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Circular Kardar-Parisi-Zhang equation as an inflating, self-avoiding ring polymer
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We consider the Kardar-Parisi-Zhang equation for a circular interface in two dimensions, unconstrained by the
standard small-slope and no-overhang approximations. Numerical simulations using an adaptive scheme allow us
to elucidate the complete time evolution as a crossover between a short-time regime with the interface fluctuations
of a self-avoiding ring or two-dimensional vesicle, and a long-time regime governed by the Tracy-Widom
distribution expected for this geometry. For small-noise amplitudes, scaling behavior is only of the latter type.
Large noise is also seen to renormalize the bare physical parameters of the ring, akin to analogous parameter
renormalization for equilibrium three-dimensional membranes. Our results bear particular importance on the
relation between relevant universality classes of scale-invariant systems in two dimensions.
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Recently, statistical fluctuations are revealing interesting
features for a number of one-dimensional systems confined to
circular geometries. For instance, for semiflexible polymers
of a fixed length, such as constrained DNA rings, the closure
condition influences the scaling, shape, and transport behavior
[1]. Topology is actually expected to play a key role in
a large number of related biophysical processes, such as,
e.g., translocation in nanochannels or nanopores [2,3], or
knot localization [4]. In particular, circular DNA molecules
in two dimensions have been experimentally found [1] to
be well described as pressurized vesicles [5], their scaling
behavior depending on the geometry [6]. Thus, for deflated
rings (negative pressure difference �p), fluctuations are in
the universality class of lattice animals, while for �p = 0,
statistics are those of a ring self-avoiding walk (SAW) [1].
The latter is important as a paradigmatic model of polymers [7]
and because the SAW is believed to constitute a conformally
invariant system in two dimensions [8].

For planar rings evolving far from equilibrium, the closure
condition is also proving to be nontrivial, as recently observed
in experiments with droplets of turbulent liquid crystals [9],
for the edge of a drying colloidal suspension [10,11], and for
many more systems, from epitaxy to bacterial growth [12].
Thus, as proposed in Ref. [13], the probability distribution
function (PDF) of the height fluctuations for interfaces which,
as many of these, belong to the Kardar-Parisi-Zhang (KPZ)
universality class [14,15], depends on the global curvature. The
eponymous equation [16], which is the prime representative
for these systems, is a continuum model for the evolution of a
rough interface between a (stable, e.g., solid) phase that grows
at the expense of a (an unstable, e.g., vapor) phase,

∂th = v + ν∇2h + λ

2
(∇h)2 + η(x,t), (1)

where h(x,t) is the height field above the substrate position x ∈
Rd at time t , η is Gaussian white noise, v is the growth speed
for a flat interface, and ν > 0, λ are additional parameters.
On the one hand, from the point of view of the theory of
stochastic processes, the KPZ equation features a remarkable
example of a time crossover [17,18] between the two main
universality classes of kinetic roughening [14,15], namely, the

Edwards-Wilkinson (EW) class at short times, and the KPZ
class at long times. Experimentally [9], however, while such
a crossover may have been seen in d = 1 for interfaces with a
null global curvature, it has not for the circular geometry case.
On the other hand, for such ring-shaped interfaces, height
statistics are indeed distinctively described [13] by the Tracy-
Widom (TW) PDF for the largest eigenvalue of large random
matrices in the Gaussian unitary ensemble (GUE), as recently
supported by exact solutions of the KPZ equation on an infinite
substrate and a wedge initial condition (but without explicit
closure), or for related systems [19]. This actually occurs with
a remarkable degree of universality [17,20], as the same PDF,
critical exponents, and limiting processes apply to discrete
models, continuum equations [21], and experiments [9–11].
Hence, in two dimensions (2D) both pressurized vesicles
and the KPZ equation notably demonstrate the nontrivial
role of geometry, as a part of the universality class and
related renormalization-group fixed point [6], in and out of
equilibrium, respectively.

Note, Eq. (1) is just the small-slope, single-valued approx-
imation of a more general equation [22],

∂tr = [A0 + A1K(r) + Anη(r,t)] un, (2)

where r(t) ∈ Rd+1 gives the interface position, K(r) is the
local extrinsic surface curvature, un is the normal direction
pointing towards the unstable phase, and constants A0, A1,
and An relate to parameters in Eq. (1) in a simple way [22].
They account for, respectively, the average growth speed along
the local normal direction, surface tension effects, and noise in
the local growth velocity, precisely the physical mechanisms
at play in the formulation of the KPZ equation as a continuum
interface model [16]. However, those produced by Eq. (2) are
not constrained to small slopes or lack of overhangs [22].

