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Geometric structure of percolation clusters
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We investigate the geometric properties of percolation clusters by studying square-lattice bond percolation on
the torus. We show that the density of bridges and nonbridges both tend to 1/4 for large system sizes. Using
Monte Carlo simulations, we study the probability that a given edge is not a bridge but has both its loop arcs in the
same loop and find that it is governed by the two-arm exponent. We then classify bridges into two types: branches
and junctions. A bridge is a branch iff at least one of the two clusters produced by its deletion is a tree. Starting
from a percolation configuration and deleting the branches results in a leaf-free configuration, whereas, deleting
all bridges produces a bridge-free configuration. Although branches account for ≈43% of all occupied bonds,
we find that the fractal dimensions of the cluster size and hull length of leaf-free configurations are consistent
with those for standard percolation configurations. By contrast, we find that the fractal dimensions of the cluster
size and hull length of bridge-free configurations are given by the backbone and external perimeter dimensions,
respectively. We estimate the backbone fractal dimension to be 1.643 36(10).
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I. INTRODUCTION

One of the main goals of percolation theory [1–3] in recent
decades has been to understand the geometric structure of
percolation clusters. Considerable insight has been gained by
decomposing the incipient infinite cluster into a backbone plus
dangling bonds and then further decomposing the backbone
into blobs and red bonds [4].

To define the backbone, one typically fixes two distant sites
in the incipient infinite cluster and defines the backbone to be
all those occupied bonds in the cluster which belong to trails1

between the specified sites [5]. The remaining bonds in the
cluster are considered dangling.

Similar definitions apply when considering spanning clus-
ters between two opposing sides of a finite box [6]; this is
the so-called busbar geometry. The bridges2 in the backbone
constitute the red bonds, whereas, the remaining bonds define
the blobs. At criticality, the average size of the spanning cluster
scales as LdF with L being the linear system size and dF being
the fractal dimension. Similarly, the size of the backbone scales
as LdB , and the number of red bonds scales as LdR .

Although exact values for dF and dR are known [7,8]
[see (2)], this is not the case for dB. In Ref. [9], however, it was
shown that 2 − dB coincides with the so-called monochromatic
path-crossing exponent x̂P

l with l = 2. An exact characteri-
zation of x̂P

2 in terms of a second-order partial differential
equation with specific boundary conditions was given in
Ref. [10] for which, unfortunately, no explicit solution is
currently known. The exponent x̂P

2 was estimated in Ref. [11]
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1A trail in a graph is a sequence of adjacent edges with no

repetitions.
2An edge in a graph is a bridge if its deletion increases the number

of connected components.

using transfer matrices and was estimated in Ref. [12] by
studying a suitable correlation function via Monte Carlo
simulations on the torus.

In this paper, we consider a natural partition of the edges of a
percolation configuration and study the fractal dimensions of
the resulting clusters. Specifically, we classify all occupied
bonds in a given configuration into three types: branches,
junctions, and nonbridges. A bridge is a branch if and only
if at least one of the two clusters produced by its deletion is
a tree. Junctions are those bridges which are not branches.
Deleting branches from percolation configurations produces
leaf-free configurations, and further deleting junctions from
leaf-free configurations generates bridge-free configurations.
These definitions are illustrated in Fig. 1.

It is often useful to map a bond configuration to its
corresponding BKW [13] loop configuration as illustrated
in Fig. 1. The loop configurations are drawn on the medial
graph [14], the vertices of which correspond to the edges of
the original graph. The medial graph of the square lattice is
again a square lattice, rotated 45◦. Each unoccupied edge of the
original lattice is crossed by precisely two loop arcs, whereas,
occupied edges are crossed by none. The continuum limits
of such loops are of central interest in studies of Schramm
Löwner evolution (SLE) [15,16]. At the critical point, the
mean length of the largest loop scales as LdH with dH as the hull
fractal dimension. A related concept is the accessible external
perimeter [17]. This can be defined as the set of sites that
have nonzero probability of being visited by a random walker
which is initially far from a percolating cluster. The size of the
accessible external perimeter scales as LdE with dE � dH.

