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We present a numerical analysis of spanning avalanches in a two-dimensional (2D) nonequilibrium zero-
temperature random field Ising model. Finite-size scaling analysis, performed for distribution of the average
number of spanning avalanches per single run, spanning avalanche size distribution, average size of spanning
avalanche, and contribution of spanning avalanches to magnetization jump, is augmented by analysis of spanning
field (i.e., field triggering spanning avalanche), which enabled us to collapse averaged magnetization curves below
critical disorder. Our study, based on extensive simulations of sufficiently large systems, reveals the dominant
role of subcritical 2D-spanning avalanches in model behavior below and at the critical disorder. Other types of
avalanches influence finite systems, but their contribution for large systems remains small or vanish.
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I. INTRODUCTION

Over the past few decades, the study of nonequilibrium
systems, manifesting avalanche-type response in relaxation
to external perturbation, played an important role. Thus, in
the research of disorder-induced phase transitions, a particular
focus was on the random field Ising model (RFIM) [1] and its
nonequilibrium zero-temperature version [2,3], due to their
conceptual importance and relevance for interpretation of
Barkhausen noise data [4–6].

Extensive studies on nonequilibrium zero-temperature
RFIM revealed its nontrivial critical behavior in 2 � d < 6
dimensions and the mean-field criticality for d � 6 [7–12].
In addition, it has been shown that both equilibrium [13]
and nonequilibrium zero-temperature models are very likely
to be in the same universality class for d � 3 [14]. On
the other hand, the two models are different in the two-
dimensional (2D) case because the ferromagnetic ordering,
found in the nonequilibrium 2D model [11,12], is absent in
the thermodynamic limit of the equilibrium 2D model [15].

A significant part of recent studies of nonequilibrium
systems are concentrated on extreme events, comprising
catastrophic runaway avalanches in which a majority of the
system’s constituents change their state [16,17]. Extreme
statistics of avalanches near the depinning transition have been
also studied in Refs. [18,19], leading to results that are broadly
applicable to other systems, ranging from magnets to crystal
plasticity [20]. Beside physics, the analysis of extreme events
is widely used in other sciences, such as technical, material,
earth, and climate sciences, as well as for predictions related
to finance and traffic systems. Many of these systems can be
treated as nonequilibrium and 2D, which was an additional
motive of this study of a nonequilibrium 2D model.

A decade ago, Pérez-Reche and Vives introduced an exten-
sive finite-size scaling analysis of spanning avalanches in the
three-dimensional (3D) model [21]. They have identified the
type of spanning avalanches that survive the thermodynamical
limit below critical disorder and found that other types of
spanning avalanches are irrelevant in this limit except at critical
disorder.

During a single simulation of 3D and higher dimensional
models, more than one spanning avalanche may be triggered.

This is not the case in the 2D model where at most one
spanning avalanche per run may appear, which necessitates
a modification of the foregoing analysis.

In this paper we present a numerical study of the span-
ning avalanches in the 2D nonequilibrium zero-temperature
random-field Ising model. In addition to finite-size scaling
analysis of various spanning avalanche distributions, we
introduce an analysis of a spanning field, i.e., a field that
triggers a spanning avalanche, which enabled us to perform
the collapsing of averaged magnetization curves below critical
disorder.

Our paper is organized as follows. In Sec. II we briefly
describe the random field Ising model, and in Sec. III we
outline the role of spanning avalanches for the RFIM critical
behavior. Classification of spanning avalanches in 2D model,
together with numerical analysis of their average number, and
of their fractal properties, are given in Sec. IV. Scaling analyses
of spanning avalanche size distribution and of magnetization
jumps, presented in Secs. V and VI, are followed by a scaling
analysis of spanning fields in Sec. VII and a scaling analysis
of averaged magnetization curves below critical disorder
in Sec. VIII. Our findings are discussed in Sec. IX and
summarized in Sec. X.

II. MODEL

The random field Ising model (RFIM) describes a system of
N ferromagnetically coupled spins Si = ±1 located at sites i

of a d-dimensional Euclidean lattice, here the quadratic lattice
(d = 2) of size L × L with periodic boundary conditions. In
its simplest form, the Hamiltonian of this system is

H = −
∑
〈i,j〉

SiSj − H
∑

i

Si −
∑

i

hiSi, (1)

where 〈i,j 〉 are the pairs of nearest neighbors, H is a
homogeneous external magnetic field, while {hi}Ni=1 is some
configuration of the local quenched magnetic field. Its values
hi at N = L2 lattice sites are randomly chosen from some
zero-mean distribution, here Gaussian distribution

ρ(h) = 1

R
√

2π
exp

(
− h2

2R2

)
(2)
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with standard deviation R, controlling disorder in the system.
The values of random variables {hi}Ni=1 are chosen indepen-
dently, hence 〈hihj 〉RFC = R2δij , where δij is the Kronecker
delta function, and 〈...〉RFC denotes the average over different
random field configurations (RFC).

In the nonequilibrium zero-temperature RFIM, the sys-
tem evolution is governed by the local relaxation rule: the
spin Si is stable while its sign is equal to the sign of
effective field

heff
i ≡

∑
〈j〉

Sj + H + hi, (3)

where Sj are the nearest neighbors’ spins of Si ; all spins that
are unstable at the moment t of (discrete) time will flip in the
next moment of time t + 1 (parallel updating).

The flipping of each spin changes the effective field for
all of its nearest neighbors. Those neighbors that become
unstable will flip, which in turn may cause the flipping of
their neighbors, and in this way an avalanche (of spin flipping)
is created.

During each avalanche the value of H is kept constant
here, so the system relaxes adiabatically towards some of its
metastable states. The avalanche lasts until all spins become
stable. After that, the only way to initiate the next avalanche
is to change the value of the external field H .

Due to the foregoing deterministic rules, the system evolu-
tion is completely specified by the random field configuration
{hi}Ni=1 of the quenched magnetic field, initial system state
{S0

i }Ni=1, and the pattern of variation of external field H . The
same applies to system response functions, like magnetization
M = (

∑N
i=1 Si)/N .

The system can be driven by the external field in various
ways. Thus, starting from the initial condition H = −∞
and all Si = −1, one may simulate the rising part of the
saturation hysteresis loop by increasing H exactly by the
amount that flips the least stable spin, and repeat this until
all Si = 1. Alternatively, starting from H = ∞ and all Si = 1,
one may simulate the falling part by decreasing H until all
Si = −1.

In our simulations, the data were collected along the rising
part of saturation hysteresis loop. The whole procedure, using
different RFCs, is repeated many times until reliable statistics
are collected.