For a ring geometry and d = 1, Eq. (1) actually has to
be given up in favor of Eq. (2), since the closure condition
hinders description of the interface profile by a single-valued
function altogether. Alternative formulations to Eq. (2) are
available (see, e.g., in Ref. [12]), although most include
the neglect of overhangs and/or additional simplifications. A
natural question is then whether Eqs. (1) and (2) have the same
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dynamic scaling properties. Here we show that, for planar
rings, this is not the case. Namely, while asymptotics are
indeed of the expected TW-GUE type also for Eq. (2), which
implements explicitly a closure condition, the early times differ
substantially as compared to Eq. (1): Now, for small-noise
amplitudes no scaling behavior other than KPZ is obtained,
as in experiments [9], while 2D SAW universality is obtained
at short times for large-noise amplitude values An. Such large
fluctuations renormalize additional parameters such as A1, in a
form that is reminiscent of surface tension renormalization by
nonequilibrium fluctuations, as experimentally assessed, e.g.,
in Ref. [23] for three-dimensional (3D) active membranes. In
parallel with the equilibrium behavior of 2D vesicles [6] as a
function of �p, the change from early-time SAW to late-time
KPZ scaling behavior correlates with an evolution in time from
a freely fluctuating ring to an average circular shape. Thus, the
generalized KPZ equation (2) also predicts a crossover to occur
during the time evolution of the system between two equally
celebrated universality classes under large-noise conditions.
From this point of view the experiments in Ref. [9] correspond
to a small-noise condition, while a prediction is provided for
suitable large-noise situations, which should be amenable to
experimental verification.

We have performed numerical simulations of Eq. (2) using
planar rings of various initial radii R0 and center (0,0) as
initial conditions. We employ an adaptive algorithm as in
Refs. [22,24], which does not need to assume a single-valued
polar function. The interface is represented by a chain of
points (a “polymer”) {Pi}N(t)

i=1 ⊂ R2 defining a piecewise
continuous curve which always leaves the stable phase on
its left. The distance between them is forced to remain in an
interval [lmin,lmax], which is achieved by inserting or removing
points dynamically. Interface properties, such as curvature, are
evaluated in a geometrically natural way [22]. Unavoidably,
self-intersections occur along the evolution. We always remove
the smaller interface component, eliminating both cavities and
outgrowths, thus implementing self-avoidance and rendering
the dynamics irreversible. This approximation is akin to
restricting dynamics to that of the active zone in growth

systems [22]. Time updates are via a Euler-Maruyama scheme
with spacing �t , sufficiently small that it does not appreciably
influence results.

A set of representative snapshots are shown in Fig. 1, for
R0 = 10, A0 = 0.01, A1 = 0.01, An = 1, and different times.
Qualitatively, the ring can be seen to undergo two different
regimes: (I) For t � 100 it fluctuates without significant
growth while its shape becomes less and less circular; (II) for
t � 400, the ring grows steadily, progressively recovering an
average circular shape. In order to interpret these observations,
we can consider the deterministic case, i.e., An = 0. Rings with
smaller R0 than a certain threshold shrink, since the constant
average velocity A0 is not able to compensate for the effect of
surface tension A1. On the other hand, for R0 � A1/A0, the
ring grows very slowly at first, and with velocity A0 for longer
times.

From Eq. (2), a simplified evolution equation can be derived
for the average ring radius R(t),

dR(t)

dt
= Ã0 + Ã1

R(t)
, (3)

where local variations in the normal velocity are neglected
and the total ring length L(t) is approximated by that of the
average circle (see details in Ref. [25]). Here, Ã0,1 have values
that will in general differ from their “bare” counterparts A0,1

due to noise-induced renormalization. Figure 2 shows R(t)
for the same parameter choice of Fig. 1. Regimes I and II
are clearly distinguished in the growth rate. Remarkably,
the numerical R(t) fits the exact solution of Eq. (3) [25]
for Ã0 ≈ 0.026 > 0.01 = A0 and Ã1 ≈ 0.1 > 0.01 = A1. For
small-noise amplitudes, no such noise renormalization occurs
(see Ref. [25]). Thinking of A0 as a pressure difference that
attempts to “inflate” the ring [5,6], the effect of An can
be thought of as a fluctuation-induced pressure boost Ã0.
Alongside, Ã1 becomes an enhanced surface tension, due to
the noisy dynamics. Similar fits are obtained for a wide range
of bare parameters.