In two dimensions, Coulomb-gas arguments [7,8,18,19]
predict the following exact expressions for dF, dR, dH, and dE:

dF = 2 − (6 − g)(g − 2)/8g = 91/48,

dR = (4 − g)(4 + 3g)/8g = 3/4,
(1)

dH = 1 + 2/g = 7/4,

dE = 1 + g/8 = 4/3,
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FIG. 1. (Color online) Decomposition of a percolation configu-
ration into leaf-free and bridge-free configurations. Periodic boundary
conditions are applied. Nonbridges are denoted by dark blue lines,
branches are denoted by light blue lines, and junctions are denoted
by dashed lines. The union of the nonbridges and junctions defines
the leaf-free configuration. Also shown is the Baxter-Kelland-Wu
(BKW) loop configuration on the medial lattice, corresponding to the
entire percolation configuration.

where, for percolation, the Coulomb-gas coupling is g = 8/3.3

We note that the magnetic exponent yh = dF, the two-arm
exponent [18] satisfies x2 = 2 − dR, and for percolation, the
thermal exponent yt = dR [20,21]. The two-arm exponent
gives the asymptotic decay L−x2 of the probability that at
least two spanning clusters join inner and outer annuli [of radii
O(1) and L, respectively] in the plane. We also note that dE and
dH are related by the duality transformation g �→ 16/g [22].
The most precise numerical estimate for dB currently known
is dB = 1.6434(2) [12].

We study critical bond percolation on the torus Z2
L and

show that, as a consequence of self-duality, the density of
bridges and nonbridges both tend to 1/4 as L → ∞. Using
Monte Carlo simulations, we observe that, despite the fact that
around 43% of all occupied edges are branches, the fractal
dimension of the leaf-free clusters is simply dF, whereas, their
hulls are governed by dH. By contrast, the fractal dimension
of the bridge-free configurations is dB, and that of their hulls
is dE. Figure 2 shows a typical realization of the largest cluster
in critical square-lattice bond percolation, showing the three
different types of bonds present.

In more detail, our main findings are summarized as
follows.

(1) The leading finite-size correction to the density of
nonbridges scales with exponent −5/4, consistent with −x2.
It follows that the probability that a given edge is not a bridge
but has both its loop arcs in the same loop decays like L−x2

as L → ∞. The leading finite-size correction to the density of

3In terms of the SLE parameter, we have κ = 16/g = 6.

FIG. 2. The largest cluster in a random realization of critical
square-lattice bond percolation on an L × L torus with L = 100.
Nonbridges, junctions, and branches are drawn by bold, thin, and
gray lines, respectively.

junctions also scales with exponent −5/4, whereas, the density
of branches is almost independent of system size.

(2) The fractal dimension of leaf-free clusters is
1.895 84(4), consistent with dF = 91/48 for percolation
clusters.

(3) The hull fractal dimension for leaf-free configurations
is 1.749 96(8), consistent with dH = 7/4.

(4) The fractal dimension for bridge-free clusters is con-
sistent with dB, and we provide the improved estimate dB =
1.643 36(10).

(5) The hull fractal dimension for bridge-free configura-
tions is 1.3333(3), consistent with dE = 4/3.

The remainder of this paper is organized as follows.
Section II introduces the model, algorithm, and sampled
quantities. Numerical results are summarized and analyzed
in Sec. III. A brief discussion is given in Sec. IV.

II. MODEL, ALGORITHM, AND OBSERVABLES

A. Model

We study critical bond percolation on the L × L square
lattice with periodic boundary conditions with linear system
sizes L = 8, 16, 24, 32, 48, 64, 96, 128, 256, 512, 1024, 2048,
and 4096. To generate a bond configuration, we independently
visit each edge on the lattice and randomly place a bond with
probability p = 1/2. For each system size, we produced at
least 7 × 106 independent samples; for each L � 512, we
produced more than 108 independent samples.