III. SPANNING AVALANCHES

For any dimension d > 1, the nonequilibrium zero-
temperature RFIM exhibits a critical behavior [2,7,8,11],
separating two response regimes of infinite systems. If R <

Rc, where Rc = Rc(d) is the critical disorder, a jump in
magnetization (i.e., the first-order phase transition) occurs,
while for R > Rc the magnetization varies smoothly with
the external field H . At the critical disorder, R = Rc, the
magnetization is still smooth, but with the infinite slope
dM/dH at the critical field Hc.

The jumps in magnetization originate from the spanning
avalanches: avalanches that span the finite system along at least
one of its dimensions [9]. Spanning avalanches appear only
if R � Reff

c , where Reff
c = Reff

c (L,d) is the effective critical
disorder for d-dimensional systems of linear size L; due to

system finiteness, Reff
c (L,d) > Rc, and Reff

c (L,d) → Rc(d) in
the thermodynamical limit N → ∞.

The spanning avalanches are classified by the number
of spatial dimensions they span [21]. So, in the 3D case,
there are the one-dimensional (1D), 2D, and 3D-spanning
avalanches, whereas in the 2D model there are only the 1D
and 2D-spanning avalanches. The 3D-spanning avalanches in
3D model are further classified as subcritical and critical. The
classification is based on the existence of two components
forming the number distribution of 3D-spanning avalanches;
see Fig. 4 in Ref. [21]. One component appears as a steplike
function of disorder R decaying from one to zero in the
vicinity of Rc and comprises almost compact 3D-spanning
avalanches, called subcritical. The second component has the
shape of a single peak near Rc and comprises less compact
3D-spanning avalanches, called critical; for more details see
Sec. IV.

The analysis of spanning avalanches in 3D model revealed
that all types of spanning avalanches influence the statistics
of finite systems, but, for R �= Rc, their contributions vanish
when the system size L → ∞; see Ref. [21]. The only
exception comes from the subcritical 3D-spanning avalanches,
which survive the thermodynamical limit for R � Rc, and
for R < Rc determine the behavior of the infinite system
in its first-order phase transition. The case R = Rc is more
subtle because all types of spanning (and critical nonspanning)
avalanches survive the L → ∞ limit and contribute to the
critical behavior.

During a single simulation of RFIM in d � 3 dimensions,
more than one spanning avalanche may be triggered. This is
not the case in the 2D model where, due to topology of of the
lattice, periodic boundary conditions, and compactness of the
spanning avalanches, at most one spanning avalanche per run
may appear, so the hyperscaling relation [2,8,13]

dν − β = 1/σ, (4)

violated for d � 3, holds in the 2D case; here ν describes
the scaling ξ ∼ |r|1/ν of correlation length, β the scaling of
magnetization jump 	M ∼ |r|β below Rc, and σ the scaling
of the largest avalanche size Smax ∼ |r|σ with reduced disorder
r ≡ (R − Rc)/R.

IV. NUMERICAL ANALYSIS OF SPANNING AVALANCHES
IN THE 2D MODEL

The spanning avalanches in the 2D model are extreme
events that are realized at most once per run, and a huge number
of runs is necessary to collect their reliable statistics. For this
reason we have performed our simulations on 2D lattices that
are, although smaller than in our previous papers [11,12],
still large enough for the accomplishment of the current task
[22,23].

In Fig. 1 we present Ns(R,L), the average number per
single run of spanning avalanches collected along the rising
part of the saturation hysteresis loop, or simply the number
of spanning avalanches, with the remark that the name of
any other analogous quantity will be simplified similarly.
Our data show that Ns(R,L) � 1 for any L and all R, and
also that Ns(R,L) = 1 for small disorders and any lattice
size L.

012118-2



ANALYSIS OF SPANNING AVALANCHES IN THE TWO- . . . PHYSICAL REVIEW E 89, 012118 (2014)

FIG. 1. (Color online) Number of spanning avalanches Ns(R,L)
as a function of disorder R for different system sizes L shown
in the legend. The number Ns(R,L) is estimated as Ns(R,L) ≈
N

(reg)
s (R,L)/Nrun, where N

(reg)
s (R,L) is the number of spanning

avalanches registered in Nrun simulations of the 2D model with
different random field configurations for given R and L. The number
of runs varied with L from 1000 to 40 000 and is shown in the legend
for each L in parentheses.

A. Average number of 1D-spanning avalanches

The data in Fig. 1 correspond to all spanning avalanches.
On the other hand, in analogy with the 3D model, the
spanning avalanches of the 2D model can be classified as
1D-spanning and 2D-spanning avalanches. Thus, the 1D-
spanning avalanches are those avalanches that span exactly
one spatial dimension. In Fig. 2 we show the number of
1D-spanning avalanches N1(R,L). For each L, we found that
N1(R,L), taken as function of R, can be well approximated
by a Gaussian, and these Gaussians are shown by solid lines
grouping individual data points with same L in Fig. 2. The

FIG. 2. (Color online) Number of 1D-spanning avalanches
N1(R,L) against disorder R for lattice sizes L of 2D model and
number of runs, given in parentheses. For each L, the connecting line
shows the Gaussian that best fits the N1(R,L) data, taken as function
of R.

FIG. 3. (Color online) Main panel: Scaling collapse of the Gaus-
sians from Fig. 2 that best fit the N1(R,L) data. The Gaussians are
collapsed according to Eq. (5), and the parameters of the best collapse
are θ1 = 0.08 ± 0.02, Rc = 0.54 ± 0.02, and 1/ν = 0.192 ± 0.006.
Inset: Number of 1D-spanning avalanches N1(R,L) collapsed using
the same values of θ1, Rc, and ν. The solid line shows the Gaussian
that best fits the collapsed data and, therefore, estimates the form of
the universal scaling function Ñ1(rL1/ν).

height of the Gaussians decreases with L, suggesting that
number of 1D-spanning avalanches N1(R,L) scales as

N1(R,L) = L−θ1Ñ1(rL1/ν), (5)

where θ1 is the exponent of the number of 1D-spanning
avalanches, Ñ1(x) is an universal scaling function of the
single variable x = rL1/ν , and r ≡ (R − Rc)/R is the reduced
disorder commonly used in the RFIM context, and giving the
same results in the R → Rc limit as the traditional reduced
disorder (R − Rc)/Rc.

Expression (5) predicts that the scaled numbers of 1D-
spanning avalanches, N1(R,L)Lθ1 , shown against the scaled
reduced disorder rL1/ν , should fall on a single curve, provided
that the exponents θ1 and ν, as well as the critical disorder Rc,
are properly chosen. The best scaling collapse of the foregoing
type is presented in Fig. 3. In the main panel we show the
collapsing of Gaussians that best fit the N1(R,L) data, shown in
Fig. 2. The collapse is obtained for θ1 = 0.08 ± 0.02, together
with Rc = 0.54 ± 0.02 and 1/ν = 0.192 ± 0.006. In the inset,
we show the raw N1(R,L) data, collapsed with the same
parameter values θ1, Rc, and ν. The collapsed data indicate
that the universal scaling function Ñ1(x) has the maximum
value �0.42 at x � 0.92, that its full width at half maximum
(FWHM) is �0.19, and that its form is roughly a Gaussian.
In regard to the method of data collapsing, we would like to
mention that all data collapses, presented in this paper, are
performed with the aid of an algorithm [11,12] that minimizes
the collapse width w, i.e., the width of the region that contains
all scaled collapsing curves.