Figure 2(a) also depicts the numerical evolution of the
actual L(t) (for a space cutoff lmin). Very early in regime
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FIG. 1. (Color online) (a) Interface evolution for R0 = 10, A0 = 0.01, A1 = 0.01, and An = 1, with �t = 0.1, lmin = 0.1, and lmax = 1.
Curves for times t = 2, 20, 150, 1000, and 5000, inner to outer. (b) Rescaled view to ease comparison. All units are arbitrary.
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FIG. 2. (Color online) Evolution of interface shape for the case
shown in Fig. 1. (a) Interface length (above) and circle length 2πR(t)
(below), with R(t) the fitted radius vs time. For long times, both are
linear in t . Dashed line: Fit to a renormalized deterministic growth.
(b) Interface length vs radius for different initial radii, R0 = 10, 20,
30, 40, and 50 (growing upwards). (c) Anisotropy vs time: � (+),
left vertical axis, and quadrupole moment Q (×), right vertical axis.
The slope of the straight line, −0.667, corresponds to a fit for long
times. Units are arbitrary.

I, while the average radius remains almost constant, this
length increases due to fluctuations. In regime II, when R(t)
grows steadily, L(t) actually becomes proportional to it. This
behavior is appreciated in Fig. 2(b), where the L(t) is plotted
versus R(t). There is a threshold total length, proportional to
R0, below which no radial growth occurs, and above which
both measures become proportional. As seen in Fig. 1, prior to
regime II, noise basically induces loss of the initial circular
symmetry. In Fig. 2(c) we quantify this effect by plotting
the asymmetry parameter [26] �(t) = 〈S2

G1/S
2
G2〉, i.e., the

ratio of the smallest to largest eigenvalues, S2
G1,S

2
G2, of the

gyration tensor S. This is frequently used to assess polymer
classes in terms of self-avoidance, dimensionality, rigidity, etc
[1,6,27,28]. In our case, �(t) decreases with time, reaches
a minimum value �(t � 400) � 0.68, and increases back,
approaching the characteristic value of a circular swollen
polymer in regime II. Other measures of anisotropy lead to
the same conclusion [see, e.g., Fig. 2(c) for the quadrupole
moment, Q2 = 〈|x2 − y2|〉/〈r2〉, where x, y, and r are relative
to the center of mass (CM) of the {Pi}N(t)

i=1 point distribution].
Given the relevance of fluctuations in these dynamics, we

assess them in Fig. 3(a), where we show the time evolu-
tion of the global interface roughness, WCM(t) = 〈[Pi(t) −
RCM(t)]2〉1/2, with RCM(t) being the position of the CM [29].
Scaling behavior W (t) ∼ tβ holds, with β � 1/3, both in
regimes I and II. As standard for kinetic roughening systems
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FIG. 3. (Color online) Evolution of the interface fluctuations for
the case shown in Fig. 1. (a) Global roughness (+) and standard
deviation of R(t) (×) vs time. Both straight lines have slopes 1/3.
(b) W (t) for decreasing noise amplitude, as in the legend, top (same
data as in the main panel) to bottom. (c) Local roughness vs window
size, for t = 2, 20, 1200, 8000, and 14 000, bottom to top. Straight
lines have slopes as in the legend. (d) Correlation length vs time.
Straight lines have slopes 1/2 (lower left corner) and 2/3 (upper right
corner). All units are arbitrary.

in a circular geometry, W (t) does not saturate due to the
uninterrupted growth of the system size [30]. Moreover,
as indicated in Fig. 2(c), during regime II the quadrupole
moment Q decays as t−2/3, which follows if we estimate Q

as the ratio of the radial fluctuations to the average radius,
tβ−1 ≈ t−2/3. We also measure the local roughness w(l,t),
namely, the interface fluctuations (restricted to windows of
size l) around a fitting circular arc, which is drawn with
respect to the CM. Data are shown in Fig. 3(c) as functions
of l, for several times. Scaling behavior ensues, w(l) ∼ lα ,
provided that, as in the standard Family-Vicsek (FV) ansatz
[14], the window size l is smaller than a correlation length
ξ (t), which itself grows as ξ (t) ∼ t1/z. The FV scaling relation
z = α/β holds for exponent values (α,z) which are (2/3,2) in
regime I, and (1/2,3/2) in regime II [see Fig. 3(d)]. Indeed,
in both cases β = 1/3, as implied by W (t). Hence, the fractal
dimension DF = 2 − α [14] changes from 4/3 in regime I
to 3/2 in regime II. Overall, the evolution is from kinetic
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FIG. 4. (Color online) (a) Histogram of rescaled radial fluctua-
tions χ at late times t ∈ [700,1500] for the case shown in Fig. 1.
Simulation data (∗) and analytic TW-GUE distribution (dashed line).
(b) Time evolution of skewness (lower, +) and kurtosis (upper, ×)
of R(t) for numerical data, with the analytic values for the TW-GUE
distribution as solid lines. Due to a negative  in Eq. (4), the skewness
converges to minus the value for the TW-GUE distribution. All units
are arbitrary.