A leaf in a percolation configuration is a site which is
adjacent to precisely one occupied bond. Given a percolation
configuration, we generate the corresponding leaf-free config-
uration via the following iterative procedure, often referred to
as burning. For each leaf, we delete its adjacent bond. If this
procedure generates new leaves, we repeat it until no leaves
remain. The bonds which are deleted during this iterative
process are precisely the branches defined in Sec. I.
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The bridges in the leaf-free configurations are the junctions.
Deleting the junctions from the leaf-free configurations then
produces bridge-free configurations. The algorithm we used
to efficiently identify junctions in leaf-free configurations is
described in Sec. II B.

B. Algorithm

Given an arbitrary graph G = (V,E), the bridges can be
identified in O(|E|) time [23,24]. Rather than applying such
graph algorithms to identify the junctions in our leaf-free
configurations, however, we took advantage of the associated
loop configurations. These loop configurations also were used
to measure the observable Hlf , defined in Sec. II C.

Consider an edge e which is occupied in the leaf-free
configuration, and denote the leaf-free cluster to which it
belongs by Ce. In the planar case, it is clear that e will be
a bridge iff the two loop segments associated with it belong
to the same loop. More generally, the same observation holds
on the torus provided Ce does not simultaneously wind in both
the x and the y directions.

If Ce does simultaneously wind in both the x and the y

directions, loop arguments may still be used, however, the
situation is more involved. It clearly remains true that, if the
two loop segments associated with e belong to different loops,
then e is a nonbridge.

Suppose instead that the two loop segments associated with
e belong to the same loop, which we denote by L. Deleting e

breaks L into two smaller loops L1 and L2. For each such loop,
we let wx and wy denote the winding numbers in the x and
y directions, respectively, and we define w = |wx | + |wy |. As
we explain below, the following two statements hold:

(i) If w(L1) = 0 or w(L2) = 0, then e is a bridge.
(ii) If w(L) = 0 and w(L1) = 1, then e is a nonbridge.

As an illustration, in Fig. 1, edge 1 is a junction, whereas,
edge 2 is a nonbridge, despite both of them being bounded
by the same loop. Edge 1 can be classified correctly using
statement II B, whereas, edge 2 can be classified correctly
using statement II B.

By making use of these observations, all but very few
edges in the leaf-free clusters can be classified as bridges
or nonbridges. We note that, in our implementation of the
above algorithm, the required w values can be determined
immediately from the stored loop configuration without further
computational effort. For the small number of edges to which
neither of the above two statements apply, we simply delete the
edge and perform a connectivity check using a simultaneous
breadth-first search. This takes O(LdF−x2 ) time per edge
tested [25].

We now justify statement II B. In this case, loop L1 is
contained in a simply connected region on the surface of
the torus. The cluster contained within loop L1 is, therefore,
disconnected from the remainder of the lattice, implying that
e is a bridge. Edge 1 in Fig. 1 provides an illustration.

Finally, we justify statement II B. In this case, L1 and L2

either both wind in the x direction or both wind in the y

direction (one winds in the positive sense, the other winds in
the negative sense). Suppose they wind in the y direction. It
then follows from the definition of the BKW loops that there
can be no x windings in the cluster Ce \ e. By assumption,

TABLE I. Fit results for ρb, ρj, and ρn.

ρ ρ0 y1 a1 Lmin/DF/χ 2

ρb 0.214 050 19(3) 5/4 0.000 04(4) 24/9/6
0.214 050 19(3) 5/4 0.000 05(5) 32/8/6
0.214 050 18(3) 5/4 0.000 09(6) 48/7/4

ρj 0.035 949 78(5) 1.2502(2) −0.2777(2) 24/8/4
0.035 949 78(5) 1.2502(3) −0.2777(3) 32/7/4
0.035 949 79(6) 1.2500(4) −0.2775(4) 48/6/4

ρn 0.250 0001(1) 1.2507(5) 0.2783(5) 24/8/2
0.250 0001(1) 1.2508(6) 0.2784(6) 32/7/2
0.250 0001(1) 1.2506(7) 0.2781(9) 48/6/2

however, Ce does contain an x winding, so it must be the case
that e belongs to a winding cycle in Ce that winds in the x

direction. Edge e is, therefore, not a bridge. Edge 2 in Fig. 1
provides an illustration.

C. Measured quantities

From our simulations, we estimated the following quanti-
ties.