Far more important than data collapsing is that 1D-spanning
avalanches are irrelevant in the thermodynamical limit of the
2D model. Indeed, for positive θ1, expression (5) predicts that
the number of 1D-spanning avalanches vanishes when the
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system size L → ∞, so the first-order phase transitions are
only influenced by the 2D-spanning avalanches.

Finally, we would also like to point out that in the foregoing,
and in all forthcoming data collapsing, we are using the
reduced disorder r = (R − Rc)/R as the scaling variable. As
proposed in Ref. [21], better collapses are achieved using the
scaling variable

u2 ≡ R − Rc

Rc

+ A

(
R − Rc

Rc

)2

, (6)

but at the cost of an extra free parameter A, which we prefer
to avoid.

B. Number of 2D-spanning avalanches

2D-spanning avalanches are the spanning avalanches that
span the 2D system along both of its spatial dimensions. Due
to the relatively small number of 1D-spanning avalanches,
the number of 2D-spanning avalanches N2(R,L) is not much
different from the corresponding number Ns(R,L) of all
spanning avalanches, shown in Fig. 1. For the sake of
completeness, N2(R,L) is given in Fig. 4.

In the 3D model, the 3D spanning avalanches are classified
as critical and subcritical [21]. The average number of
subcritical 3D-spanning avalanches scales as N3−(R,L) =
Ñ3−(u2L

1/ν) and satisfies N3−(R,L) � 1 because at most
one subcritical avalanche can appear per single run. When
L → ∞ the number N3−(R,L) converges to U (Rc − R),
where U (x) is the unit step function [U (x) = 1 for x �
0, and zero otherwise]. On the other hand, the number
of critical 3D-spanning avalanches scales as N3c(R,L) =
LθÑ3c(u2L

1/ν), and diverges with L like the numbers of
1D-spanning avalanches, N1(R,L) = LθÑ1(u2L

1/ν), and 2D-
spanning avalanches, N2(R,L) = LθÑ2(u2L

1/ν), the exponent
θ being the same for all of them.

Different scaling with L of N3−(R,L) and N3c(R,L)
prevents collapsing of the overall number of 3D-spanning
avalanches N3(R,L) = N3−(R,L) + N3c(R,L) in the 3D case.
Contrary to that, the number N2(R,L) of all 2D-spanning

FIG. 4. (Color online) The number N2(R,L) of 2D-spanning
avalanches in the 2D model against disorder R for various lattice
sizes L and number of runs given in parentheses.

FIG. 5. (Color online) Scaling plot of the data from Fig. 4; the
collapse is obtained for Rc = 0.54 and 1/ν = 0.19.

avalanches in the 2D model collapse on a single curve if the
N2(R,L) data are scaled only along the horizontal axis and
plotted against rL1/ν ; see Fig. 5. This means that the N2(R,L)
data scale as

N2(R,L) = Ñ2(rL1/ν), (7)

and that N2(R,L) converges to the unit step function U (Rc −
R) in the L → ∞ limit. Here Ñ2(rL1/ν) is the corresponding
single variable universal scaling function that we found can be
approximated by the analytic expression

Ñ
(a)
2 (x) = Ñ

(a)
2c (x) + Ñ

(a)
2− (x), (8)

where

Ñ
(a)
2c (x) = HG exp[−(x − c)2/2s2] (9)

is a Gaussian [of height HG = 0.3, center c = 0.89, and s =
0.08, setting FWHM = (2

√
2 ln 2)s = 0.19], while

Ñ
(a)
2− (x) = 0.5 erfc[7.6(x − 0.84)], (10)

where erfc(x) ≡ (2/
√

π)
∫ ∞
x

e−t2
dt is the complementary

error function; see Fig. 6.

C. Fractal properties of spanning avalanches

Collapsing (7) of the N2(R,L) data indicates that if
subcritical and critical 2D-spanning avalanches exist in the 2D
case, then their numbers should scale with the zeroth power of
L, namely,

N2−(R,L) = Ñ2−(rL1/ν) (11)

and

N2c(R,L) = Ñ2c(rL1/ν), (12)

where Ñ2−(x) and Ñ2c(x) are the corresponding universal
scaling functions. For this reason the extraction of N2−(R,L)
and N2c(R,L) from N2(R,L) data by the double finite-size
scaling method, introduced in Ref. [21] for the 3D case, seems
to be impossible here.
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FIG. 6. (Color online) Universal scaling function Ñ2 (symbols)
and its analytic approximation Ñ

(a)
2 (solid line) plotted against rL1/ν ;

Rc = 0.54 and 1/ν = 0.19. The erfc component Ñ
(a)
2− [see Eq. (10)]

of the analytic approximation (8) is given by the dashed line, and the
Gaussian component Ñ

(a)
2c [see Eq. (9)] by the dash-dot line.

However, in Ref. [21] it was deduced that the subcritical
and critical 3D-spanning avalanches have different effective
fractal dimensions (df = 2.98 for subcritical, and df = 2.78
for other spanning and for critical nonspanning avalanches).
So one may try to base their separation on the analysis of
fractal dimension of individual spanning avalanches.

Large avalanches, and in particular spanning avalanches,
triggered in simulations of RFIM are fractal objects. In Fig. 7
we give an example of a 1D-spanning avalanche, and in
Figs. 8–9 two examples of 2D-spanning avalanches; all three
avalanches are triggered in the same 2D system, and for the
same values of R and L, but for different RFCs. The fractal
dimensions of these three avalanches, as well as for all other
individual avalanches, are estimated in our study by the box
counting method; see, for instance, Ref. [24].

FIG. 7. Plot of a 1D-spanning avalanche in the 2D system: L =
4096, R = 0.68. The time scale of spin flipping is shown by the color
legend; unaffected spins are white. Estimated fractal dimension of
the avalanche is df = 1.9828.

FIG. 8. Plot of a 2D-spanning avalanche in the 2D system. The
avalanche is obtained for the same L and R as in Fig. 7, but with
different configuration of quenched magnetic field h. The fractal
dimension of the avalanche is df = 1.9912, and the avalanche is
classified as critical by the d

(s)
f method.

