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Thermal properties of a particle confined to a parabolic quantum well in two-dimensional
space with conical disclination
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The thermal properties of a system, comprising of a spinless noninteracting charged particle in the presence
of a constant external magnetic field and confined in a parabolic quantum well are studied. The focus has been
on the effects of a topological defect, of the form of conical disclination, with regard to the thermodynamic
properties of the system. We have obtained the modifications to the traditional Landau-Fock-Darwin spectrum
in the presence of conical disclination. The effect of the conical kink on the degeneracy structure of the energy
levels is investigated. The canonical formalism is used to compute various thermodynamic variables. The study
shows an interplay between magnetic field, temperature, and the degree of conicity by setting two scales for
temperature corresponding to the frequency of the confining potential and the cyclotron frequency of external
magnetic field. The kink parameter is found to affect the quantitative behavior of the thermodynamic quantities.
It plays a crucial role in the competition between the external magnetic field and temperature in fixing the values
of the thermal response functions. This study provides an important motivation for studying similar systems,
however with nontrivial interactions in the presence of topological defects.
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I. INTRODUCTION

In recent decades, advances in nanotechnology, semicon-
ductor device fabrication, and microfabrication techniques
have thrown open the rich field of two-dimensional electron
systems (2DES) [1–3]. There is a special focus on systems with
confinement along all three spatial dimensions [4–7]. Several
experiments aimed at understanding the electronic [2] and
optical properties [8,9] of such systems, commonly referred
to as quantum dot [4,10], have been undertaken [6,11,12].
In some of these experiments the quantum dots are exposed
to magnetic fields of varying strength and their response is
studied in terms of electron transport and interband tunneling
properties [6,12–14].

A reasonable model to describe such nonrelativistic quan-
tum dot systems requires a parabolic quantum well as the
confining potential [15]. However, theoretical exploration of
such models is far from exhaustive and presents several
potential situations for study. One such aspect is the response
of a charged particle confined to a quantum well in an applied
magnetic field [16] and constrained to a surface with nontrivial
geometry. An often studied topological defect is a conical
disclination [17–21], which has been the focus of quantum
mechanical problems in curved space [21–24] of the Landau
level type [25]. Another dimension of investigation [15,26]
looks into the thermodynamic properties of confined systems
of the Landau-Fock-Darwin [27] type in ordinary Euclidean
space. These lines of examination can be brought to converge
on the issue of thermodynamic behavior of a single electron
confined in the presence of a conical disclination, a situation
which has the potency to reveal the physics of quantum dots
with novel geometry. The presence of topological defects in the
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constraining surface is expected to affect the thermodynamic
characteristics of such a system and their asymptotic behavior.

In this paper we analyze the properties exhibited by a
charged particle constrained on a surface with a defect of
the nature of conical disclination. The system comprises
of the particle subjected to a magnetic field, while it is
trapped in a parabolic Fock-Darwin potential. The approach
is, to first calculate the energy spectrum and then use the
canonical partition function to uncover the thermodynamic
properties of the system. We have used the Schrödinger
equation to obtain the energy eigenspectrum. This is motivated
by the fact that spectroscopic studies of electronic states
of quantum dots (such as InSb quantum dot) indicate that
a Schrödinger Hamiltonian with a Fock-Darwin confining
potential gives reasonable agreement with experiments [6]. We
introduce a conical disclination defect in such systems through
the Volterra process [19] (discussed in the next section).
The approach here borrows an idea from gravity, whereby the
defect appears as a modification of geometry of the underlying
space. We also note that a similar approach maybe adopted for
graphene [28] like 2D systems. However, the spectrum there is
linear at the band minima and thereby the Dirac Hamiltonian
has to be adopted. We have studied the variations of the
thermodynamic quantities of interest like internal energy,
specific heat, and entropy with magnetic field, temperature,
and extent of the defect. The asymptotic limits of these are
checked for confirmation with expected results.