(1) The mean density of branches ρb, junctions ρj, and
nonbridges ρn.

(2) The mean size of the largest cluster C1.
(3) The mean size of the largest leaf-free cluster Clf .
(4) The mean size of the largest bridge-free cluster Cbf .
(5) The mean length of the largest loop Hlf for the loop

configuration associated with leaf-free configurations.
(6) The mean length of the largest loop Hbf for the loop

configuration associated with bridge-free configurations.
We note that fewer samples were generated for C1 and Hbf

than for other the quantities.

III. RESULTS

In Secs. III B, III C, III D, we discuss least-squares fits
for ρb, ρj, and ρn and Clf, Cbf,Hlf , and Hbf . The results are
presented in Tables I–III. In Sec. III A, we first make some
comments on the Ansätze and methodology used.

A. Fitting Ansätze and methodology

Let ρ1 (ρ2) denote the mean density of occupied edges
whose two associated loop segments belong to the same
(distinct) loop(s). From Lemma 1 in the Appendix, we know
that, for p = 1/2 bond percolation on Z2

L, we have ρ1 = ρ2 =
1/4 for all L. In the plane, however, an edge is a bridge iff the

TABLE II. Fit results for Clf and Cbf .

O dO a0 a1 a2 Lmin/DF/χ 2

Clf 1.895 82(2) 0.588 88(2) −0.103(6) −0.61(5) 24/7/8
1.895 84(2) 0.588 81(6) −0.091(9) −0.75(9) 32/6/4
1.895 84(2) 0.588 78(8) −0.08(2) −0.8(3) 48/5/4

Cbf 1.643 32(3) 0.8092(2) 0.07(2) −0.2(2) 24/7/4
1.643 32(3) 0.8091(2) 0.08(3) −0.3(3) 32/6/4
1.643 36(4) 0.8089(3) 0.14(5) −1.2(7) 48/5/1
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TABLE III. Fit results for Hlf and Hbf .

O dO a0 a1 a2 Lmin/DF/χ 2

Hlf 1.750 05(2) 0.408 11(6) 0.039(6) −0.25(5) 24/7/12
1.750 02(3) 0.408 17(7) 0.029(9) −0.15(9) 32/6/10
1.749 99(4) 0.408 30(9) 0.00(2) 0.3(3) 48/5/5

Hbf 1.333 33(8) 0.7340(4) 0.28(3) −1.1(2) 16/5/4
1.333 2(2) 0.7345(6) 0.20(8) −0.3(8) 32/4/3
1.3333(2) 0.7342(9) 0.3(2) −2(3) 64/3/2

two associated loop segments belong to the same loop. We,
therefore, expect that both ρn and ρj + ρb should converge to
1/4 as L → ∞.

Furthermore, there is a natural interpretation of the quantity
ρn − ρ2. As noted in Sec. II B, if the two loop segments
associated with an edge belong to different loops, then that
edge cannot be a bridge. This implies that ρn − ρ2 is equal
to the probability of the event that “a given edge is not a
bridge but has both its loop arcs in the same loop”. Let us
denote this event by B. Studying the finite-size behavior of ρn

will, therefore, allow us to study the scaling of P(B). Since
ρj + ρb + ρn = ρ1 + ρ2, it follows that ρ1 − ρj − ρb is also
equal to P(B).

Armed with the above observations, we fit our Monte Carlo
data for the densities ρj, ρb, and ρn to the finite-size scaling
ansatz,

ρ = ρ0 + a1L
−y1 + a2L

−y2 . (2)

We note that, since ρj + ρb + ρn = 1/2 for all L, the finite-
size corrections of ρj + ρb should be equal in magnitude and
opposite in sign to the finite-size corrections of ρn. Since ρn =
1/4 + P(B), the latter should be positive, and the former should
be negative.

Finally, we note that eventB essentially characterizes edges
which would be bridges in the plane but which are prevented
from being bridges on the torus by windings. By construction,
branches always have at least one end attached to a tree,
suggesting that they cannot be trapped in winding cycles in this
way. This would suggest that it should be ρj that contributes
the leading correction of ρj + ρb away from its limiting value
of 1/4.