RFIM avalanches are statistical fractals characterized by the
distribution of fractal dimension df of individual avalanches.
The distribution of fractal dimension depends on the lattice
dimension d and size L, disorder R, . . . , as well as on the
type of avalanches being analyzed. As an example, in Fig. 10
we show the distribution of fractal dimension of 2D-spanning
avalanches triggered in a 2D system having linear size L =
1024 and disorder R = 0.72. One may notice that all 2D-
spanning avalanches are quite compact (df ≈ 2), and that the
distribution of their fractal dimension is composed of two
components; the left one is wider, bell-shaped, and centered
around df ≈ 1.99, and is continued to the right by a narrower
component centered almost at df = 2.

The two-component structure of the fractal dimension
distribution can be a sign that in the 2D model, like in

FIG. 9. Plot of a 2D-spanning avalanche in 2D system. L and
R are the same as in Figs. 7–8, but the RFC is different. Estimated
fractal dimension is df = 1.9983, and the avalanche is classified as
subcritical by the d

(s)
f method.
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FIG. 10. (Color online) Distribution Dfd of fractal dimension df

of 2D-spanning avalanches in the 2D system with L = 1024 and
R = 0.72. The area under the Dfd curve is N2(R,L). In the present
case, our choice for the value of d

(s)
f is 1.9925, with the remark that

other choices (e.g., between 1.991 and 1.994) are possible as well.
Inset: The same, but for 1D-spanning avalanches, and the area equal
to N1(R,L); solid line shows the best-fit Gaussian.

the 3D case, the spanning avalanches which span all spatial
dimensions can be classified as critical and subcritical. The
subcritical 2D-spanning avalanches are more compact and
should contribute to N2(R,L) as the steplike distribution
N2−(R,L) [see Eq. (11)] while the critical avalanches should
correspond to N2c(R,L); [see Eq. (12)].

The crudest way to test the foregoing hypothesis is to
select some value d

(s)
f of fractal dimension that separates two

components of the fractal dimension distribution (see Fig. 10)
and to take as subcritical all 2D-spanning avalanches with
fractal dimension df � d

(s)
f . The outcome of this d

(s)
f method

of classification is presented in Fig. 11. In the main panel
we show that the average number of the avalanches which
are classified as subcritical fall onto the analytic Ñ

(a)
2− (rL1/ν)

curve, while the average number of the remaining (i.e., critical)
2D-spanning avalanches follow the Ñ

(a)
2c (rL1/ν) Gaussian [see

inset (a)].
For a given system size L we have classified the 2D-

spanning avalanches using the same value of d
(s)
f for all

disorders R. On the other hand, d
(s)
f needs to change with

L in order to stay adjusted with variation of fractal dimension
distribution with the system size L. In inset (b) of Fig. 11 we
show the currently used d

(s)
f values versus 1/L, indicating that

d
(s)
f → 1.998 when L → ∞.

D. Nonspanning avalanches

The number of nonspanning avalanches Nns(R,L) grows
with both R and L; see Fig. 12 for the 2D case. In the absence
of disorder the rising part of the saturation hysteresis loop
should consist of a single avalanche in which all spins are
flipped, so the number of avalanches must be 1 for all values
of L. On the other hand, for large values of disorder, R � Rc,
the system responds in a sequence of avalanches of size 1,

FIG. 11. (Color online) Main panel: Number of subcritical 2D-
spanning avalanches N2−(R,L) versus rL1/ν ; Rc = 0.54 and 1/ν =
0.19. The collapsed data points (symbols) should fall onto the
universal scaling function Ñ2−(rL1/ν) of subcritical 2D-spanning
avalanches. Like in Fig. 6, the solid line shows the analytical
approximation Ñ

(a)
2 [see Eq. (8)] of the universal scaling function

Ñ2(rL1/ν) of all 2D-spanning avalanches (7), the dashed line the erfc
component Ñ

(a)
2− of Ñ

(a)
2 [see Eq. (10)], and the dash-dot line the

Gaussian component Ñ
(a)
2c of Ñ

(a)
2 [see Eq. (9)]. Insets: (a) the same

as in the main panel, but for the critical 2D-spanning avalanches; (b)
separation values d

(s)
f of fractal dimension versus reciprocal system

size 1/L.

and therefore the number of nonspanning avalanches should
be equal to the number of spins N . For all other values of
disorder, the role of very small avalanches is to prepare the
terrain for the emergence of larger and, in particular, spanning
avalanches. Although smaller than N , the number of such
avalanches scales with N , so one may guess that the number
of all nonspanning avalanches should scale with N = Ld as

Nns(R,L) = LdÑns(R), (13)

which is in reasonable agreement with our 2D data; see Fig. 13.
Note, however, that a detailed analysis [21] has revealed

that the simple scaling (13) is not entirely appropriate in the
3D model. The cause can be traced back to the contribution of

FIG. 12. (Color online) Number of nonspanning avalanches
Nns(R,L) in the 2D model against disorder R for various system
sizes L and number of runs quoted in parentheses.

012118-6



ANALYSIS OF SPANNING AVALANCHES IN THE TWO- . . . PHYSICAL REVIEW E 89, 012118 (2014)

FIG. 13. (Color online) Scaled number of nonspanning
avalanches Nns(R,L) against disorder R for various sizes L of the
2D system.

large nonspanning avalanches, called critical, whose number
diverges as LθnscÑnsc(uL1/ν) with exponent θnsc < 3. The
number of analogous nonspanning avalanches in the 2D model
seems to vanish when L → ∞, and that might be the reason
why the simple scaling (13) works better in the 2D case.

V. SCALING OF THE SPANNING AVALANCHE
SIZE DISTRIBUTIONS

Spanning avalanches contribute to various avalanche distri-
butions which will be elaborated here in the case of avalanche
size distributions in the 2D model.

In panel (a) of Fig. 14, we show the size distribution
D′(S,R,L) of all avalanches versus relative avalanche size
S/L2, i.e., size S divided by the maximum size L2. The
distribution pertains to L = 2896 and disorder R = 0.70,
which is below the effective critical disorder Reff

c for that
L. Here D′(S,R,L) is scaled so that

∑
S D′(S,R,L) = Nav,

where Nav is the average number per single run of all
avalanches, registered along the rising part of the satura-
tion hysteresis loop. Therefore, D′(S,R,L) = NavD(S,R,L),
where D(S,R,L) is the probability density function (PDF)
of size distribution, alternatively, normalized size distribution,
satisfying

∑
S D(S,R,L) = 1.

Almost throughout the whole range of avalanche size,
D′(S,R,L) coincides with the sizes distribution D′

ns(S,R,L) =
NnsDns(S,R,L) of nonspanning avalanches [see panel (a) in
Fig. 14]; Nns is the number and Dns(S,R,L), normalized
size distribution of nonspanning avalanches. Note that the
right-hand cutoff of D′

ns(S,R,L) is rather sharp. So, the number
of critical nonspanning avalanches must be small, and this
enables the simple scaling (13).