The paper consists of four sections. Section II is dedicated
to developing the mathematical formalism. The defect is
introduced as a modification of the metric from its otherwise
Euclidean form. Beginning with a suitable choice of coor-
dinates, the Hamiltonian of the system is constructed. The
Schrödinger equation is then solved for this Hamiltonian to
obtain the energy spectrum. This is followed by obtaining
the various thermodynamic variables of the system using
the canonical partition function. The expressions for these
quantities are recast in terms of dimensionless parameters and
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their behavior is studied. The asymptotics are checked for
consistency. In Sec. III we present the results of our study.
Finally, we conclude with a discussion and summary in the
last section.

II. FORMALISM

The topological defect being introduced in the current study
is a conical disclination. This entails a two-dimensional (2D)
conical space which is locally flat at all points except for the
origin [22]. The construction of this space is to be visualized
as the consequence of cutting out a sector with a certain apex
angle called the deficit angle from the ordinary 2D flat space
and subsequently welding together the newly revealed edges
[29]. The metric for such a space, in the usual polar coordinates
(r,φ), is given by gμν = diag(1,r2). However, it has to be kept
in mind that φ here has an incomplete angular range [0, 2πκ]
with κ �= 1. This being a consequence of the surgical procedure
performed previously. The parameter κ is a measure of the
deficit angle. It quantifies the conicity of the surface and shall
henceforth be referred to as the kink parameter. The kink here
represents a singular deformity of the 2D conical surface at the
origin. The metric described above can be expressed in terms
of the complete angular coordinate θ as follows:

ds2 = κ−2dρ2 + ρ2dθ2. (1)

where θ varies in [0, 2π ]. The transformation from plane polar
coordinates to the new coordinate system, i.e., from (r,φ) →
(ρ,θ ), is achieved via the set of transformation equations

ρ = κrθ = κ−1φ. (2)

The curvature is measured by the quantity

2π
κ − 1

κ
δ(2)(ρ),

where δ(2)(ρ) is the Dirac δ function in two dimensions [24].
Hence, for 0 < κ < 1 we have negative curvature and for 1 <

κ < ∞ the curvature at origin is positive. We note that the
metric described here in the context of a 2D condensed matter
system also arises in the description of space-time around a
cosmic string [30].

In the above described space we consider a charged spinless
quantum particle (for our purposes it has electronic mass and
charge). This particle is subjected to a constant magnetic field
B which is normal to the conical surface. The appropriate
choice of magnetic vector potential that yields such a magnetic
field is given in the symmetric gauge by

A(ρ) = Bρ

2κ
êθ , (3)

where B = |B|. This gives rise to the standard quantized single
particle Landau level states [25].

In order to model the confinement of the particle within
a small region on the surface, we subject the particle to a
parabolic potential of the Fock-Darwin type [27] given by

V (ρ) = 1

2
Mω2

p

ρ2

κ2
, (4)

where M is the effective mass of the particle and ωp is a
measure of the steepness of the confinement. The appearance

of the kink parameter indicates that the background space
is conical. The choice of such a potential is motivated by
symmetry considerations and its frequent appearance in the
modeling of quantum dots with low occupancy [31].

The Hamiltonian for the particle of mass M , assumed
to be carrying a negative charge of magnitude e under
minimal electromagnetic coupling, is given in the cone space
coordinates (ρ,θ ) as

H = − �
2

2M

[
κ2

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+ 1

ρ2

∂2

∂θ2

]
− i

2

�ωc

κ2

∂

∂θ

+ 1

8
Mω2

c

ρ2

κ4
+ 1

2
Mω2

p

ρ2

κ2
, (5)

where the parameter ωc introduced here is the cyclotron
frequency ωc = eB/Mc. Note the appearance of the kink
parameter κ �= 1 when one expresses the Hamiltonian in the
cone space.