The observables Clf, Cbf , and Hlf . Hbf are expected to
display nontrivial critical scaling, and we fit them to the
finite-size scaling ansatz,

O = c0 + LdO (a0 + a1L
−y1 + a2L

−y2 ), (3)

where dO denotes the appropriate fractal dimension.
As a precaution against correction-to-scaling terms that

we failed to include in the fit ansatz, we imposed a lower
cutoff L > Lmin on the data points admitted in the fit, and
we systematically studied the effect on the χ2 value of
increasing Lmin. Generally, the preferred fit for any given
ansatz corresponds to the smallest Lmin for which the goodness
of fit is reasonable and for which subsequent increases in Lmin

do not cause the χ2 value to drop by vastly more than one
unit per degree of freedom (DF). In practice, by reasonable,
we mean that χ2/DF � 1 where DF is the number of degrees
of freedom.

In all the fits reported below, we fixed y2 = 2, which
corresponds to the exact value of the subleading thermal
exponent [7].

B. Bond densities

Leaving y1 free in the fits of ρj and ρn, we estimate y1 =
1.2505(10). We, therefore, conjecture that y1 = 5/4, which we
note is precisely equal to the two-arm exponent x2 = 5/4. We
comment on this observation further in Sec. IV.

For ρb by contrast, we were unable to obtain stable fits with
y1 free. Fixing y1 = 5/4, the resulting fits produce estimates of
a1 that are consistent with zero. In fact, we find ρb is consistent
with 0.214 050 18 for all L � 24. This weak finite-size
dependence of ρb is in good agreement with the arguments
presented in Sec. III A.

All the fits for ρb, ρj, and ρn gave estimates of a2 consistent
with zero. We, therefore, set a2 = 0 identically in the fits
reported in Table I.

From the fits, we estimate ρb,0 = 0.214 050 18(5), ρj,0 =
0.035 949 79(8), and ρn,0 = 0.250 0001(2). We note that
ρb,0 + ρj,0 = ρn,0 = 1/4 within error bars as expected. The
fit details are summarized in Table I. We also note that the
estimates of a1 for ρj and ρn are equal in magnitude and
opposite in sign, which is as expected given that a1 is consistent
with zero for ρb.

In Fig. 3, we plot ρb, ρj, and ρn versus L−5/4. The plot
clearly demonstrates that the leading finite-size corrections
for ρj and ρn are governed by exponent x2 = 5/4, whereas,
essentially, no finite-size dependence can be observed for ρb.

C. Fractal dimensions of clusters

The first question to be addressed in this section is to
determine if the fractal dimension of leaf-free clusters differs
from dF. We, therefore, fit the data for Clf to the ansatz (3).
The fit results are reported in Table II. In the reported fits, we
set c0 = 0 identically since leaving it free produced estimates
for it, consistent with zero. Leaving y1 free, we estimate
y1 = 1.3(3), which is consistent with the value y1 = 5/4
observed for ρj and ρn.

From the fits, we estimate dClf = 1.895 84(6), which is
consistent with the fractal dimension of percolation clusters
dF = 91/48. This indicates that, although around 43% of all
occupied bonds are branches (see Table I), their deletion from
percolation configurations does not alter the fractal dimensions
of the resulting clusters. In Fig. 4, we plot L−91/48Clf versus
L−5/4.

For comparison, we also performed fits of C1 to the
ansatz (3), obtaining the estimate a0 = 0.9838(5), which is
strictly larger than the value estimated for Clf . As L → ∞,
therefore, a nontrivial fraction 1 − a0(Clf )/a0(C1) ≈ 40% of
sites in the largest percolation cluster are deleted by burning
the branches. This is close to, but slightly smaller than, the
proportion of occupied bonds which are branches 2ρb ≈ 43%.