roughening in the SAW class (regime I), for which αSAW = 2/3
[7] and βSAW = 1/3 [31,32], to asymptotic KPZ scaling in
regime II, for which αKPZ = 1/2 and βKPZ = 1/3 [14]. If
the noise amplitude decreases significantly (An � 0.01), the
roughness remains constant in regime I, namely, the SAW
stage disappears, the only measurable scaling behavior being
the KPZ asymptotics in regime II, as in the experiments for
circular geometry [9]. See Fig. 3(b).

The progressive dominance of radial fluctuations can be
appreciated in Fig. 3(a), where we plot the time evolution for
the standard deviation of the random variable R(t). Although
this quantity grows fast with t , numerically it remains much
smaller than W (t) until the onset of regime II, after which both
remain proportional. Actually, we can further explore radial
fluctuations in the asymptotic KPZ regime. Thus, following
Prähofer and Spohn [13], we rewrite

R(t) ≈ ρ0 + V t + tβχ, (4)

where ρ0, V , and  are constants, β = βKPZ, and χ is a random
variable with zero average and unit variance, whose probability
distribution is stationary and corresponds to the TW-GUE
distribution [9–11,13,19]. We have collected the instantaneous
radii data for 17 different times in the range t ∈ [700,1500],
i.e., well within regime II, for 2500 noise realizations, in order
to check this conjecture. Results are shown in Fig. 4(a), where
we plot the probability distribution of χ , obtained following
the procedure described in Ref. [33], and compare it with
the analytical result [17]. Moreover, we have measured the
third and fourth cumulants of this χ distribution, i.e., the
skewness and kurtosis, which are, respectively, 〈χ3〉c ≈ 0.233

and 〈χ4〉c ≈ 0.0733. The theoretical values for the TW-GUE
distribution are [13] 0.224 for the skewness and 0.093 for the
kurtosis, which are close enough. For comparison [13], for the
TW-GUE distribution, the skewness is 0.293 and the kurtosis
0.165, both being zero for the Gaussian distribution. Figure
4(b) shows the time evolution of the cumulants of R(t) towards
the TW-GUE values. We must remark on the negative sign
that we obtain for parameter  in Eq. (4), implying a negative
skewness for R(t). Physically, this is due to the fact (data
not shown) that, in regime II, the number of cavities removed
per unit length and unit time by the self-intersection removal
condition is smaller than the number of removed outgrowths.

In summary, while for relatively small noise, perhaps as the
experimentally studied case [9], only KPZ scaling is obtained,
for large-noise intensities Eq. (2) predicts a circular interface
to cross over in time between an early-time SAW regime,
in which it behaves as a freely fluctuating ring “polymer,”
and the late-time regime controlled by KPZ fluctuations in
the presence of nonzero average curvature. For small times,
the local driving does not suffice to counteract fluctuations,
so that the average circular shape smears out, interactions
among interface points being controlled by surface tension
(note the dynamic exponent indeed is z = 2 in regime I). Since
ξ (t) increases while R(t) stays almost constant, eventually
the system becomes fully correlated. From that time on, the
increasing length needs to be accommodated in the finite area
enclosed by the initial radius, and the intersection removal
mechanism becomes relevant, smoothing out the interface.
Because of the average (convex) circular geometry, cavities are
removed more frequently than outgrowths, and the interface
starts to grow, leading to the expected KPZ regime, with
TW-GUE characteristics.

Our results conspicuously connect the celebrated 2D SAW
and KPZ universality classes, both of which underscore the im-
portance of geometrical constraints for scaling behavior, in and
out of equilibrium. Crucially, the transition in time between
them can only be elucidated through the existence of over-
hangs, which eludes other continuum models of kinetic rough-
ening. Hence, the large-noise regime I of Eq. (2) might consti-
tute a scaling limit for the 2D ring SAW [8], while providing an
efficient algorithmic procedure to generate them [34]. Alterna-
tive connections between the KPZ and SAW classes are avail-
able, namely, between isoheight lines of the 2+1 dimensional
(3D) KPZ equation and 2D SAW-related formulations [35].
In general, the conformation and dynamics of circular poly-
mers are still subjects of considerable interest [36]. Current
experimental capabilities reach even down to single molecule
experiments [1], so that one might speculate on the possibility
to observe a dynamical transition of the type elucidated here
in appropriate nonequilibrium, 2D constrained settings [37].
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