The general form of eigenfunctions for this Hamiltonian
can be guessed from symmetry arguments. Separation of
the Schrödinger equation into radial and angular components
yields such a general form:

ψ(ρ,θ ) = 1√
2π

eimθRnm(ρ). (6)

The quantum numbers n and m are to be defined using the
appropriate boundary conditions. Here Rnm(ρ) stands for the
radial component of the wave function. The condition on m is
readily obtained by requiring ψ to be unique under a rotation of
2π , i.e., ψ(ρ,θ ) = ψ(ρ,θ + 2π ). This implies that m has to be
an integer. The Schrödinger equation Hψnm = Enmψnm yields
the following equation for the radial wave function Rnm(ρ):

− �
2

2M

[
κ2

ρ

∂

∂ρ

(
ρ

∂

∂ρ
Rnm(ρ)

)
− m2

ρ2
Rnm(ρ)

]
+

(
1

2

�ωcm

κ2
+ 1

8
Mω2

c

ρ2

κ4
+ 1

2
Mω2

p

ρ2

κ2

)
Rnm(ρ)

= EnmRnm(ρ). (7)

The procedure to solve the above equation is through a set of
standard transformations, which involves the introduction of a
new parameter � with dimension of frequency. The parameter
� is given by

� =
√

ω2
p +

(
ωc

2κ

)2

. (8)

Following the formalism in [21] Eq. (7) can be transformed
to a form which permits solution in terms of the confluent-
hypergeometric function (see the Appendix). Our primary
interest lies in the energy levels which are given by

Enm =
(

2n + 1 + |m|
κ

)
�� + m�ωc

2κ2
. (9)

If we consider the system to be at equilibrium with a heat
bath at temperature T , the canonical partition function shall
be given by

Z =
∑
n,m

e−β(2n+1)�� e
−β[ |m|

κ
��+ m�ωc

2κ2 ]
, (10)
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where β = 1
kBT

and kB is the Boltzmann constant. The sum is
over the discrete energy levels given in Eq. (9). Introducing
dimensionless variables χ1 = β��

κ
and χ2 = β�ωc

2κ2 the above
expression maybe simplified to

Z = sinh χ1

4 sinh
(

χ1+χ2

2

)
sinh

(
χ1−χ2

2

)
sinh(κχ1)

. (11)

It is now possible to compute thermodynamic quantities from
this expression of the partition function.

The internal energy U for the system is given by

U = −∂ lnZ
∂β

= −
{
χ1 coth(βχ1) − χ1 + χ2

2
coth β

(
χ1 + χ2

2

)
− χ1 − χ2

2
coth β

(
χ1 − χ2

2

)
− χ1κ coth βκχ1

}
. (12)

Similarly one can obtain the specific heat capacity Cv,

Cv = kBβ2 ∂2 lnZ
∂β2

= kBβ2

{
(χ1 + χ2)2

4
csch2β

(χ1 + χ2)

2
+ χ2

1 κ2csch2βκχ1

+ (χ1 − χ2)2

4
csch2β

(χ1 − χ2)

2
− χ1

2csch2βχ1

}
. (13)

The Helmholtz free energy F = − lnZ/β may be used to
calculate the entropy S as S = (U − F )/T . This yields the
following expression:

S = 1

T

{
− χ1 coth(βχ1) + χ1 + χ2

2
coth

(
β

χ1 + χ2

2

)
+ χ1 − χ2

2
coth

(
β

χ1 − χ2

2

)
+ χ1κ coth(βκχ1)

}
+ kB

{
ln sinh(βχ1) − ln sinh

(
β

χ1 + χ2

2

)
− ln sinh

(
β

χ1 − χ2

2

)
− ln sinh(βκχ1) − ln 4

}
. (14)

We shall now study the variation of these quantities with
the external magnetic field B and temperature T . In order to
facilitate this, it is helpful to choose certain special units which
render the physical quantities U , Cv , and S dimensionless. We
introduce a parameter α = ωc/ωp to quantify the magnetic
field strength in units of Mωpc/e and ξ = kBT /�ωp to
represent temperature measured in units of �ωp/kB . We also
introduce α̃ =

√
1 + α2/4κ2 and α± = α̃ ± α/2κ .

