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Flow-induced structures versus flow instabilities
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The Taylor-Couette flow of a dilute micellar system known to generate shear-induced structures is investigated
through simultaneous rheometry and ultrasonic imaging. We show that flow instabilities must be taken into account
since both Reynolds and Weissenberg numbers may be large. Before nucleation of shear-induced structures, the
flow can be inertially unstable, but once shear-induced structures are nucleated, the kinematics of the flow become
chaotic, in a pattern reminiscent of the elastically dominated turbulence known in dilute polymer solutions. We
outline a general framework for the interplay between flow instabilities and flow-induced structures.
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Fluid dynamics are of interest for many disparate scientists
including physicists, chemists, and engineers. Although the
goals of these various communities are often congruent, their
methods may widely differ. For instance, a strictly “hydrody-
namic” approach to fluid dynamics focuses on macroscopic
changes in the structure of the flow, i.e., the so-called flow
instabilities, often regardless of the fluid which is de facto
assumed to behave like water (“hydro” in Greek). In contrast,
a “rheological” perspective focuses on microscopic changes in
the structure of the fluid, i.e., the so-called flow-induced struc-
tures, often within viscometric assumptions, i.e., regardless
of the possibility for flow instabilities. The ongoing synthesis
of the methods of fluid dynamics will inevitably require a
framework able to describe both macroscopic changes in the
flow field and microscopic changes in the fluid structure. We
shall show here that studying flows of micellar surfactant
solutions can greatly help to reach that goal.

Beside their tremendous industrial importance in applica-
tions such as detergence, oil recovery, and drag reduction,
surfactant systems that form rodlike micelles, which can grow
to become wormlike and entangled when the concentration
increases, have long been used as model systems for rhe-
ological research [1–3]. Still, although the dilute regime of
rodlike micelles has been extensively studied in the context of
highly elastic shear-induced structures (SIS) and associated
shear thickening [4–7], here we thoroughly consider the
possibility for flow instabilities in such systems. This Rapid
Communication fills this gap by showing that two types of
instabilities, respectively due to inertia (driven by the classical
hydrodynamic Reynolds number Re) and to SIS (driven by
the Weissenberg number Wi that quantifies elasticity), are
encountered in the flow of a single dilute micellar system. Our
goal is to use this example to further strengthen the relevance of
a general framework to describe flow instabilities in a complex
fluid, as long as flow-induced structural changes of the fluid
are properly taken into account in the definitions of both Re
and Wi.

The sample under study is made of 0.16 wt. % hexade-
cyltrimethylammonium p-toluenesulfonate (CTAT) in water.
For this system, which has become a benchmark example of
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dilute micellar fluids [4], shear thickening is found over the
range 0.05–0.8 wt. % [6,7]. Figure 1 shows the viscosity η

of our sample as a function of the applied shear rate γ̇ for
three different temperatures T , exhibiting the typical behavior
of shear-thickening, dilute surfactant systems (see [4] for a
review), that is, a zero-shear viscosity close to the viscosity
of water; then a jump in η at a characteristic shear rate γ̇c

that increases with T ; and, finally, a shear-thinning viscosity
branch at high shear rates. This behavior was first explained by
postulating the formation of SIS [5]: above γ̇c, micelles grow
in length and undergo a transition from rodlike to wormlike
aggregates. This microscopic scenario was later confirmed
through neutron-scattering experiments [6]. The shear-induced
state can then be shear thinning due to the increasing alignment
of the worms. Here, in the absence of direct evidence for
microscopic structural changes, we simply infer them from
the close similarity between our rheological measurements
and a large body of literature [4].

In the present experiments, the fluid is sheared in a
Taylor-Couette (TC) device adapted to a rheometer (ARG2,
TA Instruments) and with dimensions (height H = 60 mm,
gap d = 2 mm, radius of the inner rotating cylinder Ri =
23 mm) that ensure the “small gap approximation,” � ≡
d/Ri � 0.087 � 1, without any strong end effect at the top
and bottom boundaries (d/H � 1), so that the laminar base
flow is a simple shear with γ̇ = U/d = �Ri/d, where U

and � are the rotor linear and angular velocities, respec-
tively. We recall that in a TC device with inner rotation,
Taylor showed that a Newtonian fluid becomes unstable and
develops a secondary flow made of toroidal counter-rotating
vortices [8]. Larson et al. discovered that non-Newtonian fluids
can develop a similar vortex flow solely driven by elasticity
instead of inertia [9]. In both cases, the instability develops
when the Taylor number Ta exceeds a given threshold Tac.
In the purely inertial case, Ta = �1/2Re, with Re ≡ τ1γ̇ =
(ρd2/η)(U/d) = ρdU/η and Tac � 41 [8,10], while in the
purely elastic case, Ta = �1/2Wi, with Wi ≡ τ2γ̇ , where τ2