We next study the fractal dimension of bridge-free clusters.
We fit the Monte Carlo data for Cbf to the ansatz (3), and the
results are reported in Table II. In the fits, we fixed y1 = 5/4
and again observed that c0 is consistent with zero. We also
performed fits (not shown) with y1 free or fixed to y1 = 1
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FIG. 3. (Color online) Plots of ρn (top), ρb (middle), and ρj

(bottom) versus L−5/4. From top to bottom, the three dashed lines
correspond to values 1/4, 0.214 050 18, and 0.035 949 79,
respectively. The statistical error of each data point is smaller than
the symbol size. The straight lines are simply to guide the eye.

in order to estimate the systematic error in our estimates of
dB. This produced our final estimate dB = 1.643 36(10). This
value is consistent with the estimate dB = 1.6434(2) [12] but
with an improved error bar.

Figure 5 plots L−dBCbf versus L−5/4 with dB chosen to
be the central value of our estimate as well as the central
value plus or minus three error bars. The obvious upward
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FIG. 4. Plot of L−91/48Clf versus L−5/4. The statistical error of
each data point is smaller than the symbol size. The straight lines are
simply to guide the eye.
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FIG. 5. (Color online) Plot of L−dBCbf versus L−5/4 with dB =
1.643 06, 1.643 36, and 1.643 66. The statistical error of each data
point is smaller than the symbol size. The straight lines are simply to
guide the eye.

(downward) bending as L increases when using a dB value
above (below) our central estimate illustrates the reliability of
our final estimate of dB.

D. Fractal dimensions of loops

Finally, we studied the fractal dimensions of the loop
configurations associated with both leaf-free and bridge-free
configurations.

We fit the data for Hlf and Hbf to the ansatz (3) with y1 =
5/4 fixed. For both Hlf and Hbf , the fits gave estimates of c0,
consistent with zero. We, therefore, fixed c0 = 0 identically
in the fits reported in Table III. To estimate the systematic
error, we compared these results with fits in which y1 was free
and fits with y1 = 1 fixed. Our resulting final estimates are
dHlf = 1.749 96(8) and dHbf = 1.3333(3).

For leaf-free configurations, therefore, our fits strongly
suggest dHlf = 7/4 = dH. Thus, deleting branches from per-
colation configurations affects neither the fractal dimension
for cluster size nor the fractal dimension for lengths of the
associated loops. For bridge-free configurations, by contrast,
the fits suggest that dHbf = 4/3 = dE.
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FIG. 6. (Color online) Log-log plot of Hlf and Hbf versus L. The
two dashed lines have slopes 7/4 and 4/3, respectively. The statistical
error of each data point is smaller than the symbol size.
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In Fig. 6, we plot Hlf and Hbf versus L to illustrate our
estimates for dHlf and dHbf .

IV. DISCUSSION

We have studied the geometric structure of percolation
on the torus by considering a partition of the edges into
three natural classes. On the square lattice, we have found
that leaf-free configurations have the same fractal dimensions
and hull dimensions as standard percolation configurations,
whereas, bridge-free configurations have cluster and hull
fractal dimensions consistent with the backbone and external
perimeter dimensions, respectively.

In addition to the results discussed above, we have extended
our study of leaf-free configurations to site percolation on the
triangular lattice and bond percolation on the simple-cubic lat-
tice, the critical points of which are 1/2 and 0.248 811 82(10),
respectively [26]. We find numerically that the fractal di-
mensions of leaf-free clusters for these two models are
1.8957(2) and 2.5227(6), respectively, both of which are again
consistent with the known results 91/48 and 2.522 95(15) [26]
for dF. In both cases, our data show that the density of
branches is again only very weakly dependent on the system
size.

It would also be of interest to study the bridge-free
configurations on these lattices. In addition to investigating the
fractal dimensions for cluster size and in the triangular case of
the hull length, it would be of interest to determine whether
the leading finite-size correction to ρn is again governed by the
two-arm exponent.

The two-arm exponent usually is defined by considering the
probability of having multiple spanning clusters joining inner
and outer annuli in the plane. As noted in Sec. III A, however,
our results show that, for percolation, the two-arm exponent
also governs the probability of a rather natural geometric event
on the torus: the event that a given edge is not a bridge but has
both its loop arcs in the same loop. This provides an interesting
alternative interpretation of the two-arm exponent in terms of
toroidal geometry.