Using these new dimensionless parameters, we have the
internal energy U , entropy S, and specific heat CV may be
expressed as

Internal energy:

U

�ωp

= 1

κ

{
− α̃ coth

(
α̃

ξκ

)
+ α+

2
coth

(
α+
2ξκ

)
+ α−

2
coth

(
α−
2ξκ

)
+ α̃κ coth

(
α̃

ξ

)}
. (15)

Specific heat:

Cv

kB

= α̃2

ξ 2
cosech2

(
α̃

ξ

)
+ α+2

4κ2ξ 2
cosech2

(
α+
2κξ

)
+ α−2

4κ2ξ 2
cosech2

(
α−
2κξ

)
− α̃2

ξ 2κ2
cosech2

(
α̃

κξ

)
.

(16)

Entropy:

S

kB

= 1

ξκ

{
− α̃ coth

(
α̃

ξκ

)
+ α+

2
coth

(
α+
2ξκ

)
+ α−

2
coth

(
α−
2ξκ

)
+ α̃κ coth

(
α̃

ξ

)}
+

{
ln sinh

(
α̃

ξκ

)
− ln sinh

(
α+
2ξκ

)
− ln sinh

(
α−
2ξκ

)
− ln sinh

(
α̃

ξ

)
− ln 4

}
. (17)

The asymptotic behavior of the above expressions in the low
temperature limit is instructive to look at. The internal energy
U in the low temperature limit is given by U → ��, where �

is defined earlier in Eq. (8). The low temperature asymptotic
form (ξ → 0) of entropy S is given by

S ≈
(

1 + α+
ξκ

)
e

−α+
ξκ +

(
1 + α−

ξκ

)
e

−α−
ξκ

+
(

1 + 2α̃

ξ

)
e

−2α̃
ξ −

(
1 + 2α̃

ξκ

)
e

−2α̃
ξκ . (18)

The specific heat in the low temperature limit is approximated
by the following function of temperature:

Cv ≈ 4α̃2

ξ 2
e

−2α̃
ξ + α2

+
ξ 2κ2

e
−α+
ξκ + α2

−
ξ 2κ2

e
−α−
ξκ − 4α̃2

ξ 2κ2
e

−2α̃
ξκ .

(19)

III. RESULTS AND DISCUSSION

A. The energy spectrum

The Landau-Fock-Darwin energy spectrum is given by
Eq. (9). Figure 1 shows the variation of Enm with the external
magnetic field parameter α, for a few chosen values of the kink
parameter κ = 0.75,1.0,1.5. The behavior of the energy levels
is different for positive and negative values of the quantum
number m. The figure shows the variation of Enm with α for
n = 1,2. In the upper panel we show the case when the integer
m is assumed to take positive values 2, 3, 4, and 5 for each
n. The behavior at very low magnetic field shows that Enm

is independent of α for α � 10−2. In this low magnetic field
regime one finds the usual degeneracies of (n,m) pairs since
Enm ≈ (2n + 1 + |m|/κ)�ωp. In our case with κ = 1.0 this
occurs, for example, between (n,m) pairs like [(2,2),(1,4)],
[(2,3),(1,5)], and [(2,4),(1,6)]. These degeneracies starts to
get lifted when the external magnetic field is sufficiently
high (α ≈ 1). At very high magnetic fields (ωc � ωp) and
for m > 0, we have E → [(2n + 1)/2κ + m/κ2]�ωc leading
to new degeneracies. In the relatively high magnetic field
region of α ≈ 10 one can readily observe that curves for all
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FIG. 1. (Color online) The low lying energies of the Landau-
Fock-Darwin energy spectrum for various values of the kink
parameter κ . The upper panel (a)–(c) shows the spectra for positive
values of the quantum number m = 2,3,4,5 (lower to the upper)
and the lower panel (d)–(f) corresponds to negative values of
m = −2, − 3, − 4, − 5 with decreasing magnitude |m| from upper
to the lower curves.