is a characteristic polymeric relaxation time [9,11] instead
of the viscous dissipation time τ1, and ρ � 103 kg m−3 is
the fluid density. In the latter case, the value of Tac depends
on the constitutive relation of the non-Newtonian fluid, e.g.,
linear stability theory predicts Tac � 6 for the upper-convected
Maxwell model [9]. More generally, the balance between
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FIG. 1. (Color online) Viscosity η vs shear rate γ̇ at T = 20,
25, and 30 ◦C (filled symbols, from top left to bottom right) for
CTAT at 0.16 wt. % seeded with 1 wt. % polyamide spheres (see
text). Open symbols correspond to a CTAT sample free of contrast
agents at T = 30 ◦C. The addition of polyamide spheres increases
the viscosity by about 15%, but does not change the overall behavior.
Data points correspond to averages over the last 5 s of shear rate steps
of total duration 15 s. Vertical dashed lines indicate the onset of shear
thickening γ̇c � 13, 35, and 80 s−1, respectively inferred at T = 20,
25, and 30 ◦C, from start-up experiments of typical duration 500 s.

elasticity and inertia can be estimated by the elasticity number
E ≡ Wi/Re = τ2/τ1 [12].

Since we expect secondary flows to emerge, our geometry
is equipped with a recently developed two-dimensional ultra-
sonic velocimetry technique that allows the simultaneous mea-
surement of 128 velocity profiles over 30 mm along the vertical
direction in the TC geometry [13]. We use ultrafast plane-wave
imaging and cross correlation of successive images [14] to
infer velocity maps from the echoes backscattered by acoustic
contrast agents seeding the fluid, namely 1 wt. % polyamide
spheres (Arkema Orgasol 2002 ES 3 Nat 3, mean diameter
30 μm, relative density 1.03), which do not significantly
affect the rheological behavior of our solution (see Fig. 1).
This technique yields the component vy(r,z) of the velocity
vector, v = (vr,vθ ,vz) in cylindrical coordinates, projected
along the acoustic propagation axis y as a function of the
radial distance r to the rotor and of the vertical position z with
a temporal resolution down to 50 μs [13]. The acoustic axis
y is horizontal and makes an angle φ � 10◦ with the normal
to the outer cylinder so that vy = cos φ vr + sin φ vθ . Finally,
we define the measured velocity as v = vy

sin φ
= vθ + vr

tan φ
,

which coincides with the azimuthal velocity vθ in the case
of a purely azimuthal flow v = (0,vθ ,0). More generally,
v combines contributions from both azimuthal and radial
velocity components. Nevertheless, close to instability onset,
secondary flows are usually much weaker than the main flow,
such that v � vθ [13,15].

Figure 2 reports the start-up flow of CTAT at T = 25 ◦C for
γ̇ = 50 s−1 (see also Movie 1 of Supplemental Material [16]).
At very short times, a laminar boundary layer extends from
the inner cylinder to the outer cylinder. A Taylor vortex flow
(TVF) then develops for t � 3 s, deforming the main flow
which becomes periodic along z: slow moving fluid is brought
inward in regions of centripetal radial flow and fast moving
fluid is pushed outward in regions of centrifugal radial flow.
This initial sequence of events would be exactly similar if the
fluid was pure water [13,17]. The fact that such a TVF for
dilute micelles is reported here should not be surprising since,

FIG. 2. (Color online) Spatiotemporal dynamics of CTAT at T =
25 ◦C for γ̇ = 50 s−1 (see also Movie 1 of Supplemental Mate-
rial [16]). The flow is first inertially unstable and then elastically
unstable due to SIS formation. (a) Global shear stress σ (t) measured
by the rheometer (in black) and dimensionless slip velocity vs(t)
(in red) [23]. (b) Spatiotemporal diagram (center) of the velocity
v(r0,z,t) at r0 = 0.20 mm from the rotor. The dotted lines show the
times t0 = 5 and 22.5 s corresponding to the velocity maps v(r,z,t0)
shown on the left and right, respectively. The color scale is linear and
goes from 0 to �Ri for the velocity maps and from 0.5�Ri to �Ri

for the diagram. The vertical axis z is oriented downwards with z = 0
being taken at about 6 mm from the top of the TC cell.