Let us refer to an edge that is not a bridge but has both its
loop arcs in the same loop as a pseudobridge. We note that an
alternative interpretation of the observation that (ρn − ρ2) ∼
L−x2 is that the number of pseudobridges L2(ρn − ρ2) scales
as LdR .

A natural question to ask is to what extent the above results
carry over to the general setting of the Fortuin-Kasteleyn
random-cluster model. Consider the case of two dimensions
once more. In that case, we know that, if we fix the edge
weight to its critical value and take q → 0, we obtain the
uniform spanning trees (USTs) model. For this model, all
edges are branches, and so the leaf-free configurations, which
are, therefore, empty, certainly do not scale in the same way as
the UST configurations. Despite this observation, preliminary
simulations4 performed on the toroidal square lattice at q =
0.09, 0.16, 1.5, 2.0, 2.5, 3.0, and 3.5 suggest that, for all

4These simulations were performed using the Sweeny algo-
rithm [27] for q < 1 and the Chayes-Machta algorithm [28] for
q > 1.

q ∈ (0,4], the leaf-free configurations have the same fractal
dimensions and hull dimensions as the corresponding standard
random-cluster configurations. In the context of the random-
cluster model, the behavior of the leaf-free configurations for
the UST model, therefore, presumably arises via amplitudes
which vanish at q = 0.

In addition, these preliminary simulations suggest that
the number of pseudobridges, in fact, scales as LdR for the
critical random-cluster model at any q ∈ (0,4]. It would also
be of interest to determine whether the fractal dimensions
of cluster size and hull length for bridge-free random cluster
configurations again coincide with dB and dE when q 	= 1.
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APPENDIX: A LOOP DUALITY LEMMA

Let L1 (L2) denote the fraction of occupied edges whose
two associated loop segments belong to the same (distinct)
loop(s).

Lemma 1. Consider p = 1/2 bond percolation on Z2
L. For

any L, we have EL1 = EL2 = 1/4.
Proof. Let m = 2L2 denote the number of edges in G =

Z2
L. Since G is a cellularly embedded graph [14], it has a

well-defined geometric dual G∗ and medial graph M(G) =
M(G∗). For any e ∈ E, we denote its dual by e∗ ∈ E∗.

For e ∈ E, let �1(e) be the event that the two loop segments
associated with e both belong to the same loop, and let �2(e) be
the event that they belong to distinct loops. The key observation
is that, for any 0 � a � m, we have

∑

A⊆E

|A|=a

∑

e∈A

1�1(e)(A) =
∑

B∗⊆E∗
|B∗|=m+1−a

∑

e∗∈B∗
1�2(e∗)(B

∗). (A1)

To see this, first note that the number of terms on either side
of (A1) is

(
m

a

)
a = (

m

m+1−a

)
(m + 1 − a) and that each term is

either 0 or 1. Then note that there is a bijection between the
terms on the left- and right-hand sides such that the term on
the left-hand side is 1 iff the term on the right-hand side is 1 as
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e

e∗

e

e∗

FIG. 7. Left: illustration of a configuration A ⊆ E for which
event �1(e) occurs. Right: the corresponding configuration A∗ ∪ e∗

for which event �2(e∗) occurs.

we now describe. Let A ⊆ E with |A| = a, and let A∗ denote
the dual configuration: Include e∗ in A∗ iff e 	∈ A. With the

term on the left-hand side corresponding to (A,e), associate
the term (B∗,e∗) = (A∗ ∪ e∗,e∗) appearing on the right-hand
side. This is clearly a 1-1 correspondence.

Let L(A) denote the loop configuration corresponding to
A. By construction, L(A) = L(A∗). The loop configuration
L(A∗ ∪ e∗) differs from L(A) only in that the loop arcs
cross e∗ in L(A) but cross e in L(A∗ ∪ e∗). If 1�1(e)(A) =
1, then it follows that 1�2(e∗)(B∗) = 1. The converse holds
by duality, and so (A1) is established. See Fig. 7 for an
illustration.

Summing both sides of (A1) over a and dividing by m2m

then shows that EL1 = EL2. Since, on average, precisely
1/2 of all edges are occupied when p = 1/2, the stated result
follows.
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