(n,m) are monotonically increasing with nearly fixed slopes.
The transition between these extreme behaviours occurs in
the intermediate field region of α ≈ 1. We note that in the
intermediate and large magnetic field regions the difference
between the energy levels with the same value of n but different
values of m is larger as compared to the low field region. This
is owing to the fact that ωc is larger for higher magnetic fields.
For example, the level corresponding to (1,3) is higher than
(2,2). The energy levels shift in magnitude for changing κ

which implicitly affects the degeneracy pattern.
The figures in the lower panel [Figs. 1(d)–1(f)] shows

the spectrum for negative m values. The low magnetic field
behavior is the same as for the positive m case. However,
at large magnetic fields the term m�ωc/2κ2 starts to play an
important role and cancels the term |m|��/2κ in this regime.
The spectrum becomes independent of m and only depends on
n. The increase of Enm is approximately linear with magnetic
field α. The transition between the two regimes occurs again
at α ≈ 1.

Figure 2 shows the variation of energy with the kink param-
eter κ for three different values of the applied magnetic field.
Figures 2(a)–2(c) show the variation for negative m values
(m = −1,−3,−5) corresponding to n = 1,2. The curves show
a monotonic decrease of Enm with κ in all the three regimes
of magnetic field α. The value κ = 1 corresponds to the
case with no topological defect. We note an asymmetry in
the nature of variation of Enm about this value of κ . The
energy levels are a decreasing function of κ for both κ � 1
and κ < 1 showing that positive and negative deficit angles
point towards fundamentally different physical situations. The
expression for Enm diverges as κ → 0. This however is of no
real consequence since κ = 0 corresponds to an unphysical
divergent curvature at the origin.

The vertical dotted line indicating the case without any
defect (κ = 1) passes through the point of intersection of
the energy levels. These points correspond to the degenerate

101

102

n=1
n=2

0.1 0.5 1.0

101

102

0.1 0.5 1.0
κ

0.1 0.5 1.0 1.5

E
nm

α=10-3 α=1.0 α=10.0

α=10-3 α=1.0 α=10.0

(a) (b) (c) 

(d) (f) (e) 

FIG. 2. (Color online) The first few levels of the Landau-Fock-
Darwin energy spectrum as a function of the kink parameter κ . The
upper panel corresponds to negative values of the quantum number
m = −1, − 3, − 5. The lower panel shows the same for positive
values of m = 1,3,5. Three magnetic field values are chosen with
α = 10−3,1.0,10.0.

energy levels at low magnetic field. The degeneracy of the
(n,m) levels for κ = 1 are seen to get lifted for κ �= 1 as
the energy levels for different m vary differently with κ . In
Fig. 2(c) the different m levels for a given n are degenerate and
remain so, irrespective of κ . Figures 2(d)–2(f) show a similar
variation for positive m values. Whereas the degeneracies at
weak magnetic field [Fig. 2(d)] gets lifted for κ �= 1 there are
new degeneracies that are created at higher magnetic fields.
This is seen in Figs. 2(e) and 2(f) where nondegenerate energy
levels at κ = 1 intersect each other at κ �= 1 showing the
emergence of accidental degeneracies that did not exist in
the defect free theory.

B. Thermodynamic properties

The noninteracting spinless charged particles are assumed
to be in equilibrium with a heat reservoir at temperature T . The
starting point of the thermodynamic analysis is the evaluation
of the partition function for the energy spectra given in Eq. (9).
The Landau-Fock-Darwin Hamiltonian has two energy scales
associated with the two frequencies ωp (which fixes the
strength of the parabolic confinement) and ωc, the cyclotron
frequency related to the external magnetic field. The relative
strengths of these frequencies are expected to govern the equi-
librium behavior of the system. The thermodynamic properties
of interest depend on the temperature ξ and external magnetic
field α, expressed in our chosen convenient energy unit �ωp.
The parameters in the Hamiltonian (ωp,ωc,κ) have a crucial
interplay in determining the responses of the system. The
κ = 1 case with no defects has been studied in earlier works
[15,26]. It is important to note that for κ = 1, the limiting
behavior of the system for ωp → 0 (or equivalently ωc � ωp)
and ωc → 0 are entirely different and describe two completely
distinct physical situations. The former describes a pure
Landau problem of a free particle without any confinement,
whereas the latter describes a particle in a two-dimensional
parabolic well without a coupling to an external magnetic
field. The ωp → 0 limit has a pure quantum mechanical
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FIG. 3. (Color online) The Cv shown here is in units of kB . The
upper panel shows the variation of Cv with magnetic field for various
values of temperature ξ = 0.01,0.1,0.2,0.3,0.4,0.5,2.0 (curves from
lower to upper). At high magnetic fields Cv attains the value 1.0 as
the spectrum reduces to the free Landau levels with no confinement.
The high temperature value of Cv for moderate to low magnetic
fields is 2 as the confinement term dominates at these regimes. The
lower panel shows the variation of Cv with temperature for α =
0.001,1.0,2.0,5.0,10.0,50.0 (left to right in the upper right corner of
the figures). Here again the plateau in Cv is seen for the high magnetic
fields and only at high temperatures Cv attains the value 2.0.