assuming the fluid to be influenced only by inertia in this initial
sequence, we have Ta = �1/2Re � 60 > Tac for γ̇ = 50 s−1.
In computing τ1, we have used the dynamic viscosity relevant
to the short-time behavior, i.e., the zero-shear viscosity η0 � 1
mPa s. As shown in Fig. 2(a), the onset of TVF at t � 3 s
corresponds to a slight increase of the shear stress σ (after an
initial spike due to the feedback with the rheometer inertia).
This first stress increase is simply due to the formation of
vortices breaking the viscometric assumption [13]. In contrast,
for t � 10 s, the stress (or, alternatively, the viscosity) climbs
up much more dramatically. Since γ̇ = 50 s−1 falls into the
shear-thickening range for T = 25 ◦C (see Fig. 1) and in
view of the literature [4], this next sequence of events can
be attributed to slow SIS formation. Meanwhile, the structure
of the vortex flow is disrupted. The formerly well-defined
wavelength and amplitude of the main flow shown on the left
in Fig. 2(b) are lost and the flow becomes chaoticlike on the
right in Fig. 2(b). This latter state is reminiscent of the iner-
tioelastic turbulent state called “disordered oscillations” [18]
or “elastically dominated turbulence” [19]. While isovelocity
lines in the initial state can be approximated by harmonic
functions, the secondary flows associated with the SIS deform
the main flow intermittently. The state on the right in Fig. 2(b) is
representative of the asymptotic turbulent flow. It continuously
generates large fluctuations in the viscosity and stress, which
have been reported before but are accounted for here in terms of
elastic turbulence [4]. Note also that the turbulent nature of the
flow can locally and transiently generate plug flow profiles that
may explain some earlier one-dimensional (1D) velocity mea-
surements [20,21]. At lower shear rates, e.g., γ̇ = 20 s−1 < γ̇c

and Ta � 24 < 41, the flow is below both thresholds for TVF
and SIS formation and remains purely azimuthal, as shown in
the Supplemental Material to Fig. 1 [16].
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FIG. 3. (Color online) Same as Fig. 2 for (a),(b) T = 30 ◦C and
γ̇ = 40 s−1 showing only inertial instability and (c),(d) T = 20 ◦C and
γ̇ = 20 s−1 where the flow slowly develops SIS and the associated
elastically dominated turbulence without initial TVF (see also Movies
2 and 3 of the Supplemental Material, respectively [16]). (b) r0 =
0.40 mm and t0 = 20 (left) and 175 s (right). (d) r0 = 0.53 mm and
t0 = 50 (left) and 225 s (right). The color scale goes from 0 to �Ri for
all velocity maps and from �Ri/8 (�Ri/4) to �Ri for the diagram
in (b) [(d)].

As it turned out for T = 25 ◦C, the critical shear rate γ̇c for
SIS formation and the critical shear rate γ̇TVF ≡ Tac/(τ1�

1/2)
for the onset of TVF are about the same value γ̇c � γ̇TVF �
35 s−1 in our TC geometry (�1/2 � 0.29). In order to separate
the inertial TVF and the turbulence associated with SIS more
readily, we reproduced similar shear start-up protocols at two
other temperatures, T = 20 and 30 ◦C, as shown in Fig. 3.
Increasing the temperature slightly lowers the zero-shear
viscosity (see Fig. 1) so that γ̇TVF only decreases from 45 s−1

at 20 ◦C to 33 s−1 at 30 ◦C. In contrast, the same temperature
change has a much stronger impact on γ̇c. As reported
extensively in the literature [4], lowering the temperature leads
to easier SIS formation, hence shifting γ̇c to lower values.
Figure 1 indicates γ̇c � 13 and 80 s−1 at 20 ◦C and 30 ◦C,
respectively. Therefore, at the highest temperature, we should
be able to observe TVF without SIS, whereas SIS without TVF
may be expected at the lowest temperature. This scenario is
fully confirmed in Figs. 3(a) and 3(b) and in Figs. 3(c) and 3(d)
where spatiotemporal dynamics are compared for shear rates
such that γ̇TVF < γ̇ < γ̇c and γ̇c < γ̇ < γ̇TVF at T = 30 and
20 ◦C, respectively.