The contribution of spanning avalanches is manifested as
a peak at the large-size end of the distribution D′(S,R,L).
In panel (b) of Fig. 14, we present in the relevant range
of avalanche size S the size distribution D′

s(S,R,L) =
NsDs(S,R,L) of spanning avalanches, together with its two
components: size distribution D′

1(S,R,L) = N1D1(S,R,L) of
1D-spanning avalanches, and size distribution D′

2(S,R,L) =
N2D2(S,R,L) of 2D-spanning avalanches; Ns , N1, and N2

are the numbers, while Ds , D1, and D2 are the nor-

FIG. 14. (Color online) Avalanche size distributions versus rel-
ative avalanche size S/L2, i.e., avalanche size S divided by the
maximum avalanche size L2 in the 2D model; L = 2896 and
R = 0.70. (a) Distribution D′(S,R,L) of all avalanches (circles),
and distribution D′

ns(S,R,L) of nonspanning avalanches (solid line).
(b) Distribution D′

s(S,R,L) of spanning avalanches (circles) and its
two components: distribution D′

1(S,R,L) of 1D-spanning avalanches
(dashed line), and distribution D′

2(S,R,L) of 2D-spanning avalanches
(dash-dot line).

malized size distributions of spanning, 1D-spanning, and
2D-spanning avalanches, respectively. Finally, one can fol-
low the size distributions D′

2c(S,R,L) = N2cD2c(S,R,L) and
D′

2−(S,R,L) = N2−D2−(S,R,L) of critical and subcritical
2D-spanning avalanches, together with their normalized ver-
sions D2c(S,R,L) and D2−(S,R,L).

The foregoing size distributions satisfy some relations
which become particularly simple with the adopted choice
of their normalization. In this case the distribution relations
read

D′(S,R,L) = D′
ns(S,R,L) + D′

s(S,R,L), (14)

D′
s(S,R,L) = D′

1(S,R,L) + D′
2(S,R,L), (15)

D′
2(S,R,L) = D′

2c(S,R,L) + D′
2−(S,R,L) . (16)

which is suitable for visual inspection. On the other hand,
it is more convenient to use normalized distributions for the
forthcoming scaling analysis.
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Normalized size distribution D1(S,R,L) of 1D-spanning
avalanches scales with avalanche size S as

D1(S,R,L) = L−τ1d
(1)
f D̃1

(
SL−d

(1)
f ,rL1/ν

)
, (17)

where τ1 is the size exponent, d
(1)
f is the effective fractal

dimension, and D̃1 is the universal scaling function, all for
1D-spanning avalanches. Similarly, for the normalized size
distribution D2c(S,R,L) of critical 2D-spanning avalanches,
one can propose the scaling

D2c(S,R,L) = L−τ2cd
(2c)
f D̃2c

(
SL−d

(2c)
f ,rL1/ν

)
(18)

described by the size exponent τ2c and effective fractal
dimension of critical 2D-spanning avalanches, and likewise
the scaling

D2−(S,R,L) = L−τ2−d
(2−)
f D̃2−

(
SL−d

(2−)
f ,rL1/ν

)
(19)

for subcritical 2D-spanning avalanches, characterized by anal-
ogous exponents τ2− and d

(2−)
f . If the normalized distributions

D1, D2c, and D2− rapidly tend to zero on both of their ends,
then one can show (see Ref. [21]) that

τ1 = τ2c = τ2− = 1, (20)

so the scaling laws (17)–(19) of the size distributions in
question are determined only by the corresponding values of
effective fractal dimensions.

In Fig. 15 we show the collapse (17) of the normalized
avalanche size distributions D1(S,R,L), obtained for the best
values of free collapse parameters d

(1)
f = 1.96 and τ1 = 0.99,

and for rL1/ν = const with fixed Rc = 0.54 and 1/ν = 0.19.
The collapsed data indicate that the universal scaling function
D̃1(x,y) is a bell-shaped function of the first variable x =
SL−d

(1)
f for the fixed value of the second variable y = rL1/ν .

Having at our disposal the d
(s)
f method for classification of

2D-spanning avalanches into subcritical and critical, we have
also checked the scaling hypotheses (18) and (19), and the
collapses are shown in Figs. 16–17. Despite these collapses,

FIG. 15. (Color online) Scaling plot of the normalized size distri-
bution D1(S,R,L) of 1D-spanning avalanches. The best data collapse
is obtained under rL1/ν = const conditions (1/ν = 0.19, Rc = 0.54),
and for the values of free collapse parameters τ1 = 0.99 ± 0.02 and
d

(1)
f = 1.96 ± 0.02.

FIG. 16. (Color online) Scaling plot of normalized size distribu-
tion of critical 2D-spanning avalanches. The collapse is obtained
under same conditions as in Fig. 15, and for the values of free collapse
parameters τ2c = 1.00 ± 0.03 and d

(2c)
f = 1.92 ± 0.04.

due to the rather coarse method of avalanche classification,
are not as good as in Fig. 15, we consider that they agree
with Eqs. (18)–(20) and provide reasonable estimation of the
effective fractal dimensions.

VI. MAGNETIZATION JUMPS

For very large systems, magnetization jumps 	M originate
from the spanning avalanches. In the 2D model, the jump of
magnetization, averaged over different random field configu-
rations, reads

〈	M〉 = 2

L2
Ns〈S〉s , (21)

where Ns is the average number of spanning avalanches per
single run, and 〈S〉s is the average size of spanning avalanches
[25]. The product Ns〈S〉s is the sum

Ns〈S〉s = N1〈S〉1 + N2−〈S〉2− + N2c〈S〉2c (22)

FIG. 17. (Color online) Scaling plot of normalized size distribu-
tion of subcritical 2D-spanning avalanches. The collapse is obtained
under the same conditions as in Figs. 15 and 16, and for the values
τ2− = 1.04 ± 0.06 and d

(2−)
f = 2.00 ± 0.05 of the free collapse

parameters.
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of contribution N1〈S〉1 of 1D-spanning avalanches, and con-
tributions N2−〈S〉2− and N2c〈S〉2c of subcritical and critical
2D-spanning avalanches. Here, because the normalized size
distributions Dα(S,R,L) rapidly tend to zero on both of their
ends, each 〈S〉α = ∑

S SDα(S,R,L) scales with the effective
fractal dimension d

(α)
f as

〈S〉α = Ld
(α)
f α(rL1/ν), (23)

where α(rL1/ν) ≡ ∫ ∞
0 xD̃α(x,rL1/ν). Hence,

Ns〈S〉s = Ld
(1)
f −θ Ñ1(rL1/ν)1(rL1/ν)

+Ld
(2−)
f Ñ2−(rL1/ν)2−(rL1/ν)

+Ld
(2c)
f Ñ2c(rL1/ν)2c(rL1/ν), (24)

and for large L it simplifies to

Ns〈S〉s ≈ L2Ñ2−(rL1/ν)2−(rL1/ν), (25)

because d
(2−)
f = 2, and because θ > 0 and both d

(1)
f and d

(2c)
f

are less than two.
Therefore, we propose the simple scaling

〈	M〉 = 	̃M(rL1/ν) (26)

of magnetization jump of large 2D systems, where

	̃M(rL1/ν) ≡ 2Ñ2−(rL1/ν)2−(rL1/ν) (27)

is the corresponding universal scaling function of the single
variable rL1/ν .