Landau-level spectra of a one-dimensional oscillator and has
the degeneracy that depends on the size of the system. The
energy spectra for the case ωc → 0 mimics that of a 2D
oscillator. The translational symmetry of the pure Landau level
situation is lost completely in the other extreme limit of a
pure confinement problem. The general Landau-Fock-Darwin
solution interpolates between these extreme cases. In the
presence of κ �= 1 the same qualitative features are expected.
However, the role of κ needs to be explored and is subsequently
discussed in this paper.

We follow the Gibbs formalism to compute thermodynamic
quantities like free energy, entropy, and specific heat. In this
approach the thermodynamic response functions are obtained
as derivatives of the partition function. The canonical partition
function [see Eq. (10)] is obtained for the Hamiltonian in

Eq. (5). In the final form, this partition function [see Eq. (11)] is
seen to diverge in the limit ωc � ωp (or α � 1) since χ1 and χ2

are equal in this limit. This singularity of the partition function,
when the confinement strength is vanishingly small, has been
addressed in [26] and maybe regularized by putting certain
cutoffs to the smallest value that ωp can take. This cutoff
depends on the temperature and the degeneracy of the pure
Landau level. The thermodynamic quantities like F, U, S, and
Cv however, manifest no such singularity.

Figure 3 shows the variation of Cv with magnetic field α and
temperature ξ for different values of the kink parameter κ . The
variation of Cv with α shows that for weak external magnetic
field and low temperatures C asymptotically approaches
zero. However, in this weak α regime, at high temperatures
Cv → 2kB asymptotically. This is in consonance with the
equipartition principle. The low α end behaves like a 2D
oscillator (hence the factor 2). In the high magnetic field regime
(α large), Cv saturates to kB . This region corresponds to the
pure Landau level with the energy spectrum of an 1D oscillator.
The qualitative features are similar when κ �= 1. However, we
see that changing κ from 0.75 to 1.5 continuously, leads to a
shift of the curves from the lower end towards the upper. This
can be qualitatively ascribed to the fact that κ appears as a
multiplicative factor to ξ in the expression for Cv and a change
of κ roughly amounts to a recalibration of the temperature
scale.

The variation of Cv with temperature ξ is shown in the
lower panel of Fig. 3. When the value of α is small, the rise of
Cv with temperature is steep, and in a very small temperature
range, Cv rises from zero to a stable value of 2kB . Beyond
the transition temperature, Cv remains flat at this value. In this
situation the system is essentially dominated by the parabolic
confining potential and the physics of the Landau levels is
missing. The situation is considerably different when α is
large. Here the effect of confinement is weak and Cv attains
a plateaulike level when temperature is increased. The value
of Cv remains constant at kB for a range of temperatures after
which it rises to 2kB only at high values of ξ . The formation
of the plateau can be ascribed to the dominance of the Landau
1D oscillator spectrum at high magnetic fields as opposed to
the 2D oscillator spectrum of the parabolic well when the
magnetic field is weak. The extent of the plateau region is
found to be sensitive to κ . We shall discuss this κ dependence
later.
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FIG. 4. (Color online) The contour map for specific heat cv in the (ξ,α) phase plane, for three values of the kink parameter (a) κ = 0.75,
(b) κ = 1.0, (c) κ = 1.5.
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FIG. 5. (Color online) The dependence of Cv on the kink pa-
rameter κ for different values of external magnetic field α and
temperature ξ . For the upper panel ξ = 2.0,1.0,0.7,0.5,0.4,0.3,0.2
(top to bottom).