The fact that SIS and TVF can occur separately is an
indication that these two phenomena are not consequences of
one another. SIS do not need TVF to nucleate, which suggests
that the out-of-equilibrium growth of the worms is driven by
the base shear flow, as usually postulated [4]. Early velocity
measurements at a single height z reported that SIS first form at
the inner wall and generate significant slip on this wall [20–22].
The dimensionless slip velocities vs [23] shown in Figs. 2(a)
and 3(c) confirm that the onset of wall slip is concomitant with
SIS formation, whereas no noticeable wall slip is reported in
the presence of TVF alone [see Fig. 3(a)]. Movie 3 of the
Supplemental Material [16] also clearly evidences the radial
expansion of SIS through the growth of a weakly sheared
region from the rotor for t � 130–200 s. More distinct is the
fact that SIS nucleation is also heterogeneous along ez. Indeed,
Fig. 3(d) shows that SIS nucleate first at the bottom and top
edges of the TC device and then progressively fill the gap.

Of course, TVF does not need SIS since it can occur
even in simple molecular fluids. Moreover, the spatiotemporal
structure of the flow on the right in Figs. 2(b) and 3(d) is
very similar so that inertia is dominating the flow instability
before SIS formation, while TVF has negligible impact on
the asymptotic elastically turbulent flow after SIS nucleation.
In a shear-thickening dilute surfactant solution, both τ1 and
τ2 depend on γ̇ and t so that Re, Wi, and E also depend
on γ̇ and t . To illustrate this, we evaluate a bulk-averaged
value of E in the case of Fig. 2 (T = 25 ◦C and γ̇ = 50 s−1).
Assuming the fluid density ρ to remain constant during SIS
formation, we first estimate the Reynolds number by Re �
γ̇tρd2/ηt , where γ̇t (γ̇ ,t) = γ̇ − vs(t)�Ri/d is the “true” shear
rate corrected for wall slip and ηt (γ̇ ,t) = σ (t)/γ̇t (γ̇ ,t) the
corresponding “true” viscosity. This yields a decrease from
Re � 200 before SIS formation to Re � 7 in the final state.
Estimating the characteristic viscoelastic time τ2 of the SIS
is more challenging. We take the longest time of the stress
relaxation after flow cessation either before or after SIS
formation, which yields Wi = γ̇t τ2 � 0 before and Wi � 100
after SIS formation, in accordance with the literature [4].
Thus, in the early stages of the dynamics, E � 0, i.e., inertia
dominates, whereas after SIS formation, E � 10, validating
the dominance of elasticity. In some sense, the dynamics of
Fig. 2(b) can be seen as the superposition of the dynamics
of Figs. 3(b) and 3(d). This superposition appears as rather
linear, only because the growth of SIS quickly switches the
flow instability from being purely inertia dominated (E � 1)
to purely elasticity dominated (E � 1) [24].

To conclude, the stability diagram of Fig. 4 summarizes
the interplay between inertial instability (TVF) and elastic
instability of the SIS based on an extensive data set. We
believe that such a diagram should be systematically sought in
complex fluids subject to flow instabilities in order to sort out
the influences of flow-induced microscopic and macroscopic
phenomena. Here the purely inertial critical Taylor number
Tac becomes clearly irrelevant as soon as SIS nucleate. Close
to the threshold where both instabilities interact (black lines
in Fig. 4), we observe a more complex inertioelastic superpo-
sition than the one shown in Fig. 2 further from threshold. A
detailed study of this case where E � 1 is left for future work.
More generally, the interplay of inertia and elasticity hints
to a generalized Taylor number, Ta = �1/2f (Re,Wi), with
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FIG. 4. (Color online) Stability diagram of CTAT. (1) Laminar
flow (◦). (2) Inertial instability (TVF) without SIS (�). (3) Elastically
dominated instability of the SIS without initial TVF (�). (4)
Elastically dominated instability of the SIS after initial TVF (�).
Larger empty symbols correspond to the experiments in Figs. 2 and 3.
Stars show the transitions between the various regimes. Solid lines
are guides to the eye.

limE→0 f (Re,Wi) = Re and limE→∞ f (Re,Wi) = Wi [25].
Deriving an analytic expression for f and a universal in-
stability criterion accounting for both Re and Wi for any
value of E appears as the next theoretical challenge from
which predictions could be drawn for the various boundaries
in Fig. 4. The present results show that such an approach
should ideally include time dependence in the flow-induced
structures. Further experiments on polymer solutions and on
more concentrated micellar systems showing shear banding
and/or elastic instabilities without SIS formation [26–28]
will undoubtedly complete this general physical picture for
inertioelastic instabilities and turbulence.
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