The scaling prediction (26) implies that the magnetization
jump data should collapse onto a single curve after being scaled
only along the horizontal axis. This is in agreement with our
simulation data, and evidenced in the main panel of Fig. 18
by the magnetization jumps, collapsed according to prediction
(26); noncollapsed data are shown in the inset.

VII. ANALYSIS OF SPANNING FIELD

In order to obtain additional insight into the role of spanning
avalanches, we introduce an analysis of their spanning fields.

FIG. 18. (Color online) Main panel: Magnetization jumps 	M

against rL1/ν ; Rc = 0.54 and 1/ν = 0.19. The collapsed curves are
obtained in 2D model for lattice sizes L given in legend. Inset: Main
panel data against disorder R.

For each spanning avalanche one can monitor its spanning field
Hsp, the value of the external magnetic field which triggers this
avalanche. The spanning field is a random variable determined
by the overall simulation conditions, and in particular by the
choice of the random field configuration.

In Fig. 19 we present three examples of the spanning field
raw distributions, collected for different values of disorder
R in the case of the 2D system. For each R the distribution
is narrow and concentrated around the effective critical field
H eff

c (R), the value of the external magnetic field H for which
the averaged magnetization curve for disorder R exhibits the
steepest variation with H . When R → Rc, H eff

c (R) tends to the
critical field Hc of the 2D model, and for the small reduced
disorder r

H eff
c (r) ≈ Hc − br, (28)

FIG. 19. Raw distributions of spanning field Hsp in the case of
2D system with L = 2896. The distributions are collected in 40 000
simulations for each of three values of disorder R indicated in the
legends.
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where the “rotation” parameter b controls the shift of H (eff)
c

relative to Hc; see Refs. [2,8,9]. In the 2D model, we found
[11,12] that Rc = 0.54, Hc = 1.275, and b = 0.24.

According to the type of triggered spanning avalanche, we
classify the realizations of spanning field Hsp as 1D and 2D,
and 2D spanning field realizations into subcritical and critical.
The corresponding distribution N ′

α(Hsp; R,L) of α type of
spanning field Hsp depends parametrically on disorder R and
lattice size L and is normalized so that∫ +∞

−∞
N ′

α(Hsp; R,L)dHsp = Nα(R,L), (29)

where Nα(R,L) is the average number per single run of
spanning avalanches of type α. Such distributions satisfy

N ′
s(H ; R,L) = N ′

1(H ; R,L) + N ′
2(H ; R,L), (30)

where N ′
s(H ; R,L) counts the number of all spanning fields

regardless of their type (cf. Fig. 19) and

N ′
2(H ; R,L) = N ′

2−(H ; R,L) + N ′
2c(H ; R,L) . (31)

Taking into account scaling relation (5), we propose that
the distribution N ′

1(H ; R,L) scales as

N ′
1(H ; R,L) = Lζ1−θ1Ñ ′

1(h′Lζ1 ,rL1/ν) . (32)

Here ζ1 is the exponent of the 1D-spanning field,
Ñ ′

1(h′Lζ1 ,rL1/ν) is the corresponding universal scaling func-
tion of two variables, x = h′Lζ1 , and y = rL1/ν , while the
reduced magnetic field [2,8,9,11,12]

h′ = H − H (eff)
c (r) (33)

is calculated for H = Hsp.
In Fig. 20 we show the distributions N ′

1(H ; R,L), collapsed
according to scaling prediction (32). The displayed distribu-
tions correspond to four combinations of disorder R and lattice
size L satisfying the scaling condition rL1/ν = const. With
fixed values θ1 = 0.08 and 1/ν = 0.19, the best collapse is
obtained for the value ζ1 = 0.77 ± 0.02 of exponent ζ1, per-
taining to distribution N ′

1(H ; R,L) of the 1D-spanning field.
In the same figure we also show a Gaussian approximation of
the corresponding universal scaling function Ñ ′

1(h′Lζ1 ,rL1/ν),
which is for the rL1/ν = const function of the single variable
h′Lζ1 .

In an analogous way, we propose that the distributions of
subcritical and critical 2D-spanning field scale as

N ′
2−(H ; R,L) = L−ζ2Ñ ′

2−(h′/Lζ2 ,rL1/ν), (34)

N ′
2c(H ; R,L) = L−ζ2Ñ ′

2c(h′/Lζ2 ,rL1/ν) , (35)

where Ñ ′
2−(h′/Lζ2 ,rL1/ν) and Ñ ′

2c(h′/Lζ2 ,rL1/ν) are the cor-
responding universal scaling functions for the subcritical and
critical 2D-spanning fields, respectively. Note that the expo-
nent ζ2 of the 2D-spanning fields is the same in both scaling
relations, so the distribution N ′

2(H ; R,L) of all realizations of
the 2D-spanning field manifests scaling

N ′
2(H ; R,L) = L−ζ2Ñ ′

2(h′/Lζ2 ,rL1/ν), (36)

FIG. 20. (Color online) Scaling plot of distributions N ′
1(H ; R,L)

of a 1D-spanning field (symbols) versus combination h′Lζ1 of
variables L and h′, where h′ = Hsp − Hc − br is the reduced value
of a 1D-spanning field Hsp [see Eq. (33)]. The R,L pairs of displayed
distributions satisfy rL1/ν ≈ const and are shown in the legend. The
best collapse with fixed θ1 = 0.08 is obtained for ζ1 = 0.77 ± 0.02.
The full line shows the Gaussian HG exp [−(x − c)2/2s2], which
approximates the universal scaling function of 1D-spanning field
Ñ ′

1(h′Lζ1 ,rL1/ν) for rL1/ν = const; the Gaussian parameters are
height HG = 0.19, center c = −0.24, and FWHM = (2

√
2 ln 2)s =

1.74.

described by the universal scaling function

Ñ ′
2(h′/Lζ2 ,rL1/ν) = Ñ ′

2−(h′/Lζ2 ,rL1/ν)

+ Ñ ′
2c(h′/Lζ2 ,rL1/ν) . (37)

In Fig. 21 we show the distributions of all realizations of the
2D-spanning field N ′

2(H ; R,L), scaled according to prediction
(36). The displayed N ′

2(H ; R,L) data are collected in the same
set of simulations as the N ′

1(H ; R,L) distributions, shown in
Fig. 20. Their best collapse, with exponent ζ2 as the single free
collapse parameter, is obtained for the value ζ2 = −0.30 ±
0.02.