Figure 4 shows the contour map of Cv in the (α,ξ ) plane.
At very low temperatures, Cv → 0 except, when the external
magnetic field is large. The lower left corner of the (α,ξ ) plane
corresponds to this phase where Cv is small. Increasing the
temperature at small values of α leads to a monotonic increase
of Cv to its saturated value of 2kB (upper left corner of the
phase diagram). At such low values of α there is hardly any
Landau coupling to the magnetic field. The Landau plateau
occurs at large α when the energy spectrum approaches the
Landau levels. This is the forked region of the contour map
where, for a considerable range of intermediate temperatures,
the value of Cv remains at the kB level, and only increases
to 2kB at still higher temperatures (this is not seen in the
phase diagram and occurs for values of ξ even above the upper
right corner). The extent of the forking region (plateau in Cv

depends on the kink parameter. In fact, it is seen to decrease
with increasing κ . This can be understood by noting that a
changing κ can be equivalently seen as changing ξ with a
fixed κ . The qualitative features of the phase diagram remain
the same when κ is varied. However, there are quantitative
changes which we shall discuss now.

Figure 5 shows the variation of Cv with κ . At high
temperatures, Cv is not sensitive to κ unless the magnetic
field α is also very high. This is seen in Figs. 5(a)–5(c). The
specific heat is however very sensitive to κ at low temperatures.
Increasing κ can be equivalently interpreted as a scaling of α

and this explains the plateau (characteristic of large α) when κ

is large. At large α [Fig. 5(c)], all the low temperature curves
cluster around the kB level and stabilizes at the 2kB level
only for high temperatures. Figure 5(e) shows that there is a
crossover of Cv at a certain value of κ . This implies that at
some intermediate low temperatures Cv is not very sensitive
to the changes in the magnetic field for certain values of κ . At
higher temperatures, however, Cv saturates to 2kB . This growth
is slower for the curves corresponding to large α values which
tend to stay in the plateau region as compared to the case
when α is small. Here we see that κ essentially recalibrates the
temperature scale.

10-2 10-1 100 101

ξ
10-3

10-2

10-1

100

101

S

0.0 4.0 8.0
α

0.0

1.0

2.0

3.0

S

10-2 10-1 100 101

ξ

0.0 4.0 8.0
α

10-2 10-1 100 101

ξ

0.0 4.0 8.0
α

(a) κ=0.75 (b) κ=1.0 (c) κ=1.5

(e) (f)

κ=0.75 κ=1.0 κ=1.5

ξ=0.
5

ξ=0
.1

ξ=1
.0

ξ=0
.3

ξ=0
.7

(d) 
ξ=1

.0

ξ=0
.7ξ=0.

5

ξ=0
.3

ξ=0
.1

ξ=1
.0

ξ=0
.7 ξ=0.

5

ξ=0
.3

ξ=0
.1

FIG. 6. (Color online) The upper panel (a)–(c) shows the varia-
tion of S with ξ for various values of α and κ with α = 10.0,5.0,

2.0,0.1 (from left to right). The broken lines indicate the temperature
range for validity of the low temperature asymptotic behavior of S.
The lower panel shows the α dependence of entropy for specific
temperatures and κ .

Figure 6 shows the behavior of the entropy as a function
of magnetic field and temperature. The competition between
the variables ξ and α decides the degree of order in the
system. We find that the asymptotic form of S in Eq. (18)
is valid for a certain value of ξ that depends on the magnetic
field and κ . This region of validity of this limiting form of
entropy is shown by broken lines in Figs. 6(a)–6(c). The
third law of thermodynamics is respected and we have S → 0
as ξ → 0. The growth of entropy from the low temperature
ordered regime to the disordered state at high temperature,
depends on the magnetic field. The growth is steeper for
higher magnetic fields. However, at very high temperatures the
magnetic field dependence keeps decreasing. Figures 6(d)–6(f)
show the variation of entropy with magnetic field. At very high
magnetic field there is a slowing down on the rate at which S

increases. This feature is seen for a wide range of temperatures.
The effect of κ here is clearly that of a scaling parameter that
recalibrates the temperature scale ξ .

