small as R → ∞. In contrast, the nonlinear convection-
reaction-diffusion equation with constant drift coefficient ν

has been analyzed previously [24,26,27]. It was found that
the solution in this case, at long times, converges to the sharp
traveling front at speed c =

√
1 + (ν/2)2 − ν/2 [24,26,27].

For the small varying drift coefficient, we assume that the
approximate front speed for Eq. (2) can be obtained by setting
ν = γ /R,

c =
√

1 +
(

γ

2R

)2

− γ

2R
. (3)

The front speed (3) approaches 1 as R → ∞, which is equal
to the constant front speed of the planar wave [1,5,6,20,21]. If
the solution to Eq. (2) exists, it should result in the front speed
(3) as the asymptotic behavior.

We now perform the analysis to find the general form of the
density profile that propagates at the front speed of Eq. (3). To
a good approximation, we rewrite Eq. (2) in the form
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where
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We note that κ∗ − κ = γ /r and κ∗κ = 1. The correction term
in Eq. (4), ∂κ/∂r = {1 − [1 + (2r/γ )2]−1/2} γ

2r2 , approaches
O(1/r2) for r � γ /2 and 1/γ + O(r2) for r � γ /2. Fortu-
nately, this correction term behaves well because it decays
from 1/γ to zero as r � 0. In addition, at r � γ /2, the
correction term does not affect the initial state much while
u � 1. Next, we introduce the transformation dη = dr/κ ,
which can be evaluated to

η(r) = κr + γ

2
ln(κr). (7)

With the transformation (7), Eq. (4), by dropping the correction
term, becomes
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∂t
= κ−1
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(
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)
um + u. (8)

For r � γ /2, we approximate that κ ≈ 1 + O(1/r). Applying
this approximation to Eq. (8), we obtain

∂u

∂t
≈ ∂2um

∂η2
+ u − um. (9)

Equation (9) is equivalent to Eq. (2) in 1D, but evolving with
η as the spatial coordinate.

By adapting the result from Ref. [20], we obtain the solution
to Eq. (9),

u(r,t) = ρet

[ρp(ept − 1) + 1]1/p

×
{

1 −
[

ep[η(r)−η0]

ρp(ept − 1) + 1

]1/(p+1)}1/p

, (10)

where η0 = η(r0), r0 is the initial front position, and ρ is the
initial density amplitude. By setting γ = 0, Eq. (10) recovers
the solution in 1D [20]. We note that u(r,t) vanishes after the
front position for r � R(t), which will be determined later.
As r → 0, we have η → −∞. This causes the density profile
at the origin to approach u(0,t) = ρet/[ρp(ept − 1) + 1]1/p,
which is actually the solution of

∂u(0,t)

∂t
= u(0,t) − um(0,t). (11)

This implies no diffusion at the origin.
At a sufficiently long time that ept ′ � 1 and consequently

ρpept ′ � 1, we estimate the transition point

t ′ ≈ − ln ρ. (12)

For t � t ′, the solution (10) emerges as a pattern in the form
of traveling waves

ũ(r,t) = {1 − [ρ−1e[η(r)−t−η0]]p/(p+1)}1/p. (13)

For r � γ /2, we approximate that η(r) ≈ r + γ

2 ln r . It is
seen that the logarithmic term does not vanish even at
large distances, unless γ = 0. Therefore, Eq. (13) contains
an ineluctable curvature term, which can be called curved
traveling-wave-like.

The front position can be calculated from Eq. (13) by
determining the first position R(t) that density falls to zero
or ũ(R,t) = 0. After evaluating, we obtain an equation for the
front position

η(R) − η0 = t − t ′. (14)

From Eq. (14) we see that the front position does not simply
depend linearly on time as in the one-dimensional case [20].
By differentiating both sides of Eq. (14) with respect to time,
we obtain ∂η(R)

∂R
dR
dt

= 1. This allow us to calculate the front
speed c = dR

dt
, that is,

c =
(

∂η(R)

∂R

)−1

=
√

1 +
(

γ

2R

)2

− γ

2R
. (15)