The best analytical approximation of the universal scaling
function Ñ ′

2(h′/Lζ2 ,rL1/ν) with rL1/ν = const is also shown
in Fig. 21. It has the form of exponentially modified Gaussian
(EMG) function

EMG(x) = A

2μ
exp

(
s2

2μ2
+ c − x

μ

)
erfc

(
s2/μ + c − x√

2s

)
,

(38)

which is the convolution

EMG(x) = (GA ∗ E)(x), (39)

of the Gaussian function

GA(x) = A

s
√

2π
exp

[
− (x − c)2

2s2

]
(40)

[having the FWHM = (2
√

2 ln 2)s around the center c, and
enclosing the area A under its graph] with the exponential
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FIG. 21. (Color online) Scaling plot of distributions N ′
2(H ; R,L)

of all realizations of the 2D-spanning field (symbols) versus combi-
nation h′/Lζ2 of variables L and h′, where h′ = Hsp − Hc − br is the
reduced value of the 2D-spanning field Hsp [see Eq. (33)]. The R,L

pairs of displayed distributions satisfy rL1/ν ≈ const and are shown in
the legend. The best collapse is obtained for ζ2 = −0.30 ± 0.02. The
full line shows the exponentially modified Gaussian function (EMG)
[see Eq. (38)], which approximates the universal scaling function of
the 2D-spanning field Ñ ′

2(h′/Lζ2 ,rL1/ν) for rL1/ν = const. The EMG
parameters are A = 0.56, c = −0.04, s = 0.016, and μ = 0.065.

distribution

E(x) =
{

μ−1 exp (−x/μ), x � 0

0, x < 0
(41)

specified by the characteristic value μ of its argument x.
Distribution N ′

2−(H ; R,L) of the subcritical 2D-spanning

field, extracted with the aid of the d
(s)
f method of classification

of 2D-spanning avalanches, is very similar to the distribution
N ′

2(H ; R,L) of all realizations of the 2D-spanning field. The
collapse of N ′

2−(H ; R,L) data, carried out with the same
value of ζ2, is shown in panel (a) of Fig. 22, together with
the EMG approximation of the universal scaling function
Ñ ′

2−(h′/Lζ2 ,rL1/ν) of the subcritical 2D-spanning field. On the
other hand, the universal scaling function Ñ ′

2c(h′/Lζ2 ,rL1/ν)
of the critical 2D-spanning field has a Gaussian shape, which
is suggested by the collapse of distributions N ′

2c(H ; R,L) of
the critical 2D-spanning field, given in panel (b) of Fig. 22.

VIII. COLLAPSING OF MAGNETIZATION CURVES
BELOW CRITICAL DISORDER

For the values of disorder below effective critical disorder
Reff

c (L), each magnetization curve that is realized by a single
random field configuration displays jump(s) generated by
spanning avalanche(s). In the 2D model, on each such curve
there is a single jump located at H = Hsp, i.e., at the value of
the spanning field Hsp that is triggering the single spanning
avalanche for the employed random field configuration.

In the main panel of Fig. 23 we show several examples
of single random field configuration (RFC) magnetization
curves, obtained on the same 2D lattice, but for different
values of disorder R. Except at jump points, they appear as

FIG. 22. (Color online) (a) The same as in Fig. 21, but for
the distribution N ′

2−(H ; R,L) of subcritical 2D-spanning field. (b)
The scaling collapse of the distribution N ′

2c(H ; R,L) of critical
2D-spanning field obtained for the same value of exponent ζ2 as in
panel (a) and in Fig. 21. The full line shows the Gaussian that best fits
the collapsed N ′

2c(H ; R,L) data and approximates the corresponding
universal scaling function Ñ ′

2c(h
′/Lζ2 ,rL1/ν) for rL1/ν = const.

smooth curves on the current scale. The curves are virtually of
rectangular shape, because almost all spins are flipped in the
pertaining single spanning avalanche.

Due to the stochastic nature of the spanning field, single
RFC magnetization jumps appear at different values of the
external field H , covering a narrow range around the effective
critical field H (eff)

c . Therefore, the middle part of the averaged
magnetization curve, obtained by averaging over different
RFCs, has visible steps if the number of employed RFCs is
small; see the inset in Fig. 1 of Ref. [11]. On the other hand,
if the averaged magnetization curve is obtained from a large
number of RFCs, the steps disappear, and the distribution of
vertical jumps, pertaining to single RFC curves, causes a finite
ascent in the middle part of the averaged curve; see the inset
in Fig. 23.

The averaged magnetization comprises two contributions,

M(H ; R,L) = Ms(H ; R,L) + Mns(H ; R,L), (42)
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FIG. 23. (Color online) Magnetization curves M(H ) for disor-
ders R = 0.50–0.56 and lattice size L = 2896; the effective crit-
ical disorder for this size of 2D lattice is Reff

c = 0.701. Main
panel: magnetization curves for single random field configurations.
Inset: Magnetization curves averaged over 40 000 random field
configurations.

where Ms(H ; R,L) comes from spanning avalanches, and
Mns(H ; R,L) from nonspanning avalanches. The contribution
from nonspanning avalanches scales as

Mns(H ; R,L) = L−β/νMns(h
′Lβδ/ν,|r|L1/ν), (43)

where β, δ, and ν are the (standard) critical exponents of
the 2D model, and Mns(h′Lβδ/ν,|r|L1/ν) is the corresponding
universal scaling function.

Above Reff
c (L), the spanning avalanche contribution

Ms(H ; R,L) = 0, because the spanning avalanches are absent.
In this case, the averaged magnetization M(H ; R,L) coincides
with the nonspanning avalanche part Mns(H ; R,L), and
scaling (43) corresponds to scaling (1) in Ref. [11].