IV. SUMMARY AND CONCLUSION

In this work we have carried out a study of the ther-
modynamic ramifications of a conical defect, in the context
of a Landau-Fock-Darwin problem. The competing behavior
of the temperature and magnetic field is noted, and how a
change in the kink parameter influences this. The variation
of quantities like specific heat and entropy with the kink
parameter illustrates the physical effect of the disclination to
be a sort of recalibration of the temperature scale. Also of note
are the essential nontrivialities inherent in the Landau-Fock-
Darwin problem with respect to the symmetry of the system.
These are recovered here in the presence of the conical defect
as is illustrated by the step in the specific heat curve at high
magnetic fields, which reflects the interpolation of the behavior
between a 1D and a 2D oscillator.
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We conclude by noting that it is possible to extend this
analysis to further studies which could incorporate discrete
lattice structure and interactions in the presence of this class
of topological defects.

APPENDIX

To solve the radial eigenvalue equation (7), we intro-
duce ζ = ρ2M�/�. This transformation yields the following
equation:

ζ
∂2R(ζ )

∂ζ 2
+ ∂R(ζ )

∂ζ
+ �(ζ )R(ζ ) = 0, (A1)

where we have used

�(ζ ) = β

κ2
− ζ

4κ4
− m2

4κ2ζ
and β = 1

2

(
Emn

��
− ωcm

2κ2�

)
.

Using variables ζ ′ = ζ/κ2 and m′ = m/κ we have

ζ ′ ∂
2R(ζ ′)
∂ζ ′2 + ∂R(ζ ′)

∂ζ ′ + �′(ζ ′)R(ζ ′) = 0, (A2)

where the new function �′ is

�′(ζ ′) = β ′ − ζ ′

4
− m′2

4ζ ′ , with β ′ = 1

2

(
Emn

��
− ωcm

′

2κ�

)
.

Assuming R(ζ ′) to be of the form

R(ζ ′) = e− ζ ′
2 ζ ′ |m′ |

2 Y (ζ ′),

Eq. (A2) reduces to

ζ ′ ∂
2Y

∂ζ ′2 + (|m′| + 1 − ζ ′)
∂Y

∂ζ ′ +
(

β ′ − |m′|
2

− 1

2

)
Y = 0.

(A3)

The solution to this equation is given in terms of the confluent-
hypergeometric function as

Y (ζ ′) = F

[
−

(
β ′ − |m′|

2
− 1

2

)
,|m′| + 1; ζ ′

]
. (A4)

The requirement of boundedness of R(ζ ′) as ζ ′ → ∞ is
met if

β ′ − |m′|
2

− 1

2
= n, (A5)

where n is a non-negative integer. From this boundary condi-
tion (after substituting m/κ in place of m′) the eigenenergies
are given by

Enm =
(

2n + 1 + |m|
κ

)
�� + m�ωc

2κ2
. (A6)

The eigenfunctions corresponding to these eigenvalues are
obtained after imposing the requirement that for integral
values of n, the confluent hypergeometric function reduces
to Laguerre polynomials given as

Lα
n(ζ ′) = �(α + n + 1)

�(α + 1)n!
F (−n,α + 1; ζ ′), (A7)

here �(n) = (n − 1)! is the usual γ function. Thus the
eigenfunctions are of the form

R(ζ ) = Ce
− ζ

2κ2

(
ζ

κ2

) |m|
2κ

L
|m|
κ

n (ζ ), (A8)

where C is the constant of normalization. The first term in the
product represents a Gaussian in the variable ρ whose spread is
now determined by the degree of disclination. The localization
of the wave function is hence sensitive to κ and consequently
all probability densities are affected by the degree of conicity.
The appearance of |m|/κ indicates the deficit or surplus of the
polar angle quantified through κ .
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