The front speed (15) obtained from this analysis recovers
Eq. (3) as expected. Once again, we have seen that the front
speed is altered by the curvature as found in other similar
systems [7,22]. At sufficiently large distances that R � γ /2,
the front speed can be approximated as a constant c ≈ 1. This
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FIG. 1. (Color online) Demonstration of evolution of the radially
symmetric population density profile u(r,t) (10) in 2D (γ = 1) in
comparison with the numerical solution. The solid lines represent the
exact solutions and the circle markers represent the numerical solu-
tions. The parameters are as follows: p = 2, ρ = 0.05, and r0 = 5.
The density profiles are initiated at t = 0 and evolve until t = 102.

is equal to the front speed in the one-dimensional case (γ = 0)
[1,5,6,20,21].

If we define the quantities φ(r) = e(p+2)[η(r)−η0]/(p+1),
τ (t) = ρp(ept − 1) + 1, and u(r,t) = ρete[η(r)−η0]/(p+1)w(r,t),
we can rewrite Eq. (10) as the scaling function

w(φ,τ ) = 1

τβ
F

(
φ

τβ

)
, (16)

where β = p+2
p(p+1) , F (ξ ) = [ξ−p/(p+2) − 1]1/p, and ξ = φ/τβ .

In terms of the transformed density w(φ,τ ), as a function
of transformed space φ and time τ , the evolution of the
population density in the radial symmetric geometry still holds
the self-similarity with the scaling law of Eq. (16). Moreover,
this self-similar pattern converges to the traveling-wave-like
equation (13) as time becomes long. The connection between
the self-similar solution and the traveling wave solution can be
described as the intermediate asymptotics of the system [28].

To compare with the analytical solution, we employ the
standard explicit finite-difference scheme [29] to solve the
radial symmetric extended Fisher equation (2) numerically.
Equation (11) is imposed as the boundary condition at
the origin (r = 0). The boundary condition at the edge of
computational domain is free, as the front never reaches
this position. The initial density profile for the numerical
calculation is set to the same value as the analytical one, u(r,0).
The initial front position is chosen such that r0 � γ /2 since the
analytical solution is expected to be accurate at large distances.

The evolution of the population density profiles, obtained
from the analytical solution (10) and the numerical solution,
is demonstrated in Fig. 1. The density initiates from a sharp

0 10 20 30 40 50 60 70 80 90 100 110
0

20

40

60

80

100

t

R
(t

)

FIG. 2. (Color online) Corresponding front position R(t) ex-
tracted from the density profiles in Fig. 1. The solid lines represent the
exact solutions and the circle markers represent numerical solutions.

profile and then grows locally to a saturated value as it spreads
out to an unoccupied region. In the early state, while the density
is small, the correction term [the last term in Eq. (4)] does not
interfere with the analytical density, as mentioned above. Our
approximation is not accurate as the density grows to unity
in the early regime. However, it can be seen that both the
analytical solution and the numerical solution seem to be in
agreement as time and distance become long.

The front position R(t) is also measured directly from the
density profiles in Fig. 1. We notice that the small numerical
deviation in density can shift the front position from the
actual value. Therefore, a density that is less than 10−6 can
be considered as zero in measuring the front position. A plot
of the analytical front position versus numerical front position
is shown in Fig. 2. By calculating t for a given measured R,
the front position obtained from the density profiles satisfies
Eq. (14). Once again, both the analytical front position and
the numerical front position are in agreement. We note that,
although similar, the data cannot be well fitted to the solution
in 1D [20] for a not so large distance.

In summary, we have studied the population dynamics
that are described by the density-dependent reaction-diffusion
equation, i.e., the so-called the extended Fisher model. We
have found the approximate solution to this equation in radial
symmetric form in two- and three-dimensional space. The
analytical result shows that the evolution of the population
density is self-similar. For long-time scales, the population
density propagates in a curved traveling-wave-like form. The
analytical solutions seem to be in agreement with the numerical
solutions. Finally, it was revealed that the density profile
and the propagating speed of the evolving population are
influenced by the ineluctable curvature at a distance that is
insufficiently large.
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