Below Reff
c (L), the part of change of averaged magneti-

zation, caused by the spanning avalanches triggered in the
infinitesimal interval dH around the external field H , is given
by

dMs(H ; R,L) = 2

L2

∑
α

〈S〉α|H ;R,LN ′
α(H ; R,L)dH, (44)

where 〈S〉α|H ;R,L is the conditional average size of α-type of
spanning avalanches that are, for given disorder R and lattice
size L, triggered in that interval dH of the external magnetic
field. Our data show that for each type of spanning avalanches
the conditional average size 〈S〉α|H ;R,L is practically constant
in the entire range of the spanning field, i.e.,

〈S〉α|H ;R,L � 〈S〉α, (45)

where 〈S〉α is the (usual) average size, introduced in Sec. VI.
Therefore, for Ms(H ; R,L) = ∫

dMs(H ; R,L), we find that

Ms(H ; R,L) = 2

L2

∑
α

〈S〉αN∗
α (H ; R,L), (46)

where

N∗
α (H ; R,L) ≡

∫ H

Hc+b(R−Rc)/R
N ′

α(H̃ ; R,L)dH̃ , (47)

or in alternative notation

N∗
α (h′; r,1/L) =

∫ h′

0
N ′

α(h̃′; r,1/L)dh̃′

≡ N∗
α (H ; R,L); (48)

see Ref. [26]. For h′ > 0, N∗
α (h′; r,1/L) equals the average

number per single run of α-type of spanning avalanches,
triggered in the interval [0,h′] of reduced magnetic field, and
for h′ < 0, the negative of the number of these avalanches,
triggered in [h′,0].

The number of 1D-spanning avalanches N∗
1 (H ; R,L) scales

as

N∗
1 (H ; R,L) = L−θ1Ñ∗

1 (h′Lζ1 ,rL1/ν), (49)

which follows from (32) and (48), and where Ñ∗
1 (h′Lζ1 ,rL1/ν)

is the universal scaling function. In regard to the quan-
tities pertaining to 2D-spanning avalanches, the scaling
of N∗

2−(H ; R,L) is of the same type as the scaling of
N∗

2c(H ; R,L), namely,

N∗
2−(H ; R,L) = Ñ∗

2−(h′/Lζ2 ,rL1/ν), (50)

N∗
2c(H ; R,L) = Ñ∗

2c(h′/Lζ2 ,rL1/ν), (51)

with an analogous meaning of involved quantities.
The foregoing findings, together with the scaling prediction

(23), enable us to propose the following expression for
averaged magnetization:

M(H,R,L) = L−β/νMns(h
′Lβδ/ν,rL1/ν)

+ 2

L2

[
Ld

(2−)
f 2−(rL1/ν)N∗

2−(h′/Lζ2 ,rL1/ν)

+Ld
(2c)
f 2c(rL1/ν)N∗

2c(h′/Lζ2 ,rL1/ν)

+Ld
(1)
f −θ11(rL1/ν)N∗

1 (h′Lζ1 ,rL1/ν)
]
. (52)

Equation (52) shows that averaged magnetization
M(H ; R,L) exhibits a mixed type of scaling that prevents exact
collapsing of averaged magnetization curves below effective
critical disorder. For large L, however, the middle part of the
averaged magnetization curves can be approximately specified
as

M(H,R,L) ≈ 22−(rL1/ν)N∗
2−(h′/Lζ2 ,rL1/ν), (53)

because all other contributions are small due to

−β/ν < d
(1)
f − θ1 < d

(2c)
f < 2 = d

(2−)
f .

In Fig. 24 we demonstrate that averaged magnetization curves,
satisfying condition rL1/ν = const, collapse onto a single
curve, after scaling along the horizontal axis according to
prediction (53).

IX. DISCUSSION

Beside the many similarities, one has to notice some
important differences between the spanning avalanches in the
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FIG. 24. (Color online) Collapse of averaged magnetization
curves scaled according to Eq. (53); ζ2 = −0.30. The curves
correspond to (L,R) pairs shown in the legend, satisfying condition
rL1/ν ≈ const.

2D and the 3D case, which can be attributed to different
topological properties of the underlying 2D and 3D lattices.

The most important difference, already discussed in Sec. III,
is that there can be at most one spanning avalanche per
single run in the 2D model, whereas in higher dimensions
the spanning avalanches may be interlaced.

Next, the subcritical 2D-spanning avalanches play a more
pronounced role in the 2D model than the analogous subcritical
3D-spanning avalanches in the 3D case. Indeed, below and at
the critical disorder, the subcritical 2D-spanning avalanches
dominantly influence analyzed intensive system characteris-
tics (average number of spanning avalanches, moments of
avalanche distributions, magnetization jumps, and averaged
magnetization), whereas the contributions of other types of
avalanches remain either small or vanish with the increase
of system size, and this, in turn, makes the scaling analyses
of large systems in the 2D model simpler then the correspond-
ing analyses in the 3D case.

Additional dissimilarity between the 2D and the 3D model
is related to the optimal choice of order parameter. Scaling
analyses in the 3D model [21] are performed with the aid of
order parameter u with tunable free parameter A [see Eq. (6)],
which can be, according to our findings, avoided in the 2D
case using usual (and simpler) parameter r .

Finally, we mention that the double finite-size scaling
method, used in Ref. [21] for separation between subcritical
and critical 3D-spanning avalanches, is impossible to apply in
the 2D case because the exponent pertaining to the average
number of 2D-spanning avalanches is zero in the 2D model.

For this reason we have introduced a simple criterion based on
the appropriate choice of d

(s)
f , the value of fractal dimension

employed for separation of 2D-spanning avalanches into
critical (df < d

(s)
f ) and subcritical (df � d

(s)
f ). The method

is crude because of some uncertainty associated with the
choice of d

(s)
f [see Fig. 10], so it can obviously give a wrong

classification in some individual cases. Although one may
argue that it can be improved, or replaced by a better method,
we believe that on average it works reasonably well, which is
evidenced in our results.

X. CONCLUSION

In this paper we have presented an analysis of span-
ning avalanches in the two-dimensional nonequilibrium zero-
temperature random field Ising model. The data were collected
in extensive simulations of systems with linear sizes up
to L = 215 = 16 384. Unlike in higher dimensions, the 2D
predictions are obtained with the aid of reduced disorder-order
parameter free of tunable coefficients.

According to the number of spanned spatial dimensions,
spanning avalanches are classified as 1D and 2D-spanning
avalanches, and the 2D-spanning avalanches are further
classified as subcritical and critical. Distinction between the
subcritical and critical 2D-spanning avalanches is carried out
by a simple method, based on the value of fractal dimension
that separates two components of the fractal dimension
distribution of 2D-spanning avalanches.

For each of the avalanche types, we have performed
finite-size scaling analysis in the case of distribution of
average number of avalanches per single run, avalanche
size distribution, average avalanche size, and contribution of
individual avalanche types to magnetization jump.

In addition to the foregoing analyses, we have introduced
a scaling analysis of the spanning field (i.e., that is field trig-
gering the spanning avalanche) and analysis of magnetization
curves averaged over random field configurations, which we
managed to collapse below critical disorder.

Our study revealed that subcritical 2D-spanning avalanches
play a dominant role in behavior of the 2D model, below, and
at the critical disorder. Other types of avalanches influence
statistics of finite 2D systems, but when the system size grows,
their contribution remains small or vanishes.
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